Analysis of the Time Course of the Establishment of Systemic Gene Silencing by Barley Stripe Mosaic Virus Virus-Induced Gene Silencing in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth
2.2. BSMV-VIGS Procedure
2.3. Preparation of Wheat Total RNA
2.4. Quantitative Real-Time PCR
2.5. Agarose/Formaldehyde RNA Gel Blot Analysis
2.6. Polyacrylamide siRNA Gel Blot Analysis
2.7. Preparation of Uniformly Labeled Radioactive DNA Probes
2.8. Disclaimer
3. Results
3.1. BSMV-VIGS Can Be Achieved in the Spikes of Wheat
3.2. The Limitations of Phytoene Desaturase as a Reporter for VIGS in Wheat
3.3. The Time Course of Virus Movement and Establishment of VIGS in Wheat Spikes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abosalha, A.K.; Ahmad, W.; Boyajian, J.; Islam, P.; Ghebretatios, M.; Schaly, S.; Thareja, R.; Arora, K.; Prakash, S. A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications. Expert Opin. Drug Discov. 2023, 18, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Meister, G.; Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004, 431, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Baulcombe, D. RNA silencing in plants. Nature 2004, 431, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Baulcombe, D.C. Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant Biol. 1999, 2, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Riaz, B.; Ye, X. Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives. Crop J. 2018, 6, 22–31. [Google Scholar] [CrossRef]
- Scofield, S.R.; Brandt, A.S. Virus-induced gene silencing in hexaploid wheat using barley stripe mosaic virus vectors. Methods Mol. Biol. 2012, 894, 93–112. [Google Scholar] [PubMed]
- Ma, M.; Yan, Y.; Huang, L.; Chen, M.; Zhao, H. Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biol. 2012, 12, 141. [Google Scholar] [CrossRef]
- Bennypaul, H.S.; Mutti, J.S.; Rustgi, S.; Kumar, N.; Okubara, P.A.; Gill, K.S. Virus-induced gene silencing (VIGS) of gene expressed in root, leaf, and meiotic tissues of wheat. Funct. Integr. Genom. 2011, 12, 143–156. [Google Scholar] [CrossRef]
- Lee, W.S.; Hammond-Kosak, K.E.; Kanyuka, K. Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: VIGS, HIGS and VOX. Plant Physiol. 2012, 160, 582–590. [Google Scholar] [CrossRef]
- Bruun-Rasmussen, M.; Madsen, C.T.; Jessing, S.; Albrechtsen, M. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol. Plant Microbe Interact. 2007, 20, 1323–1331. [Google Scholar] [CrossRef]
- Kehr, J.; Buhtz, A. Long distance transport and movementof RNA through the phloem. J. Exp. Bot. 2007, 59, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Medrano, R.; Xoconostle-Cazares, B.; Lucas, W.J. The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Curr. Opin. Plant Biol. 2004, 7, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Haudenshield, J.S.; Hull, R.J.; Wolf, S.; Beachy, R.N.; Lucas, W.J. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 1992, 4, 915–928. [Google Scholar] [PubMed]
- Citovsky, V.; Zambryski, P. How do plant virus nucleic viruses move through intercellular connections? Bioessays 1991, 13, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Jackson, A.O. Expression of the barley stripe mosaic virus RNA beta “triple gene block”. Virology 1996, 216, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Petty, I.T.; French, R.; Jones, R.W.; Jackson, A.O. Identification of barley stripe mosaic virus genes involved in viral RNA replication and systemic movement. EMBO J. 1990, 9, 3453–3457. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Bragg, J.N.; Ganesan, U.; Ruzin, S.; Schichnes, D.; Lee, M.Y.; Vaira, A.M.; Ryu, K.H.; Hammond, J.; Jackson, A.O. Subcellular localization of the barley stripe mosaic virus triple gene block proteins. J. Virol. 2009, 83, 9432–9448. [Google Scholar] [CrossRef]
- Lim, H.S.; Bragg, J.N.; Ganesan, U.; Lawrence, D.M.; Yu, J.; Isogai, M.; Hammond, J.; Jackson, A.O. Triple gene block protein interactions involved in movement of Barley stripe mosaic virus. J. Virol. 2008, 82, 4991–5006. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Jackson, A.O. Requirements for cell-to-cell movement of Barley stripe mosaic virus in monocot and dicot hosts. Mol. Plant Pathol. 2001, 2, 65–75. [Google Scholar] [CrossRef]
- Schneider, I.R. Introduction, translocation and distribution of viruses in plants. Adv. Virus Res. 1965, 11, 163–221. [Google Scholar]
- Santa Cruz, S. Perspective: Phloem transport of viruses and macromolecules—What goes in must come out. Trends Microbiol. 1999, 7, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Feekes, W. De Tarwe en haar milieu. Vers. XVII Tech. Tarwe Comm. Gron. 1941, 560–561. [Google Scholar]
- Bustin, S.A. Real-time, fluorescence-based quantitative PCR: A snapshot of current procedures and preferences. Expert. Rev. Mol. Diagn. 2005, 5, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Large, E.C. Growth stage in cereals Illustration of the Feekes scale. Plant Pathol. 1954, 3, 128–129. [Google Scholar] [CrossRef]
- Scofield, S.R.; Huang, L.; Brandt, A.S.; Gill, B.S. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 2005, 138, 2165–2173. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wu, Y.; Xu, M.; Gao, T.; Wang, P.; Wang, L.; Guo, T.; Kang, G. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat. Int. J. Mol. Sci. 2016, 17, 1557. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.S.; Fei, J.F.; Xie, Q.; Chua, N.H. A chemical-regulated inducible RNAi system in plants. Plant J. 2003, 34, 383–392. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garg, A.; Brandt, A.S.; Scofield, S.R. Analysis of the Time Course of the Establishment of Systemic Gene Silencing by Barley Stripe Mosaic Virus Virus-Induced Gene Silencing in Wheat. Int. J. Plant Biol. 2024, 15, 122-131. https://doi.org/10.3390/ijpb15010011
Garg A, Brandt AS, Scofield SR. Analysis of the Time Course of the Establishment of Systemic Gene Silencing by Barley Stripe Mosaic Virus Virus-Induced Gene Silencing in Wheat. International Journal of Plant Biology. 2024; 15(1):122-131. https://doi.org/10.3390/ijpb15010011
Chicago/Turabian StyleGarg, Anshu, Amanda S. Brandt, and Steven R. Scofield. 2024. "Analysis of the Time Course of the Establishment of Systemic Gene Silencing by Barley Stripe Mosaic Virus Virus-Induced Gene Silencing in Wheat" International Journal of Plant Biology 15, no. 1: 122-131. https://doi.org/10.3390/ijpb15010011