Utilization of Ocrelizumab within Different Treatment Strategies for Multiple Sclerosis: A 5-Year Population-Based Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population
2.3. Treatment Variables
- DMT administration: infusion (alemtuzumab, natalizumab), oral (cladribine, fingolimod, teriflunomide, dimethyl fumarate), and injection (glatiramer acetate, interferon beta-1a, interferon beta-1b, and peg-interferon beta-1a), using ocrelizumab as a reference for comparison [2];
- DMT efficacy: low-/medium-efficacy DMTs (teriflunomide, dimethyl fumarate, glatiramer acetate, interferon beta-1a, interferon beta-1b, and peg-interferon beta-1a) and highly active DMTs (alemtuzumab, natalizumab, cladribine, fingolimod), using ocrelizumab as a reference for comparison [2];
- Previous DMT: ocrelizumab as a first-line DMT (no MS records in the previous 12 months) [9] after low-/medium-efficacy DMTs (teriflunomide, dimethyl fumarate, glatiramer acetate, interferon beta-1a, interferon beta-1b, and peg-interferon beta-1a) or after other highly active DMTs (alemtuzumab, natalizumab, cladribine, fingolimod).
2.4. Persistence, Adherence, Healthcare Resource Utilization, and Costs
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Angelis, F.; John, N.; Brownlee, W.J. Disease-modifying therapies for multiple sclerosis. Br. Med. J. 2018, 363, k4674. [Google Scholar] [CrossRef] [PubMed]
- Moccia, M.; Affinito, G.; Berera, G.; Marrazzo, G.; Piscitelli, R.; Carotenuto, A.; Petracca, M.; Lanzillo, R.; Triassi, M.; Morra, V.B.; et al. Persistence, adherence, healthcare resource utilization and costs for ocrelizumab in the real-world of the Campania Region of Italy. J. Neurol. 2022, 269, 6504–6511. [Google Scholar] [CrossRef] [PubMed]
- Glaser, A.; Stahmann, A.; Meissner, T.; Flachenecker, P.; Horáková, D.; Zaratin, P.; Brichetto, G.; Pugliatti, M.; Rienhoff, O.; Vukusic, S.; et al. Multiple sclerosis registries in Europe—An Updated Mapping Survey. Mult. Scler. Relat. Disord. 2019, 27, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Thalheim, C. Pooling real-world multiple sclerosis patient data on a European level: A true story of success. Neurodegener. Dis. Manag. 2015, 5, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Trojano, M.; Bergamaschi, R.; Amato, M.P.; Comi, G.; Ghezzi, A.; Lepore, V.; Marrosu, M.G.; Mosconi, P.; Patti, F.; Ponzio, M.; et al. The Italian multiple sclerosis register. Neurol. Sci. 2019, 40, 155–165. [Google Scholar] [CrossRef]
- Kalincik, T.; Butzkueven, H. Observational data: Understanding the real MS world. Mult. Scler. 2016, 22, 1642–1648. [Google Scholar] [CrossRef] [PubMed]
- Trojano, M.; Tintore, M.; Montalban, X.; Hillert, J.; Kalincik, T.; Iaffaldano, P.; Spelman, T.; Sormani, M.P.; Butzkueven, H. Treatment decisions in multiple sclerosis—Insights from real-world observational studies. Nat. Rev. Neurol. 2017, 13, 105–118. [Google Scholar] [CrossRef]
- Moccia, M.; Morra, V.B.; Lanzillo, R.; Loperto, I.; Giordana, R.; Fumo, M.G.; Petruzzo, M.; Capasso, N.; Triassi, M.; Sormani, M.P.; et al. Multiple Sclerosis in the Campania Region (South Italy): Algorithm Validation and 2015–2017 Prevalence. Int. J. Environ. Res. Public Health 2020, 17, 3388. [Google Scholar] [CrossRef] [PubMed]
- Affinito, G.; Palladino, R.; Carotenuto, A.; Caliendo, D.; Lanzillo, R.; Fumo, M.G.; Giordana, R.; Di Gennaro, M.; Iodice, C.; Macrì, P.; et al. Epidemiology of multiple sclerosis in the Campania Region (Italy): Derivation and validation of an algorithm to calculate the 2015–2020 incidence. Mult. Scler. Relat. Disord. 2023, 71, 104585. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Moccia, M.; Affinito, G.; Ronga, B.; Giordana, R.; Fumo, M.G.; Lanzillo, R.; Petracca, M.; Carotenuto, A.; Triassi, M.; Morra, V.B.; et al. Emergency medical care for multiple sclerosis: A five-year population study in the Campania Region (South Italy). Mult. Scler. 2022, 28, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Geiger, C.K.; Sheinson, D.; To, T.M.; Jones, D.; Bonine, N.G. Real-World Clinical and Economic Outcomes Among Persons With Multiple Sclerosis Initiating First- Versus Second- or Later-Line Treatment with Ocrelizumab. Neurol. Ther. 2023, 12, 1709–1728. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.; Thirumalai, D.; Barlev, A.; Jones, E.; Bogdanovich, S.; Kresa-Reahl, K. Treatment Patterns and Unmet Need for Patients with Progressive Multiple Sclerosis in the United States: Survey Results from 2016 to 2021. Neurol. Ther. 2023, 12, 1961–1979. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.; Vandewalle, B.; Félix, J.; Capela, C.M.; Cerqueira, J.J.; Salgado, A.V.; Ferreira, D.G.; Monteiro, I. Cost-effectiveness Analysis of Ocrelizumab for the Treatment of Relapsing and Primary Progressive Multiple Sclerosis in Portugal. PharmacoEconomics—Open 2023, 7, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.; Horton, D.B.; Bhise, V.; Pal, G.; Bushnell, G.; Dave, C.V. Initiation Patterns of Disease-Modifying Therapies for Multiple Sclerosis among US Adults and Children, 2001 through 2020. JAMA Neurol. 2023, 80, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Taylor, B.V.; A Campbell, J.; Palmer, A.J. The disease-modifying therapy utilisation and cost trend for multiple sclerosis in Australia between 2013 and 2022. Mult. Scler. 2023, 30, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.S.; Buttmann, M.; Meuth, S.G.; Dirks, P.; Rouzic, E.M.-L.; Eggebrecht, J.C.; Hieke-Schulz, S.; Leemhuis, J.; Ziemssen, T. Safety, Adherence and Persistence in a Real-World Cohort of German MS Patients Newly Treated with Ocrelizumab: First Insights from the CONFIDENCE Study. Front. Neurol. 2022, 13, 863105. [Google Scholar] [CrossRef]
- Engmann, N.J.; Sheinson, D.; Bawa, K.; Ng, C.D.; Pardo, G. Persistence and adherence to ocrelizumab compared with other disease-modifying therapies for multiple sclerosis in U.S. commercial claims data. J. Manag. Care Spec. Pharm. 2021, 27, 639–649. [Google Scholar] [CrossRef]
- Pardo, G.; Pineda, E.D.; Ng, C.D.; Bawa, K.K.; Sheinson, D.; Bonine, N.G. Adherence to and Persistence with Disease-Modifying Therapies for Multiple Sclerosis over 24 Months: A Retrospective Claims Analysis. Neurol. Ther. 2022, 11, 337–351. [Google Scholar] [CrossRef]
- Rojas, J.I.; Patrucco, L.; Fruns, M.; Hornung, G.; Flores, J.; Contentti, E.C.; Lopez, P.A.; Pettinicchi, J.P.; Caride, A.; Galleguillos, L.; et al. Real-world experience of ocrelizumab in multiple sclerosis patients in latin america. Arq. Neuropsiquiatr. 2021, 79, 305–309. [Google Scholar] [CrossRef]
- Smoot, K.; Chen, C.; Stuchiner, T.; Lucas, L.; Grote, L.; Cohan, S. Clinical outcomes of patients with multiple sclerosis treated with ocrelizumab in a US community MS center: An observational study. BMJ Neurol. Open 2021, 3, e000108. [Google Scholar] [CrossRef] [PubMed]
- Pontieri, L.; Pontieri, L.; Blinkenberg, M.; Blinkenberg, M.; Bramow, S.; Bramow, S.; Papp, V.; Papp, V.; Rasmussen, P.V.; Rasmussen, P.V.; et al. Ocrelizumab treatment in multiple sclerosis: A Danish population-based cohort study. Eur. J. Neurol. 2022, 29, 496–504. [Google Scholar] [CrossRef]
- Fernandez-Diaz, E.; Perez-Vicente, J.A.; Villaverde-Gonzalez, R.; Berenguer-Ruiz, L.; Merlicco, A.C.; Martinez-Navarro, M.L.; Gil, J.G.; Romero-Sanchez, C.M.; Alfaro-Saez, A.; Diaz, I.; et al. Real-world experience of ocrelizumab in multiple sclerosis in a Spanish population. Ann. Clin. Transl. Neurol. 2021, 8, 385–394. [Google Scholar] [CrossRef]
- Montalban, X.; Matthews, P.M.; Simpson, A.; Petrie, J.L.; Sammon, C.; Ramagopalan, S.; Disanto, G.; Kuhle, J. Real-world evaluation of ocrelizumab in multiple sclerosis: A systematic review. Ann. Clin. Transl. Neurol. 2023, 10, 302–311. [Google Scholar] [CrossRef]
- Chisari, C.G.; Bianco, A.; Morra, V.B.; Calabrese, M.; Capone, F.; Cavalla, P.; Chiavazza, C.; Comi, C.; Danni, M.; Filippi, M.; et al. Effectiveness of Ocrelizumab in Primary Progressive Multiple Sclerosis: A Multicenter, Retrospective, Real-World Study (OPPORTUNITY). Neurotherapeutics 2023, 20, 1696–1706. [Google Scholar] [CrossRef] [PubMed]
- Foong, Y.C.; Merlo, D.; Gresle, M.; Buzzard, K.; Zhong, M.; Yeh, W.Z.; Jokubaitis, V.; Monif, M.; Skibina, O.; Ozakbas, S.; et al. Comparing ocrelizumab to interferon/glatiramer acetate in people with multiple sclerosis over age 60. J. Neurol. Neurosurg. Psychiatry, 2024; published online first. [Google Scholar] [CrossRef]
- Rolfes, L.; Pawlitzki, M.; Pfeuffer, S.; Nelke, C.; Lux, A.; Pul, R.; Kleinschnitz, C.; Kleinschnitz, K.; Rogall, R.; Pape, K.; et al. Ocrelizumab Extended Interval Dosing in Multiple Sclerosis in Times of COVID-19. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1035. [Google Scholar] [CrossRef]
- Guerrieri, S.; Bucca, C.; Nozzolillo, A.; Genchi, A.; Zanetta, C.; Cetta, I.; Rugarli, G.; Gattuso, I.; Azzimonti, M.; Rocca, M.A.; et al. Ocrelizumab extended-interval dosing in multiple sclerosis during SARS-CoV-2 pandemic: A real-world experience. Eur. J. Neurol. 2023, 30, 2859–2864. [Google Scholar] [CrossRef]
- Bisecco, A.; Matrone, F.; Capobianco, M.; De Luca, G.; Filippi, M.; Granella, F.; Lus, G.; Marfia, G.A.; Mirabella, M.; Patti, F.; et al. COVID-19 outbreak in Italy: An opportunity to evaluate extended interval dosing of ocrelizumab in MS patients. J. Neurol. 2023, 271, 699–710. [Google Scholar] [CrossRef]
- Rjeily, N.B.; Fitzgerald, K.C.; Mowry, E.M. Extended interval dosing of ocrelizumab in patients with multiple sclerosis is not associated with meaningful differences in disease activity. Mult. Scler. J. 2023, 30, 257–260. [Google Scholar] [CrossRef]
- Nicholas, J.; Halpern, R.; Ziehn, M.; Peterson-Brandt, J.; Leszko, M.; Deshpande, C. Real-world cost of treatment for multiple sclerosis patients initiating and receiving infused disease-modifying therapies per recommended label in the United States. J. Med. Econ. 2020, 23, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Rog, D.; Brownlee, W.; Carod-Artal, F.J.; Kalra, S.; Barker, N.; Lowndes, C.; Pendlebury, J.; Leclerc, S.; Amin, A.; Ashton, L.; et al. Quantifying the administration and monitoring time burden of several disease-modifying therapies for relapsing multiple sclerosis in the United Kingdom: A Time and Motion study. Mult. Scler. Relat. Disord. 2023, 82, 105380. [Google Scholar] [CrossRef] [PubMed]
- Affinito, G.; Trama, U.; Palumbo, L.; Fumo, M.G.; Giordana, R.; Di Gennaro, M.; Triassi, M.; Lanzillo, R.; Morra, V.B.; Palladino, R.; et al. Impact of COVID-19 and system recovery in delivering healthcare to people with multiple sclerosis: A population-based Study. Neurol. Sci. 2023, 44, 3771–3779. [Google Scholar] [CrossRef] [PubMed]
- Bossart, J.; Kamm, C.P.; Kaufmann, M.; Stanikić, M.; Puhan, M.A.; Kesselring, J.; Zecca, C.; Gobbi, C.; Rapold, I.; Kurmann, R.; et al. Real-world disease-modifying therapy usage in persons with relapsing-remitting multiple sclerosis: Cross-sectional data from the Swiss Multiple Sclerosis Registry. Mult. Scler. Relat. Disord. 2022, 60, 103706. [Google Scholar] [CrossRef]
- Lycett, M.J.; A Lea, R.; E Maltby, V.; Min, M.; Lechner-Scott, J. The effect of cladribine on immunoglobulin levels compared to B cell targeting therapies in multiple sclerosis. Mult. Scler. J.—Exp. Transl. Clin. 2023, 9, 20552173221149690. [Google Scholar] [CrossRef]
DMT | Patients | ITPs | Age | Females | Charlson Comorbidity Index | ||
---|---|---|---|---|---|---|---|
(n) | (Years) | (n) | 0 | 1–2 | ≥3 | ||
Ocrelizumab | 682 | 682 | 46.46 ± 11.29 | 384 | 556 | 18 | 2 |
Alemtuzumab | 41 | 41 | 34.63 ± 7.97 | 30 | 30 | - | - |
Natalizumab | 438 | 439 | 34.78 ± 12.05 | 297 | 323 | 4 | 2 |
Cladribine | 141 | 141 | 41.22 ± 12.09 | 98 | 87 | 3 | - |
Fingolimod | 459 | 459 | 39.26 ± 12.03 | 290 | 243 | - | - |
Teriflunomide | 483 | 486 | 50.06 ± 11.59 | 316 | 156 | 10 | 1 |
Dimethyl fumarate | 814 | 815 | 38.90 ± 11.91 | 566 | 247 | 3 | 2 |
Interferon beta1a im | 95 | 95 | 48.94 ± 13.94 | 64 | 18 | 2 | - |
Interferon beta1b | 69 | 70 | 52.79 ± 10.38 | 41 | 10 | - | - |
Glatiramer acetate | 267 | 267 | 46.29 ± 12.04 | 184 | 57 | 4 | - |
Peg-interferon beta1a | 99 | 99 | 38.90 ± 13.85 | 76 | 19 | 1 | - |
Interferon beta1a sc | 280 | 280 | 40.89 ± 12.80 | 214 | 84 | 1 | - |
DMT | ITP Duration (Months) | Switch to Other DMT | Complete DMT Discontinuation | |
---|---|---|---|---|
Mean ± SD | Median (IQR) | |||
Ocrelizumab | 23.37 ± 11.28 | (13–31) | 8 | 1 |
Alemtuzumab | 12.98 ± 2.80 | (11–14) | 5 | 4 |
Natalizumab | 20.29 ± 13.94 | (8–31) | 42 | 7 |
Cladribine | 12.47 ± 1.44 | (12–13) | 7 | - |
Fingolimod | 25.60 ± 13.48 | (13–36) | 38 | 9 |
Teriflunomide | 26.45 ± 17.01 | (12–39) | 44 | 16 |
Dimethyl fumarate | 28.86 ± 16.71 | (14–42) | 100 | 14 |
Interferon beta1a im | 35.01 ± 19.62 | (14–55) | 12 | 2 |
Interferon beta1b | 34.14 ± 20.36 | (12–55) | 12 | 3 |
Glatiramer acetate | 29.92 ± 18.91 | (10–46) | 55 | 17 |
Peg-interferon beta1a | 24.95 ± 16.73 | (14–38) | 24 | 2 |
Interferon beta1a sc | 31.73 ± 19.16 | (12–51) | 70 | 10 |
DMT | PDC | PDC > 0.8 | |
---|---|---|---|
Ocrelizumab | 1.03 ± 0.24 | 628/682 | 92.0% |
Alemtuzumab | 1.02 ± 0.08 | 15/15 | 100.0% |
Natalizumab | 0.95 ± 0.15 | 373/438 | 85.1% |
Cladribine | 1.10 ± 0.13 | 141/141 | 100.0% |
Fingolimod | 0.91 ± 0.25 | 326/452 | 72.1% |
Teriflunomide | 0.86 ± 0.34 | 264/433 | 60.9% |
Dimethyl fumarate | 0.90 ± 0.28 | 501/727 | 68.9% |
Interferon beta1a im | 0.91 ± 0.32 | 55/79 | 69.6% |
Interferon beta1b | 0.89 ± 0.34 | 44/67 | 65.6% |
Glatiramer acetate | 0.91 ± 0.31 | 168/254 | 66.1% |
Peg-interferon beta1a | 0.99 ± 0.29 | 72/93 | 77.4% |
Interferon beta1a sc | 0.91 ± 0.28 | 183/267 | 68.5% |
DMT | MS Hospital Admissions | AHR | DMT Costs | |
---|---|---|---|---|
Number | Costs (EUR/Month) | (EUR/Month) | ||
Ocrelizumab | 65 | 46.93 ± 151.34 | 0.06 ± 0.25 | 1670.34 ± 436.24 |
First-line DMT | 13 | 62.27 ± 220.04 | 0.04 ± 0.23 | |
After low-/medium-efficacy DMTs | 30 | 42.14 ± 115.75 | 0.05 ± 0.21 | |
After other highly active DMTs | 22 | 38.99 ± 107.03 | 0.06 ± 0.29 | |
Alemtuzumab | 5 | 31.97 ± 46.87 | 0.12 ± 0.41 | 3442.94 ± 725.42 |
Natalizumab | 34 | 45.48 ± 165.29 | 0.06 ± 0.45 | 1632.86 ± 424.86 |
Cladribine | 3 | 38.67 ± 39.71 | 0.02 ± 0.13 | 3048.97 ± 804.22 |
Fingolimod | 10 | 27.15 ± 52.96 | 0.01 ± 0.10 | 1523.74 ± 427.02 |
Teriflunomide | 32 | 22.35 ± 97.54 | 0.03 ± 0.19 | 796.30 ± 181.49 |
Dimethyl fumarate | 36 | 14.30 ± 43.53 | 0.03 ± 0.17 | 1041.90 ± 266.66 |
Interferon beta1a im | 5 | 3.63 ± 12.49 | 0.01 ± 0.07 | 797.98 ± 299.36 |
Interferon beta1b | 3 | 9.43 ± 72.49 | 0.01 ± 0.06 | 473.48 ± 153.09 |
Glatiramer acetate | 23 | 9.99 ± 51.37 | 0.03 ± 0.16 | 580.12 ± 287.45 |
Peg-interferon beta1a | 2 | 8.76 ± 49.50 | 0.05 ± 0.40 | 741.37 ± 239.00 |
Interferon beta1a sc | 10 | 10.07 ± 28.38 | 0.02 ± 0.15 | 864.14 ± 430.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moccia, M.; Affinito, G.; Marrazzo, G.; Ciarambino, T.; Di Procolo, P.; Confalonieri, L.; Carotenuto, A.; Petracca, M.; Lanzillo, R.; Triassi, M.; et al. Utilization of Ocrelizumab within Different Treatment Strategies for Multiple Sclerosis: A 5-Year Population-Based Study. Neurol. Int. 2024, 16, 394-405. https://doi.org/10.3390/neurolint16020029
Moccia M, Affinito G, Marrazzo G, Ciarambino T, Di Procolo P, Confalonieri L, Carotenuto A, Petracca M, Lanzillo R, Triassi M, et al. Utilization of Ocrelizumab within Different Treatment Strategies for Multiple Sclerosis: A 5-Year Population-Based Study. Neurology International. 2024; 16(2):394-405. https://doi.org/10.3390/neurolint16020029
Chicago/Turabian StyleMoccia, Marcello, Giuseppina Affinito, Giuseppina Marrazzo, Tiziana Ciarambino, Paolo Di Procolo, Licia Confalonieri, Antonio Carotenuto, Maria Petracca, Roberta Lanzillo, Maria Triassi, and et al. 2024. "Utilization of Ocrelizumab within Different Treatment Strategies for Multiple Sclerosis: A 5-Year Population-Based Study" Neurology International 16, no. 2: 394-405. https://doi.org/10.3390/neurolint16020029