Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Variation in Evolutionary Rate between HBV Genotypes
2.2. Variation in Evolutionary Rate by HBeAg Status
2.3. Variation in Evolutionary Rate within HBV Genomes
2.3. Modeling the Influence of HBeAg Serological State on Evolutionary Rate
3. Conclusions
4. Methods
4.1. Data Collection
4.2. Detecting Recombinants
4.3. Inferring Evolutionary Rates
4.4. BEAST Analyses
4.4.1. Shared-rate Approach
4.4.2. Relative Rates Approach
4.4.3. Specific Delta Model
Acknowledgements
References and Notes
- Drummond, A.J.; Pybus, O.G.; Rambaut, A.; Forsberg, R.; Rodrigo, A.G. Measurably evolving populations. Trends Ecol. Evol. 2003, 18, 481–488. [Google Scholar] [CrossRef]
- Drummond, A.; Pybus, O.G.; Rambaut, A. Inference of viral evolutionary rates from molecular sequences. Adv. Parasitol. 2003, 54, 331–358. [Google Scholar]
- Pybus, O.G.; Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 2009, 10, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Lu, L.; He, Y.; Fu, Y.; Robertson, B.H.; Pybus, O.G. Population genetic history of hepatitis C virus 1b infection in China. J. Gen. Virol. 2006, 87, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, A.G.; Goode, M.; Forsberg, R.; Ross, H.A.; Drummond, A. Inferring evolutionary rates using serially sampled sequences from several populations. Mol. Biol. Evol. 2003, 20, 2010–2018. [Google Scholar] [CrossRef]
- Rambaut, A.; Pybus, O.G.; Nelson, M.I.; Viboud, C.; Taubenberger, J.K.; Holmes, E.C. The genomic and epidemiological dynamics of human influenza A virus. Nature 2008, 453, 615–619. [Google Scholar] [CrossRef]
- Jenkins, G.M.; Rambaut, A.; Pybus, O.G.; Holmes, E.C. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J. Mol. Evol. 2002, 54, 156–165. [Google Scholar] [CrossRef]
- Duffy, S.; Shackleton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants. Nat. Rev. Genet. 2008, 9, 267–276. [Google Scholar] [CrossRef]
- Shackelton, L.A.; Rambaut, A.; Pybus, O.G.; Holmes, E.C. JC virus evolution and its association with human populations. J. Virol. 2006, 80, 9928–9933. [Google Scholar] [CrossRef]
- Firth, C.; Kitchen, A.; Shapiro, B.; Suchard, M.A.; Holmes, E.C.; Rambaut, A. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol. Biol. Evol. 2010, 27, 2038–2051. [Google Scholar] [CrossRef]
- Kodama, K.; Ogasawara, N.; Yoshikawa, H.; Murakami, S. Nucleotide sequence of a cloned woodchuck hepatitis virus genome: evolutional relationship between hepadnaviruses. J. Virol. 1985, 56, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Imai, M.; Kametani, M.; Nakamura, T.; Mayumi, M. Genomic heterogeneity of Hepatitis B virus in a 54 year old woman who contracted the infection through Materno-Fetal transmission. Jpn. J. Exp. Med. 1987, 57, 231–236. [Google Scholar] [PubMed]
- Orito, E.; Mizokami, M.; Ina, Y.; Moriyama, E.N.; Kameshima, N.; Yamamoto, M.; Gojobori, T. Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 7059–7062. [Google Scholar] [CrossRef] [PubMed]
- Fares, M.A.; Holmes, E.C. A revised evolutionary history of Hepatitis B virus (HBV). J. Mol. Evol. 2002, 54, 807–814. [Google Scholar] [CrossRef]
- Michitaka, K.; Tanaka, Y.; Horiike, N.; Duong, T.N.; Chen, Y.; Matsuura, K.; Hiasa, Y.; Mizokami, M.; Onj, i.M. Tracing the history of hepatitis B virus genotype D in Western Japan. J. Med. Virol. 2006, 78, 44–52. [Google Scholar] [CrossRef]
- Osiowy, C.; Giles, E.; Tanaka, Y.; Mizokami, M.; Minuk, G.Y. Molecular Evolution of Hepatitis B virus over 25 years. J. Virol. 2006, 80, 10307–10314. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Holmes, E.C. Bayesian estimates of the evolutionary rate and age of hepatitis B virus. J. Mol. Evol. 2007, 65, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.G.; Cheng, Y.; Guindon, S.; Seet, B.L.; Lee, L.Y.; Hu, P.; Wasser, S.; Peter, F.J.; Tan, T.; Goode, M.; Rodrigo, A.G. Viral quasi-species evolution during hepatitis Be antigen seroconversion. Gastroenterology 2007, 133, 951–958. [Google Scholar] [CrossRef]
- Simmonds, P. The origin and evolution of hepatitis viruses in humans. J. Gen. Virol. 2001, 82, 693–712. [Google Scholar] [CrossRef]
- Legrand-Abravanel, F.; Claudinon, J.; Nicot, F.; Dubois, M.; Chapuy-Regaud, S.; Sandres-Saune, K.; Pasquier, C.; Izopet, J. New Natural Intergenotypic (2/5) Recombinant of Hepatitis C Virus. J. Virol. 2007, 81, 4357–4362. [Google Scholar] [CrossRef]
- Simmonds, P.; Midgley, S. Recombination in the genesis and evolution of hepatitis B virus genotypes. J. Virol. 2005, 79, 15467–15476. [Google Scholar] [CrossRef]
- Billerbeck, E.; Bottler, T.; Thimme, R. Regulatory T cells in viral hepatitis. World J. Gastroenterol. 2007, 13, 4858–4864. [Google Scholar] [CrossRef] [PubMed]
- Vanlandschoot, P.; Cao, T.; Leroux-Roels, G. The nucleocapsid of the hepatitis B virus: A remarkable immunogenic structure. Antivir. Res. 2003, 60, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.; Nassal, M. Hepatitis B virus replication. World J. Gastroenterol. 2007, 13, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Gerner, P.; Lausch, E.; Friedt, M.; Tratzmuller, R.; Spangenberg, C.; Wirth, S. Hepatitis B virus core promoter mutations in children with multiple anti-HBe/HBeAg reactivations result in enhanced promoter activity. J. Med. Virol. 1999, 59, 415–423. [Google Scholar] [CrossRef]
- Hasegawa, K.; Huang, J.; Rogers, S.A.; Blum, H.E.; Liang, T.J. Enhanced replication of a hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. J. Virol. 1994, 68, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Beasley, R.P.; Trepo, C.; Stevens, C.E.; Szmuness, W. The e antigen and vertical transmission of hepatitis B surface antigen. Am. J. Epidemiol. 1977, 105, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Blackberg, J.; Kidd-Ljunggren, K. Occult hepatitis B virus after acute self-limited infection persisting for 30 years without sequence variation. J. Hepatol. 2000, 33, 992–997. [Google Scholar] [CrossRef]
- Bozkaya, H.; Akarca, U.; Ayola, B.; Lok, A.S.F. High degree of conservation in the hepatitis B virus core gene during the immune tolerant phase in perinatally acquired chronic hepatitis B virus infection. J. Hepatol. 1997, 26, 508–516. [Google Scholar] [CrossRef]
- Günther, S.; Li, B.C.; Miska, S.; Krüger, D.H.; Meisel, H.; Will, H. A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J. Virol. 1995, 69, 5437–5444. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef]
- Drummond, A.J.; Ho, S.Y.; Phillips, M.J.; Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Gotanda, Y.; Itabashi, M.; Minegishi, K.; Kanemitsu, K.; Nishioka, K. Hepatitis B NAT virus-positive blood donors in the early and late stages of HBV infection: Analyses of the window period and kinetics of HBV DNA. Vox Sang. 2005, 88, 77–86. [Google Scholar] [CrossRef]
- Zehender, G.; De Maddalena, C.; Giambelli, C.; Milazzo, L.; Schiavini, M.; Bruno, R.; Tanzi, E.; Galli, M. Different evolutionary rates and epidemic growth of hepatitis B virus genotypes A and D. Virology 2008, 380, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Devesa, M.; Pujol, F.H. Hepatitis B virus genetic diversity in Latin America. Virus Res. 2007, 127, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.N.; Horiike, N.; Michitaka, K.; Yan, C.; Mizokami, M.; Tanaka, Y.; Jyoko, K.; Yamamoto, K.; Miyaoka, H.; Yamashita, Y.; Ohne, N.; Onji, M. Comparison of genotypes C and D of the hepatitis B virus in Japan: a clinical and molecular biological study. J. Med. Virol. 2004, 72, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Gust, I.D. Epidemiology of hepatitis B infection in the Western Pacific and South East Asia. Gut 1996, 38, S18–S23. [Google Scholar] [CrossRef] [PubMed]
- Whittle, H.C.; Bradley, A.K.; McLauchlan, K.; Ajdukiewicz, A.B.; Howard, C.R.; Zuckerman, A.J.; McGregor, I.A. Hepatitis B virus infection in two Gambian villages. Lancet 1983, 321, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Seeger, C.; Mason, W.S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 2000, 64, 51–68. [Google Scholar] [CrossRef]
- Chen, C.H.; Lee, C.M.; Hung, C.H.; Hu, T.H.; Wang, J.H.; Wang, J.C.; Lu, S.N.; Changchien, C.S. Clinical significance and evolution of core promoter and precore mutations in HBeAg-positive patients with HBV genotype B and C: A longitudinal study. Liver Int. 2007, 27, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.C.; Yu, M.W.; Wu, C.F.; Yang, S.Y.; Lin, C.L.; Liu, C.J.; Shih, W.L.; Chen, P.J.; Liaw, Y.F.; Chen, C.J. Temporal relationship between hepatitis B virus enhancer II/basal core promoter sequence variation and risk of hepatocellular carcinoma. Gut 2008, 57, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.Y.; Heupink, T.H.; Rambaut, A.; Shapiro, B. Bayesian estimation of sequence damage in ancient DNA. Mol. Biol. Evol. 2007, 24, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Kidd-Ljunggren, K.; Oberg, M.; Kidd, A.H. Hepatitis B virus X gene 1751 to 1764 mutations: implications for HBeAg status and disease. J. Gen. Virol. 1997, 78, 1469–1478. [Google Scholar] [CrossRef]
- Hannoun, C.; Horal, P.; Lindh, M. Long-term mutation rates in the hepatitis B virus genome. J. Gen. Virol. 2000, 81, 75–83. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, T.; Deforche, K.; Cassol, S.; Salminem, M.; Paraskevis, D.; Seebregts, C.; Snoeck, J.; van Rensburg, E.J.; Wensing, A.M.J.; van de Vijver, D.A.; Boucher, C.A.; Camacho, R.; Vandamme, A.-M. An automated genotyping system for analysis of HIV-1 and other microbial sequences. Bioinformatics 2005, 21, 3797–3800, BioAfrica.net. Available online: http://bioafrica.mrc.ac.za/ (accessed on 31 July 2010). [CrossRef] [PubMed]
- Bruen, T.C.; Philippe, H.; Bryant, D. A simple and robust statistical test for detecting the presence of recombination. Genetics 2006, 172, 2665–2681. [Google Scholar] [CrossRef]
- Boni, M.F.; Posada, D.; Feldman, M.W. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 2007, 176, 1035–1047. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Drummond, A.J.; Nicholls, G.K.; Rodrigo, A.G.; Solomon, W. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 2002, 161, 1307–1320. [Google Scholar] [CrossRef]
- Van Dooren, S.; Pybus, O.G.; Salemi, M.; Liu, H.-F.; Goubau, P.; Remondegui, C.; Talarmin, A.; Gotuzzo, E.; Alcantara, L.C.J.; Galvão-Castro, B. The low evolutionary rate of human T-cell lymphotropic virus type-1 confirmed by analysis of vertical transmission chains. Mol. Biol. Evol. 2004, 21, 603–611. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A. Tracer, version 1.5. Available online: http://beast.bio.ed.ac.uk/Tracer (accessed on 30 November 2009).
- Rambaut, A. FigTree, version 1.3.1. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 21 December 2009).
- Lemey, P.; Pybus, O.G.; Rambaut, A.; Drummond, A.J.; Robertson, D.L.; Roques, P.; Worobey, M.; Vandamme, A.M. The molecular population genetics of HIV-1 group O. Genetics 2004, 167, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Suchard, M.A.; Weiss, R.E.; Sinsheimer, J.S. Bayesian selection of continuous-time Markov chain evolutionary models. Mol. Biol. Evol. 2001, 18, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
Data sets | Data set name | Genotypes | Number of sequences | HBeAg+ve | HBeAg-ve | Recombinants strains | Subpopulations per data set | ||
---|---|---|---|---|---|---|---|---|---|
Serially sampled Within Host and Family Transmission sequences | 1 | Within Host Genotype C | WH-C | C | 11 | 9 | 2 | 0 | 4 |
2 | Within Host Genotype D | WH-D | D | 27 | 21 | 6 | 0 | 13 | |
3 | Within Host recombinant sequences of Genotypes B and C | WH-BC | rBC | 16 | 1 | 15 | - | 8 | |
4 | Family Transmission sequences of Genotype D and recombinant sequences of Genotypes B and C | WH-Fa | D, rBC | 13 | 7 | 6 | 0 | 3 | |
5 | HBeAg+ve Within Host and Family Transmission sequences of Genotypes C, D and recombinant sequences of B and C | WH-HBeAg+ve | C, D, rBC | 54 | n/a | n/a | 0 | 3 | |
6 | HBeAg-ve Within Host and Family Transmission sequences comprised of recombinant genotype B and C | WH-HBeAg-ve | rBC | 34 | n/a | n/a | 0 | 9 | |
Among Host epidemiologically unrelated sequences | 7 | Among Host Genotype A | AH-A | A | 37 | 37 | 0 | 5 | n/a |
8 | Among Host Genotype B | AH-B | B | 15 | 5 | 10 | - | n/a | |
9 | Among Host Genotype C | AH-C | C | 63 | 18 | 18 | - | n/a | |
10 | Among Host Genotype D | AH-D | D | 56 | 25 | 25 | - | n/a | |
11 | Among Host Genotype E | AH-E | E | 49 | 45 | 45 | 0 | n/a | |
12 | Among Host Genotype F | AH-F | F | 35 | 26 | 26 | 4 | n/a | |
13 | Among Host Genotype H | AH-H | H | 22 | 22 | 22 | 0 | n/a | |
14 | Among Host HBeAg+ve | AH-HBeAg+ve | C, D | 76 | n/a | n/a | n/a | n/a | |
15 | Among Host HBeAg-ve | AH-HBeAg-ve | C, D | 43 | n/a | n/a | n/a | n/a |
Data Set | Antigen state | Strict Clock | UCLD Relaxed Clock | UCLD Relaxed Clock | |||
---|---|---|---|---|---|---|---|
Mean | 95% HPD | UCLD Mean | 95% HPD | Weighted Mean | 95% HPD | ||
AH-A | HBeAg+ve | 6.01E-04 | 4.07E-04–7.83E-04 | 8.60E-04 | 4.34E-04–1.43E-03 | 8.04E-04 | 4.41E-04–1.26E-03 |
AH-C | HBeAg+ve and -ve | 1.23E-04 | 2.81E-05–2.12E-04 | 2.00E-04 | 5.41E-05–3.61E-04 | 1.88E-04 | 5.09E-05–3.34E-04 |
AH-D | HBeAg+ve and -ve | 1.01E-04 | 4.57E-05–1.53E-04 | 1.21E-04 | 1.83E-05–2.27E-04 | 9.39E-05 | 1.87E-05–1.77E-04 |
AH-E | HBeAg+ve | 1.94E-04 | 7.98E-06–3.75E-04 | 9.29E-04 | 1.81E-05–2.018E-03 | 6.97E-04 | 1.41E-04–1.28E-03 |
AH-F | HBeAg+ve and -ve | 5.29E-04 | 3.49E-04–6.85E-04 | 1.11E-03 | 5.18E-04–1.76E-03 | 8.39E-04 | 4.44E-04–1.20E-03 |
AH-H | HBeAg+ve | 4.39E-05 | 3.97E-08–1.11E-04 | 2.88E-04 | 6.48E-07–6.67E-04 | 1.75E-04 | 3.77E-06–3.54E-04 |
WH-BC | HBeAg-ve | 9.55E-05 | 4.80E-05–1.52E-04 | 1.12E-04 | 1.40E-07–2.21E-04 | 9.63E-05 | 9.31E-06–1.80E-04 |
WH-C | HBeAg+ve and -ve | 1.15E-04 | 3.09E-05–2.13E-04 | - | - | ||
WH-D | HBeAg+ve and -ve | 1.36E-04 | 9.40E-05–1.80E-04 | 1.17E-04 | 3.49E-05–2.08E-04 | 5.78E-05 | 1.08E-05–1.16E-04 |
Data Set | Antigen state | Strict Clock | UCLD Relaxed Clock | UCLD Relaxed Clock | |||
---|---|---|---|---|---|---|---|
Mean | 95% HPD | UCLD Mean | 95% HPD | Weighted Mean | 95% HPD | ||
AH-C | HBeAg+ve | 8.76E-05 | 1.48E-06–1.79E-04 | 2.47E-04 | 1.20E-05–4.84E-04 | 2.29E-04 | 1.15E-05–4.37E-04 |
AH-D | HBeAg+ve | 5.93E-05 | 1.26E-04–1.01E-04 | 7.60E-05 | 1.90E-05–1.43E-04 | 6.73E-05 | 1.37E-05–1.23E-04 |
AH-F | HBeAg+ve | 1.80E-04 | 4.78E-05–3.41E-04 | 5.61E-04 | 2.06E-05–1.15E-03 | 4.10E-04 | 3.22E-05–7.62E-04 |
WH-D | HBeAg+ve | 3.74E-05 | 8.83E-06–7.11E-05 | - | - |
HBeAg-ve | HBeAg+ve | |||
---|---|---|---|---|
Mean | 95% HPD | Mean | 95% HPD | |
Within-host | 1.10E-04 | 8.23E-05–1.41E-04 | 2.60E-05 | 1.49E-05–3.75E-05 |
Among-host | 2.01E-04 | 4.88E-05–3.32E-04 | 6.10E-05 | 1.97E-05–1.02E-04 |
Strict Clock | UCLD Relaxed Clock | ||||
---|---|---|---|---|---|
Mean | 95% HPD | UCLD Mean | 95% HPD | ||
Within-host HBeAg +ve | complete genome | 2.60E-05 | 1.49E-05–3.75E-05 | 4.43E-05 | 2.24E-05–6.96E-05 |
nonoverlapping | 3.30E-05 | 1.89E-05–4.83E-05 | 5.87E-05 | 2.94E-05–9.31E-05 | |
overlapping | 1.71E-05 | 9.38E-06–2.47E-05 | 3.07E-05 | 1.36E-05–4.4E-05 | |
Within-host HBeAg -ve | complete genome | 1.10E-04 | 8.23E-05–1.41E-04 | 1.17E-04 | 8.40E-05–1.53E-04 |
nonoverlapping | 1.34E-04 | 9.59E-05–1.72E-04 | 1.42E-04 | 9.94E-05–1.88E-04 | |
overlapping | 8.66E-05 | 6.06E-05–1.41E-04 | 9.30E-05 | 6.41E-05–1.16E-04 | |
Among-host HBeAg +ve | complete genome | 6.10E-05 | 1.97E-05–1.02E-04 | 6.20E-05 | 2.09E-05–1.06E-04 |
nonoverlapping | 8.36E-05 | 3.64E-05–1.38E-04 | 8.26E-05 | 2.81E-05–1.41E-04 | |
overlapping | 4.29E-05 | 1.56E-05–6.77E-05 | 4.25E-05 | 1.52E-05–7.37E-05 | |
Among-host HBeAg -ve | complete genome | 2.01E-04 | 4.88E-05–3.32E-04 | 1.89E-04 | 3.96E-05–3.44E-04 |
nonoverlapping | 2.52E-04 | 8.74E-05–4.37E-04 | 2.34E-04 | 4.47E-05–4.24E-04 | |
overlapping | 1.56E-04 | 5.36E-05–2.71E-04 | 1.45E-04 | 3.01E-05–2.65E-04 |
Strict Clock | UCLD Relaxed Clock | ||||
---|---|---|---|---|---|
Mean | 95% HPD | UCLD Mean | 95% HPD | ||
Within-host HBeAg +ve | complete genome | 2.58E-05 | 1.53E-05–3.74E-05 | 4.77E-05 | 2.55E-05–7.94E-05 |
non CURS-Core | 2.62E-05 | 1.52E-05–3.76E-05 | 4.81E-05 | 2.47E-05–7.95E-05 | |
CURS-Core | 2.49E-05 | 1.26E-05–3.68E-05 | 4.67E-05 | 2.06E-05–7.77E-05 | |
Within-host HBeAg -ve | complete genome | 1.09E-04 | 8.13E-05–1.39E-04 | 1.24E-04 | 8.71E-05–1.62E-04 |
non CURS-Core | 8.61E-05 | 6.35E-05–1.09E-04 | 9.72E-05 | 6.85E-05–1.31E-04 | |
CURS-Core | 1.79E-04 | 1.21E-04–2.35E-04 | 2.02E-04 | 1.37E-04–2.72E-04 | |
Among-host HBeAg +ve | complete genome | 5.99E-05 | 2.32E-05–9.92E-05 | 6.31E-05 | 2.20E-05–1.00E-04 |
non CURS-Core | 6.24E-05 | 2.27E-05–1.02E-04 | 6.58E-05 | 2.30E-05–1.05E-04 | |
CURS-Core | 5.23E-05 | 1.87E-05–8.66E-05 | 5.50E-05 | 2.01E-05–8.96E-05 | |
Among-host HBeAg -ve | complete genome | 1.95E-04 | 1.89E-05–3.36E-04 | 2.00E-04 | 6.32E-05–3.42E-04 |
non CURS-Core | 1.78E-04 | 2.34E-05–3.13E-04 | 1.83E-04 | 5.38E-05–3.08E-04 | |
CURS-Core | 2.44E-04 | 2.60E-05–4.29E-04 | 2.51E-04 | 6.91E-05–4.25E-04 |
Datasets | Model | Clock Rate | 95% HPD | Delta Distribution | 95% HPD | Log P |
---|---|---|---|---|---|---|
WH- D | No delta | 1.36E-04 | 9.40E-05–1.80E-04 | - | - | -6319.237 |
General Delta | 1.31E-04 | 8.52E-05–1.74E-04 | skewed to zero | - | -6320.459 | |
Specific Delta | 4.35E-05 | 1.26E-05–7.41E-05 | 5.62E-03 | 4.09E-03–6.94E-03 | -6286.171 | |
AH- D | No delta | 1.02E-04 | 4.57E-05–1.53E-04 | - | - | -10732.539 |
General Delta | 9.58E-05 | 4.30E-05–1.50E-04 | 5.16E-04 | 1.65E-04–9.26E-04 | -10738.168 | |
Specific Delta | 6.74E-05 | 1.56E-05–1.14E-04 | 2.54E-03 | 1.77E-03- 3.24E-03 | -10721.39 | |
AH- C | No delta | 1.20E-04 | 2.98E-05–1.95E-04 | - | -19005.325 | |
General Delta | 8.48E-05 | 2.07E-05–1.54E-04 | 1.66E-03 | 8.07E-04–2.44E-03 | -19007.966 | |
Specific Delta | 8.45E-05 | 2.29E-05–1.56E-04 | 1.90E-03 | 7.40E-04–3.11E-03 | -19005.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2011 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, A.; Lemey, P.; Hurles, M.; Moyes, C.; Horn, S.; Pryor, J.; Malani, J.; Supuri, M.; Masta, A.; Teriboriki, B.; et al. Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation. Viruses 2011, 3, 83-101. https://doi.org/10.3390/v3020083
Harrison A, Lemey P, Hurles M, Moyes C, Horn S, Pryor J, Malani J, Supuri M, Masta A, Teriboriki B, et al. Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation. Viruses. 2011; 3(2):83-101. https://doi.org/10.3390/v3020083
Chicago/Turabian StyleHarrison, Abby, Philippe Lemey, Matthew Hurles, Chris Moyes, Susanne Horn, Jan Pryor, Joji Malani, Mathias Supuri, Andrew Masta, Burentau Teriboriki, and et al. 2011. "Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation" Viruses 3, no. 2: 83-101. https://doi.org/10.3390/v3020083