Mapping Temporal Dynamics in a Forest Stream Network—Implications for Riparian Forest Management
Abstract
:1. Introduction
2. Experimental Section
2.1. Stream Network Variability
2.1.1. Site Description
2.1.2. Field Survey of Stream Heads
2.1.3. GIS Modelling of Stream Network
2.2. Wet Areas Mapping
2.3. A Case Study: Rutting Caused by Forwarder Traffic in Relation to Generated DTW-Maps
2.4. Expansion of Discharge Areas Following Final Felling
- R = recharge to the groundwater (m·s−1)
- x = distance to the water divide (m)
- w = width of the slope (m)
- K = saturated hydraulic conductivity of the soil layer (m·s−1)
- t = thickness of the soil layer (m)
- = slope of the groundwater surface (assumed to be the same as the soil surface)
2.5. Measurements of Soil Bearing Capacity and Soil Moisture
3. Results and Discussion
3.1. Spatial and Temporal Variability in Stream Drainage Network and Associated Wet Soils
3.2. Soil Bearing Capacity as a Function of Soil Moisture and Soil Type
3.3. Expansion of Discharge Areas Following Final Felling
3.4. Preventing Rutting
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Egnell, G.; Laudon, H.; Rosvall, O. Perspectives on the Potential Contribution of Swedish Forests to Renewable Energy Targets in Europe. Forests 2011, 2, 578–589. [Google Scholar] [CrossRef]
- Stephenson, A.L.; FRS, D.J.M. Life Cycle Impacts of Biomass Electricity in 2020. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/336038/beac_report.pdf (accessed on 1 June 2015).
- Kreutzweiser, D.P.; Hazlett, P.W.; Gunn, J.M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environ. Rev. 2008, 16, 157–179. [Google Scholar] [CrossRef]
- Laudon, H.; Tetzlaff, D.; Soulsby, C.; Carey, S.; Seibert, J.; Buttle, J.; Shanley, J.; McDonnell, J.J.; McGuire, K. Change in winter climate will affect dissolved organic carbon and water fluxes in mid-to-high latitude catchments. Hydrol. Process. 2013, 27, 700–709. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A. Effects of Skidder Passes and Slope on Soil Disturbance in Two Soil Water Contents. Croat. J. For. Eng. 2014, 35, 73–80. [Google Scholar]
- Frey, B.; Kremer, J.; Rudt, A.; Sciacca, S.; Matthies, D.; Luscher, P. Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur. J. Soil Biol. 2009, 45, 312–320. [Google Scholar] [CrossRef]
- Schnurr-Putz, S.; Baath, E.; Guggenberger, G.; Drake, H.L.; Kusel, K. Compaction of forest soil by logging machinery favours occurrence of prokaryotes. Fems Microbiol. Ecol. 2006, 58, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.; Kremer, J.; Rudt, A.; Sciacca, S.; Matthies, D.; Luscher, P. Heavy-Machinery Traffic Impacts Methane Emissions as Well as Methanogen Abundance and Community Structure in Oxic Forest Soils. Appl. Environ. Microbiol. 2011, 77, 6060–6068. [Google Scholar] [CrossRef] [PubMed]
- Teepe, R.; Brumme, R.; Beese, F.; Ludwig, B. Nitrous oxide emission and methane consumption following compaction of forest soils. Soil Sci. Soc. Am. J. 2004, 68, 605–611. [Google Scholar] [CrossRef]
- Schaffer, J.; Wilpert, K.V. In situ observation of root growth behind rhizotron windows—A pilot study. Allg. Forst Und Jagdztg. 2012, 183, 1–15. [Google Scholar]
- Curzon, M.T.; D’Amato, A.W.; Palik, B.J. Harvest residue removal and soil compaction impact forest productivity and recovery: Potential implications for bioenergy harvests. For. Ecol. Manag. 2014, 329, 99–107. [Google Scholar] [CrossRef]
- Kreutzweiser, D.P.; Capell, S.S. Fine sediment deposition in streams after selective forest harvesting without riparian buffers. Can. J. For. Res. 2001, 31, 2134–2142. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Nik, A.R.; Siew, R.; Turkelboom, F. Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- Prevost, M.; Plamondon, A.P.; Belleau, P. Effects of drainage of a forested peatland on water quality and quantity. J. Hydrol. 1999, 214, 130–143. [Google Scholar] [CrossRef]
- Lisle, T.E. Sediment Transport and Resulting Deposition in Spawning Gravels, North Coastal California. Water Resour. Res. 1989, 25, 1303–1319. [Google Scholar] [CrossRef]
- Soulsby, C.; Youngson, A.F.; Moir, H.J.; Malcolm, I.A. Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. Sci. Total Environ. 2001, 265, 295–307. [Google Scholar] [CrossRef]
- Lemly, A.D. Modification of benthic insect communities in polluted streams: Combined effects of sedimentation and nutrient enrichment. Hydrobiologia 1982, 87, 229–245. [Google Scholar] [CrossRef]
- Munthe, J.; Hultberg, H. Mercury and Methylmercury in Runoff from a Forested Catchment—Concentrations, Fluxes, and Their Response to Manipulations. Water Air Soil Pollut. Focus 2004, 4, 607–618. [Google Scholar] [CrossRef]
- Gerasimov, Y.; Sokolov, A.; Fjeld, D. Improving Cut-to-length Operations Management in Russian Logging Companies Using a New Decision Support System. Balt. For. 2013, 19, 89–105. [Google Scholar]
- Hiesl, P.; Benjamin, J.G. Applicability of International Harvesting Equipment Productivity Studies in Maine, USA: A Literature Review. Forests 2013, 4, 898–921. [Google Scholar] [CrossRef]
- Broadmeadow, S.; Nisbet, T.R. The effects of riparian forest management on the freshwater environment: A literature review of best management practice. Hydrol. Earth Syst. Sci. 2004, 8, 286–305. [Google Scholar] [CrossRef]
- Gundersen, P.; Lauren, A.; Finer, L.; Ring, E.; Koivusalo, H.; Saetersdal, M.; Weslien, J.O.; Sigurdsson, B.D.; Hogbom, L.; Laine, J.; et al. Environmental Services Provided from Riparian Forests in the Nordic Countries. Ambio 2010, 39, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Luke, S.H.; Luckai, N.J.; Burke, J.M.; Prepas, E.E. Riparian areas in the Canadian boreal forest and linkages with water quality in streams. Environ. Rev. 2007, 15, 79–97. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management. J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Wilkerson, E.; Hagan, J.M.; Siegel, D.; Whitman, A.A. The effectiveness of different buffer widths for protecting headwater stream temperature in Maine. For. Sci. 2006, 52, 221–231. [Google Scholar]
- Blinn, C.R.; Kilgore, M.A. Riparian management practices—A summary of state guidelines. J. For. 2001, 99, 11–17. [Google Scholar]
- Lee, P.; Smyth, C.; Boutin, S. Quantitative review of riparian buffer width guidelines from Canada and the United States. J. Environ. Manag. 2004, 70, 165–180. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Newbold, J.D. Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: A literature review. J. Am. Water Resour. Assoc. 2014, 50, 560–584. [Google Scholar] [CrossRef]
- Richardson, J.S.; Naiman, R.J.; Bisson, P.A. How did fixed-width buffers become standard practice for protecting freshwaters and their riparian areas from forest harvest practices? Freshw. Sci. 2012, 31, 232–238. [Google Scholar] [CrossRef]
- Richardson, J.S.; Danehy, R.J. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. For. Sci. 2007, 53, 131–147. [Google Scholar]
- Mazor, R.D.; Stein, E.D.; Ode, P.R.; Schiff, K. Integrating intermittent streams into watershed assessments: Applicability of an index of biotic integrity. Freshw. Sci. 2014, 33, 459–474. [Google Scholar] [CrossRef]
- Bishop, K.; Buffam, I.; Erlandsson, M.; Folster, J.; Laudon, H.; Seibert, J.; Temnerud, J. Aqua Incognita: The unknown headwaters. Hydrol. Process. 2008, 22, 1239–1242. [Google Scholar] [CrossRef]
- Acuna, V.; Datry, T.; Marshall, J.; Barcelo, D.; Dahm, C.N.; Ginebreda, A.; McGregor, G.; Sabater, S.; Tockner, K.; Palmer, M.A. Why Should We Care About Temporary Waterways? Science 2014, 343, 1080–1081. [Google Scholar] [CrossRef] [PubMed]
- Blyth, K.; Rodda, J.C. Stream Length Study. Water Resour. Res. 1973, 9, 1454–1461. [Google Scholar] [CrossRef]
- Rummukainen, M.; Bergstrom, S.; Persson, G.; Rodhe, J.; Tjernstrom, M. The Swedish Regional Climate Modelling Programme, SWECLIM: A review. Ambio 2004, 33, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Andreasson, J.; Bergstrom, S.; Carlsson, B.; Graham, L.P.; Lindstrom, G. Hydrological change—Climate change impact simulations for Sweden. Ambio 2004, 33, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Laudon, H.; Taberman, I.; Ågren, A.; Futter, M.; Ottosson-Löfvenius, M.; Bishop, K. The Krycklan Catchment Study—A flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape. Water Resour. Res. 2013, 49, 7154–7158. [Google Scholar] [CrossRef]
- Laudon, H.; Berggren, M.; Agren, A.; Buffam, I.; Bishop, K.; Grabs, T.; Jansson, M.; Kohler, S. Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling. Ecosystems 2011, 14, 880–893. [Google Scholar] [CrossRef]
- Lindsay, J.B.; Dhun, K. Modelling surface drainage patterns in altered landscapes using LiDAR. Int. J. Geogr. Inf. Sci. 2015, 29, 397–411. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting Topographic Structure from Digital Elevation Data for Geographic Information-System Analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Ocallaghan, J.F.; Mark, D.M. The Extraction of Drainage Networks from Digital Elevation Data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Ågren, A.M.; Lidberg, W.; Strömgren, M.; Ogilvie, J.; Arp, P.A. Evaluating digital terrain indices for soil wetness mapping—A Swedish case study. Hydrol. Earth Syst. Sci. 2014, 18, 1–12. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Arp, P. Topographic modelling of soil moisture conditions: A comparison and verification of two models. Eur. J. Soil Sci. 2009, 60, 94–109. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Meng, F.R.; White, B.; Bhatti, J.S.; Arp, P.A. Modelling and mapping topographic variations in forest soils at high resolution: A case study. Ecol. Model. 2011, 222, 2314–2332. [Google Scholar] [CrossRef]
- Puckett, W.E.; Dane, J.H.; Hajek, B.F. Physical and Mineralogical Data to Determine Soil Hydraulic-Properties. Soil Sci. Soc. Am. J. 1985, 49, 831–836. [Google Scholar] [CrossRef]
- Rodhe, A.; Lindström, G.; Rosberg, J.; Pers, C. Grundvattenbildning i svenska Typjordar - Översiktlig Beräkning med en Vattenbalansmodell; Report Series A2006; Institutionen för geovetenskaper, Uppsala Universitet: Uppsala, Sweden; p. 27. (In Swedish)
- Seibert, J.; Grabs, T.; Kohler, S.; Laudon, H.; Winterdahl, M.; Bishop, K. Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model. Hydrol. Earth Syst. Sci. 2009, 13, 2287–2297. [Google Scholar] [CrossRef] [Green Version]
- Bishop, K.; Seibert, J.; Nyberg, L.; Rodhe, A. Water storage in a till catchment. II: Implications of transmissivity feedback for flow paths and turnover times. Hydrol. Process. 2011, 25, 3950–3959. [Google Scholar] [CrossRef]
- Grip, H.; Rodhe, A. Vattnets väg från regn till bäck, 3rd ed.; Hallgren & Fallgren: Uppsala, Sweden, 1994. (In Swedish) [Google Scholar]
- Sorensen, R.; Ring, E.; Meili, M.; Hogbom, L.; Seibert, J.; Grabs, T.; Laudon, H.; Bishop, K. Forest Harvest Increases Runoff Most during Low Flows in Two Boreal Streams. Ambio 2009, 38, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Edlund, J. Harvesting in the Boreal Forest on Soft Ground—Ways to Reduce Ground Damage. Ph. D. Thesis, Department of Forest Rescource Management, Swedish University of Agricultural Science, Arkiteketkopia, Umeå, 2012. [Google Scholar]
- Bodin, A. Development of a tracked vehicle to study the influence of vehicle parameters on tractive performance in soft terrain. J. Terramechanics 1999, 36, 167–181. [Google Scholar] [CrossRef]
- Hansen, W.F. Identifying stream types and management implications. For. Ecol. Manag. 2001, 143, 39–46. [Google Scholar] [CrossRef]
- Fries, C.; Carlsson, M.; Dahlin, B.; Lämås, T.; Sallnäs, O. A review of conceptual landscape planning models for multiobjective forestry in Sweden. Can. J. For. Res. 1998, 28, 159–167. [Google Scholar] [CrossRef]
- Kuglerová, L.; Jansson, R.; Ågren, A.; Laudon, H.; Malm-Renöfält, B. Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network. Ecology 2013, 95, 715–725. [Google Scholar] [CrossRef]
- Kuglerová, L.; Ågren, A.; Jansson, R.; Laudon, H. Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. For. Ecol. Manag. 2014, 334, 74–84. [Google Scholar] [CrossRef]
- Miwa, M.; Aust, W.M.; Burger, J.A.; Patterson, S.C.; Carter, E.A. Wet-weather timber harvesting and site preparation effects on coastal plain sites: A review. South. J. Appl. For. 2004, 28, 137–151. [Google Scholar]
- Wood, P.J.; Armitage, P.D. Biological effects of fine sediment in the lotic environment. Environ. Manag. 1997, 21, 203–217. [Google Scholar] [CrossRef]
- Grabs, T.; Bishop, K.; Laudon, H.; Lyon, S.W.; Seibert, J. Riparian zone hydrology and soil water total organic carbon (TOC): Implications for spatial variability and upscaling of lateral riparian TOC exports. Biogeosciences 2012, 9, 3901–3916. [Google Scholar] [CrossRef] [Green Version]
- Williamson, J.R.; Neilsen, W.A. The influence of forest site on rate and extent of soil compaction and profile disturbance of skid trails during ground-based harvesting. Can. J. For. Res. Rev. Can. Rech. For. 2000, 30, 1196–1205. [Google Scholar] [CrossRef]
- Edlund, J.; (Department of Forest Resource and Management, Swedish University of Agricultural Science, Umeå, Sweden). Personal Communication, 2012.
- Lundin, L. Effects on hydrology and surface water chemistry of regeneration cuttings in peatland forests. Int. Peat J. 1999, 9, 118–126. [Google Scholar]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Kanwar, R.S.; Everts, C.J. Comparison of Saturated Hydraulic Conductivity Measurement Methods for a Glacial-Till Soil. Soil Sci. Soc. Am. J. 1994, 58, 672–677. [Google Scholar] [CrossRef]
- Bishop, K.H.; Grip, H.; Oneill, A. The Origins of Acid Runoff in a Hillslope During Storm Events. J. Hydrol. 1990, 116, 35–61. [Google Scholar] [CrossRef]
- Nyberg, L. Water-Flow Path Interactions with Soil Hydraulic-Properties in Till Soil at Gardsjon, Sweden. J. Hydrol. 1995, 170, 255–275. [Google Scholar] [CrossRef]
- Laudon, H.; Seibert, J.; Köhler, S.; Bishop, K. Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. Water Resour. Res. 2004, 40, W03102. [Google Scholar] [CrossRef]
- Beldring, S. Runoff generating processes in boreal forest environments with glacial tills. Nord. Hydrol. 2002, 33, 347–372. [Google Scholar]
- Kendall, K.A.; Shanley, J.B.; McDonnell, J.J. A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt. J. Hydrol. 1999, 219, 188–205. [Google Scholar] [CrossRef]
- Soulsby, C.; Reynolds, B. Influence of Soil Hydrological Pathways on Stream Aluminum Chemistry at Llyn-Brianne, Mid-Wales. Environ. Pollut. 1993, 81, 51–60. [Google Scholar] [CrossRef]
- Uusitalo, J.; Ala-Ilomaki, J. The significance of above-ground biomass, moisture content and mechanical properties of peat layer on the bearing capacity of ditched pine bogs. Silva Fenn. 2013, 47. article ID 993. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Murphy, P.N.C.; Castonguay, M.; Ogilvie, J.; Arp, P.A. A modular terrain model for daily variations in machine-specific forest soil trafficability. Can. J. Soil Sci. 2009, 89, 93–109. [Google Scholar] [CrossRef]
- Saarilahti, M. Soil interaction model. Available online: http://ethesis.helsinki.fi/julkaisut/maa/mvaro/publications/31/soilinte.pdf (accessed on 1 June 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ågren, A.M.; Lidberg, W.; Ring, E. Mapping Temporal Dynamics in a Forest Stream Network—Implications for Riparian Forest Management. Forests 2015, 6, 2982-3001. https://doi.org/10.3390/f6092982
Ågren AM, Lidberg W, Ring E. Mapping Temporal Dynamics in a Forest Stream Network—Implications for Riparian Forest Management. Forests. 2015; 6(9):2982-3001. https://doi.org/10.3390/f6092982
Chicago/Turabian StyleÅgren, Anneli M., William Lidberg, and Eva Ring. 2015. "Mapping Temporal Dynamics in a Forest Stream Network—Implications for Riparian Forest Management" Forests 6, no. 9: 2982-3001. https://doi.org/10.3390/f6092982
APA StyleÅgren, A. M., Lidberg, W., & Ring, E. (2015). Mapping Temporal Dynamics in a Forest Stream Network—Implications for Riparian Forest Management. Forests, 6(9), 2982-3001. https://doi.org/10.3390/f6092982