Leaf Trait Variation with Environmental Factors at Different Spatial Scales: A Multilevel Analysis Across a Forest-Steppe Transition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Community Investigation
2.3. Data Collection
2.3.1. Environmental Factors at the Transect Scale
2.3.2. Environmental Variables at the Plot Scale
2.3.3. Determination of Plant Leaf Traits
2.4. Data Analysis
2.4.1. Community Weighted Means of Leaf Trait
2.4.2. Multilevel Model Specification
3. Results
3.1. Variance Changes within and among Transects
3.2. Leaf Traits Variation with Environmental Factors at Different Spatial Scales
4. Discussion
4.1. Leaf Trait Variation with Regional Climatic Factors
4.2. Leaf Traits Variation with Enviromental Factors at Plot Scale
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Diaz, S.; Cabido, M.; Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 1998, 9, 113–122. [Google Scholar] [CrossRef]
- Dwyer, J.M.; Hobbs, R.J.; Mayfield, M.M. Specific leaf area responses to environmental gradients through space and time. Ecology 2014, 95, 399–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keddy, P.A. Assembly and Response Rules: Two Goals for Predictive Community Ecology. J. Veg. Sci. 1992, 3, 157–164. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Schwilk, D.W.; Ackerly, D.D. A trait-based test for habitat filtering: Convex hull volume. Ecology 2006, 87, 1465–1471. [Google Scholar] [CrossRef]
- Lavorel, S.; Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Perez-Garcia, E.A.; Meave, J.A.; Bongers, F.; Poorter, L. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 2010, 91, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Ellsworth, D.S.; Walters, M.B.; Vose, J.M.; Gresham, C.; Volin, J.C.; Bowman, W.D. Generality of leaf trait relationships: A test across six biomes. Ecology 1999, 80, 1955–1969. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.; Falster, D.S.; Garnier, E.; Hikosaka, K.; Lamont, B.B.; Lee, W.; Oleksyn, J.; Osada, N.; et al. Assessing the generality of global leaf trait relationships. New Phytol. 2005, 166, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.; Falster, D.S.; Groom, P.K.; Hikosaka, K.; Lee, W.; Lusk, C.H.; Niinemets, Ü.; Oleksyn, J.; et al. Modulation of leaf economic traits and trait relationships by climate. Glob. Ecol. Biogeogr. 2005, 14, 411–421. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Richardson, S.J.; Peltzer, D.A.; de Bello, F.; Wardle, D.A.; Allen, R.B. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. J. Ecol. 2012, 100, 678–689. [Google Scholar] [CrossRef]
- Saura-Mas, S.; Shipley, B.; Lloret, F. Relationship between post-fire regeneration and leaf economics spectrum in Mediterranean woody species. Funct. Ecol. 2009, 23, 103–110. [Google Scholar] [CrossRef]
- Wright, J.P.; Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Funct. Ecol. 2012, 26, 1390–1398. [Google Scholar] [CrossRef]
- Messier, J.; McGill, B.J.; Lechowicz, M.J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 2010, 13, 838–848. [Google Scholar] [PubMed]
- Lippok, D.; Beck, S.G.; Renison, D.; Hensen, I.; Apaza, A.E.; Schleuning, M. Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. J. Veg. Sci. 2014, 25, 724–733. [Google Scholar] [CrossRef]
- Moeslund, J.; Arge, L.; Bøcher, P.K.; Dalgaard, T.; Ejrnæs, R.; Odgaard, M.V.; Svenning, J.C. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 2013, 22, 2151–2166. [Google Scholar] [CrossRef]
- Moeslund, J.E.; Arge, L.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.C. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. 2013, 31, 129–144. [Google Scholar] [CrossRef]
- Yasuhiro, K.; Hirofumi, M.; Kihachiro, K. Effects of topographic heterogeneity on tree species richness and stand dynamics in a subtropical forest in Okinawa Island, southern Japan. J. Ecol. 2004, 92, 230–240. [Google Scholar] [CrossRef]
- Opedal, Ø.H.; Armbruster, W.S.; Graae, B.J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol. Divers. 2015, 8, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Bergholz, K.; May, F.; Giladi, I.; Ristow, M.; Ziv, Y.; Jeltsch, F. Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment. Perspect. Plant Ecol. Evol. Syst. 2017, 24, 138–146. [Google Scholar] [CrossRef]
- Cingolani, A.M.; Cabido, M.; Gurvich, D.E.; Renison, D.; Díaz, S. Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? J. Veg. Sci. 2007, 18, 911–920. [Google Scholar] [CrossRef]
- Zou, H. A Study on Correlation Between Vegetation Division and Construction of Forest and Grasslands in Loess Plateau of Northern Shannxi. Res. Soil Water Conserv. 2000, 7, 96–100. (In Chinese) [Google Scholar]
- Zhu, Z. Basic features of forest steppe in the Loess Plateau. Sci. Geogr. Sin. 1994, 14, 152–156. [Google Scholar] [CrossRef]
- He, X.H.; Wen, Z.M.; Wang, J.X. Spatial distribution of major grassland species and its relations to environment in Yanhe River catchment based on generalized additive model. Chin. J. Ecol. 2008, 27, 1718–1724. [Google Scholar]
- Zhang, J. Theory and technique of vegetation restoration and construction on Loess Plateau, China. J. Soil Water Conserv. 2004, 18, 120–124. (In Chinese) [Google Scholar]
- Wang, L.; Shao, M.; Zhang, Q.F. Distribution and characters of soil dry layer in north Shaanxi Loess Plateau. Chin. J. Appl. Ecol. 2004, 15, 436–442. (In Chinese) [Google Scholar]
- Dormann, C.F.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Kissling, W.D.; et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- He, J.S.; Wang, Z.; Wang, X.; Schmid, B.; Zuo, W.; Zhou, M.; Zheng, C.; Wang, M.; Fang, J. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytol. 2006, 170, 835–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westoby, M.; Wright, I.J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 2006, 21, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Xie, H.Y.; Jiang, B.F. Multilevel Models: Methods and Applications; Higher Education Press of China: Beijing, China, 2008. [Google Scholar]
- Garnier, E.; Laurent, G.; Bellmann, A.; Debain, S.; Berthelier, P.; Ducout, B.; Roumet, C.; Navas, M.L. Consistency of species ranking based on functional leaf traits. New Phytol. 2001, 152, 69–83. [Google Scholar] [CrossRef]
- Vendramini, F.; Díaz, S.; Gurvich, D.E.; Wilson, P.J.; Thompson, K.; Hodgson, J.G. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol. 2002, 154, 147–157. [Google Scholar] [CrossRef]
- Ali, A.; Yan, E.-R.; Chang, S.X.; Cheng, J.Y.; Liu, X.Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci. Total Environ. 2017, 574, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zeng, D.; Fan, Z.; Pepper, D.; Chen, G.; Zhong, L. Leaf traits indicate survival strategies among 42 dominant plant species in a dry, sandy habitat, China. Front. Biol. China 2009, 4, 477–485. [Google Scholar] [CrossRef]
- Jin, T.; Liu, G.; Fu, B.; Ding, X.; Yang, L. Assessing adaptability of planted trees using leaf traits: A case study with Robinia pseudoacacia L. in the Loess Plateau, China. Chin. Geogr. Sci. 2011, 21, 290. [Google Scholar] [CrossRef]
- Shi, H.; Wen, Z.; Paull, D.; Jiao, F. Distribution of natural and planted forests in the Yanhe River catchment: Have we planted trees on the right sites? Forests 2016, 7, 258. [Google Scholar] [CrossRef]
- Wen, Z.; Jiao, F.; Jiao, J.Y. Prediction and mapping of potentia lvegetation distribution in Yanhe River catchment in hilly area of Loess Plateau. Chin. J. Appl. Ecol. 2008, 19, 1897–1904. [Google Scholar]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Ecology—Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.T.; Xu, B.; Li, M. Relationships between the bioactive compound content and environmental variables in Glycyrrhiza uralensis populations in different habitats of North China. Phyton 2011, 80, 161–166. [Google Scholar]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Grime, J.P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 1998, 86, 902–910. [Google Scholar] [CrossRef]
- Finegan, B.; Peña-Claros, M.; Oliveira, A.; Ascarrunz, N.; Bret-Harte, M.S.; Carreño-Rocabado, G.; Casanoves, F.; Díaz, S.; Eguiguren Velepucha, P.; Fernandez, F.; et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 2015, 103, 191–201. [Google Scholar]
- Bliese, P. Multilevel Modeling in R (2.6): A Brief Introduction to R, the Multilevel Package and the nlme Package. 2016. Available online: https://cran.r-project.org/doc/contrib/Bliese_Multilevel.pdf (accessed on 3 March 2018).
- Alain, F.Z.; Elena, N.I.; Neil, J.W.; Anatoly, A.S.; Graham, M.S. Mixed effects models and extensions in ecology with R. J. R. Stat. Soc. 2010, 173, 938–939. [Google Scholar]
- Niinemets, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 2001, 82, 453–469. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Auslander, M.; Nevo, E.; Inbar, M. The effects of slope orientation on plant growth, developmental instability and susceptibility to herbivores. J. Arid Environ. 2003, 55, 405–416. [Google Scholar] [CrossRef]
- Liu, M.X.; Ma, J.Z. Feature variations of plant functional traits and environmental factor in south-and north-facing slope. Res. Soil Water Conserv. 2013, 20, 102–106. [Google Scholar]
- Li, L.F.; Bao, W.K.; Li, J.H. Leaf characteristics and their relationship of cotinus coggygria in arid revir valley located in the upper reaches of Minjiang with environmental factors depending on its gradients. Acta Bot. Boreal.-Occident. Sin. 2005, 25, 139–146. [Google Scholar]
- Li, L.F.; Bao, W.K.; Wu, N. An Eco-anatomical Study on Leaves of Cotinus szechuanensis at Gradient Elevation in Dry Valley of the Upper Minjiang Rive. Chin. J. Appl. Environ. Biol. 2007, 13, 486–491. [Google Scholar]
- Qi, J.; Ma, K.M.; Zhang, Y.X. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations. Acta Ecol. Sin. 2007, 27, 930–937. [Google Scholar]
- Ordonez, J.C.; van Bodegom, P.M.; Witte, J.P.; Wright, I.J.; Reich, P.B.; Aerts, R. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 2009, 18, 137–149. [Google Scholar] [CrossRef]
- Liu, M.X.; Ma, J.Z. Responses of plant functional traits and soil factors to slope aspect in alpine meadow of South Gansu, Northwest China. Chin. J. Appl. Ecol. 2012, 23, 3295–3300. [Google Scholar]
- Shen, Z.H.; Zhang, X.S.; Jin, Y. Spatial pattern analysis and topographical interpretation of species diversity in the forests of dalaoling in the region of the Three gorges. Acta Bot. Sin. 2000, 42, 620–627. [Google Scholar]
- Yu, M.; Zhou, Z.Y.; Kang, F.F.; OuYang, S.; Mi, X.C.; Sun, J.X. Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China. Chin. J. Plant Ecol. 2013, 37, 373–383. [Google Scholar] [CrossRef]
Trait Variables | Variance Components | Statistical Parameters | |||
---|---|---|---|---|---|
Transect | Plot | ICC | LRatio | p | |
LT | 0.0003 | 0.002 | 14.17% | 28.72 | <0.001 *** |
SLA | 150.6 | 376.1 | 28.59% | 16.31 | <0.001 *** |
LTD | 0.024 | 0.227 | 9.69% | 14.43 | <0.001 *** |
LCC | 459 | 4289 | 9.67% | 56.96 | <0.001 *** |
LNC | 4.016 | 21.429 | 15.78% | 22.90 | <0.001 *** |
LPC | 0.005 | 0.121 | 4.24% | 40.27 | 0.027 |
Parameter | LT | SLA | LTD | LCC | LNC |
---|---|---|---|---|---|
Fixed effects | |||||
Intercept | 0.553 *** | 20.092 ** | 6.476 *** | 1053.81 *** | −1.491 * |
Pa | −0.001*** | - | −0.011 *** | −0.787 ** | 0.022 * |
SWC | −0.004 * | - | −0.070 *** | - | - |
SOM | - | 1.175 *** | - | - | 0.141 ** |
aspect | −0.097 *** | 50.350 *** | −1.643 *** | - | 9.126 *** |
elevation | - | - | - | 0.153 * | - |
Variance components | |||||
(transect scale) | 0.0001 | - | 0.022 | 186.9 | 1.365 |
(site scale) | 0.001 | 70.813 | 0.056 | 4215.6 | 11.480 |
% Explained variance (transect scale) | 36.08% | - | 10.91% | 57.25% | 66.01% |
% Explained variance (site scale) | 43.60% | 81.17% | 75.39% | 7.28% | 46.43% |
Metrics of model support | |||||
AIC | −1053.8 | 1889.6 | 18.01 | 2865.8 | 1372.4 |
BIC | −1025.4 | 1925.6 | 39.26 | 2883.5 | 1400.8 |
−2LL | 534.9 | −934.8 | −3.004 | −1427.9 | −678.2 |
Vegetation Zone | Transects | LT/mm | SLA/cm2·g−1 | LTD/g·cm−3 | LCC/g·kg−1 | LNC/g·kg−1 | LPC/g·kg−1 |
---|---|---|---|---|---|---|---|
Steppe | LJW | 0.189 ± 0.005 c | 53.819 ± 3.098 a | 1.019 ± 0.101 bcd | 510.914 ± 6.772 c | 14.377 ± 0.816 a | 1.285 ± 0.028 a |
HZL | 0.181 ± 0.005 bc | 55.216 ± 2.853 ab | 1.162 ± 0.098 d | 470.513 ± 11.703 abc | 15.509 ± 0.789 ab | 1.378 ± 0.067 ab | |
LDW | 0.181 ± 0.007 bc | 57.436 ± 2.965 abc | 1.091 ± 0.082 cd | 497.615 ± 13.335 bc | 14.671 ± 0.547 ab | 1.327 ± 0.059 ab | |
Forest-steppe | HS | 0.162 ± 0.008 ab | 66.831 ± 3.691 bcd | 0.777 ± 0.073 ab | 464.819 ± 5.314 ab | 17.518 ± 0.764 b | 1.408 ± 0.068 ab |
WLW | 0.182 ± 0.008 bc | 64.109 ± 2.826 abcd | 0.835 ± 0.089 abc | 471.467 ± 8.786 abc | 15.846 ± 0.780 ab | 1.458 ± 0.074 abc | |
ZFG | 0.151 ± 0.007 a | 68.227 ± 3.932 cd | 0.757 ± 0.055 ab | 503.799 ± 13.842 bc | 17.650 ± 0.834 b | 1.407 ± 0.069 ab | |
Forest | ZJT | 0.140 ± 0.007 a | 82.950 ± 3.034 e | 0.694 ± 0.103 a | 433.495 ± 18.952 a | 17.352 ± 0.766 b | 1.522 ± 0.036 bc |
TQY | 0.148 ± 0.009 a | 85.069 ± 7.616 e | 0.645 ± 0.053 a | 455.802 ± 25.257 a | 22.081 ± 1.585 c | 1.660 ± 0.062 c | |
MBZ | 0.163 ± 0.007 ab | 75.624 ± 3.557 de | 0.818 ± 0.104 abc | 453.426 ± 17.211 a | 17.628 ± 1.508 b | 1.490 ± 0.050 abc | |
F-Value | 5.327 ** | 7.566 ** | 4.003 ** | 3.783 ** | 5.280 ** | 2.208 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Wen, Z.; Guo, M. Leaf Trait Variation with Environmental Factors at Different Spatial Scales: A Multilevel Analysis Across a Forest-Steppe Transition. Forests 2018, 9, 122. https://doi.org/10.3390/f9030122
Shi H, Wen Z, Guo M. Leaf Trait Variation with Environmental Factors at Different Spatial Scales: A Multilevel Analysis Across a Forest-Steppe Transition. Forests. 2018; 9(3):122. https://doi.org/10.3390/f9030122
Chicago/Turabian StyleShi, Haijing, Zhongming Wen, and Minghang Guo. 2018. "Leaf Trait Variation with Environmental Factors at Different Spatial Scales: A Multilevel Analysis Across a Forest-Steppe Transition" Forests 9, no. 3: 122. https://doi.org/10.3390/f9030122
APA StyleShi, H., Wen, Z., & Guo, M. (2018). Leaf Trait Variation with Environmental Factors at Different Spatial Scales: A Multilevel Analysis Across a Forest-Steppe Transition. Forests, 9(3), 122. https://doi.org/10.3390/f9030122