Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data on Meteorology and Geographic Information
2.2. Maximum Entropy Model
2.3. Selection of Climatic Factors Affecting Species Distribution
3. Results
3.1. Applicability of Model and Climate Factors
3.2. Climate Suitability of S. breviflora Geographical Distribution
3.3. Inter-Decadal Dynamics of the Potential Geographical Distribution of S. breviflora
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.H.; Nobre, C.A. Climate change, deforestation, and the fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Van Groenigen, K.J.; Osenberg, C.W.; Hungate, B.A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 2011, 475, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.W.; Zhao, J.; Yin, D.; Han, T.; Li, L.L. Potential vegetation dynamic analysis of spatial and temporal characteristics of Inner Mongolia’s geographical pattern in recent 50a. Pratac. Sci. 2013, 30, 1167–1174. (In Chinese) [Google Scholar]
- Xie, L.N.; Ma, C.C.; Guo, H.Y.; Li, Q.F.; Gao, Y.B. Distribution pattern of Caragana species under the influence of climate gradient in the Inner Mongolia region, China. J. Arid Land 2014, 6, 311–323. [Google Scholar] [CrossRef]
- Yang, B.; He, M.; Shishov, V.; Tychkov, I.; Vaganov, E.; Rossi, S.; Ljungqvist, F.C.; Bräuning, A.; Grießinger, J. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl. Acad. Sci. USA 2017, 114, 6966–6971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, A.T.; Papeş, M.; Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 2007, 30, 550–560. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Hu, Y.; Xiu, C.; Yan, X. Impacts of Changing Forest Management Areas on Forest Landscapes and Habitat Patterns in Northeastern China. Sustainability 2018, 10, 1211. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Franke, I.; Herzog, S.K.; Pacheco, V.; Paniagua, L.; Quintana, H.L.; Soto, A.; Swenson, J.J.; Tovar, C.; Valqui, T.H.; et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 2008, 17, 1353–1366. [Google Scholar] [CrossRef]
- Ashraf, U.; Ali, H.; Chaudry, M.N.; Ashraf, I.; Batool, A.; Saqib, Z. Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model. Sustainability 2016, 8, 722. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Niu, H. Spatio-temporal variations in the areas suitable for the cultivation of rice and maize in china under future climate scenarios. Sci. Total Environ. 2017, 601–602, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Luoto, M.; Pöyry, J.; Heikkinen, R.K.; Saarinen, K. Uncertainty of bioclimatic envelope models based on the geographical distribution of species. Glob. Ecol. Biogeogr. 2005, 14, 575–584. [Google Scholar] [CrossRef]
- Garcia, K.; Lasco, R.; Ines, A.; Lyon, B.; Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the philippines. Appl. Geogr. 2013, 44, 12–22. [Google Scholar] [CrossRef]
- Schroth, G.; Läderach, P.; Martinezvalle, A.I.; Bunn, C.; Jassogne, L. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Sci. Total Environ. 2016, 621, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Dullinger, I.; Wessely, J.; Bossdorf, O.; Dawson, W.; Essl, F.; Gattringer, A.; Klonner, G.; Kreft, H.; Kuttner, M.; Moser, D.; et al. Climate change will increase the naturalization risk from garden plants in Europe. Glob. Ecol. Biogeogr. 2017, 26, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Tsutomu, Y.; Tomoki, N.; Nakaya, T.; Taoda, H.; Yoshinaga, S.; Daimaru, H.; Tanaka, N. Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan. J. Veg. Sci. 2004, 15, 605–614. [Google Scholar] [CrossRef]
- Bai, Y.F.; Han, X.; Wu, J.G.; Chen, Z.Z.; Li, L.H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 2004, 431, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.G.; Kang, Y.M.; Han, G.D.; Sakurai, K. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob. Chang. Biol. 2011, 17, 377–389. [Google Scholar] [CrossRef]
- Sui, X.; Zhou, G.; Zhuang, Q. Sensitivity of carbon budget to historical climate variability and atmospheric CO2 concentration in temperate grassland ecosystems in China. Clim. Chang. 2013, 117, 259–272. [Google Scholar] [CrossRef]
- Zhao, M.S.; Ronald, P.N.; Yan, X.D.; Dong, W.J. Modelling the vegetation of China under changing climate. Acta Geogr. Sin. 2002, 57, 28–38. [Google Scholar]
- Coupland, R.T. Natural Grasslands, Eastern Hemisphere and Resums; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.E.; Running, S.W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteorol. 1999, 93, 211–228. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Zhou, G. Climate-associated distribution of summer maize in China from 1961 to 2010. Agric. Ecosyst. Environ. 2016, 232, 326–335. [Google Scholar] [CrossRef]
- Phillips, S.J.; AT&T Research. A Brief Tutorial on Maxent. Available online: http://www.cs.princeton.edu/schapire/maxent/tutorial/tutorial.doc (accessed on 20 September 2011).
- Woodward, F.I. Climate and Plant Distribution; Cambridge University Press: New York, NY, USA, 1987. [Google Scholar]
- Craine, J.M.; Nippert, J.B.; Elmore, A.J.; Skibbe, A.M.; Hutchinson, S.L.; Brunsell, N.A. Timing of climate variability and grassland productivity. Proc. Natl. Acad. Sci. USA 2012, 109, 3401–3405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.Z.; Li, Y.; Wan, Y.F.; Qin, X.B.; Jiangcun, W.Z.; Liu, Y.H. Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Clim. Chang. 2009, 97, 515–528. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Escudero, A.; Iriondo, J.M.; Martinez-Vilalta, J.; Valladares, F. Extreme climatic events and vegetation: The role of stabilizing processes. Glob. Chang. Biol. 2012, 18, 197–805. [Google Scholar] [CrossRef]
- Chapin, F.S.; Bloom, A.J.; Field, C.B.; Waring, R.H. Plant Responses to Multiple Environmental Factors. Bioscience 1987, 37, 49–57. [Google Scholar] [CrossRef]
- Lv, X.; Zhou, G.; Wang, Y.; Song, X. Sensitive indicators of zonal Stipa plants to changing temperature and precipitation in Inner Mongolia grassland. Front. Plant Sci. 2016, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhou, G.; Jiang, Y.; Wang, H.; Xu, Z. Does precipitation mediate the effects of elevated CO2, on plant growth in the grass species Stipa grandis. Environ. Exp. Bot. 2016, 131, 146–154. [Google Scholar] [CrossRef]
- Weng, E.; Zhou, G. Defining plant functional types in China for global change studies. Acta Phytoecol. Sin. 2005, 29, 81–97. [Google Scholar] [CrossRef]
- Liu, Y.X.; Li, X.; Zhang, Q.; Guo, Y.F.; Gao, G.; Wang, J.P. Simulation of regional temperature and precipitation in the past 50 years and the next 30 years over China. Quat. Int. 2010, 212, 57–63. [Google Scholar] [CrossRef]
- Ren, G.Y.; Ding, Y.H.; Zhao, Z.C.; Zheng, J.Y.; Wu, T.W.; Tang, G.L.; Xu, Y. Recent progress in studies of climate change in China. Adv. Atmos. Sci. 2012, 29, 958–977. (In Chinese) [Google Scholar] [CrossRef]
- Liang, Y.L.; Yan, X.D. Prediction of climate change over China and uncertainty analysis during the 21st century under RCPs. J. Trop. Meteorol. 2016, 32, 183–192. (In Chinese) [Google Scholar]
- Sui, Y.; Lang, X.; Jiang, D. Temperature and precipitation signals over China with a 2 °C global warming. Clim. Res. 2015, 64, 227–242. [Google Scholar] [CrossRef]
Climate Factors | Percent Contribution (%) | Permutation Importance (%) |
---|---|---|
Annual precipitation (P) | 31.9 | 44.5 |
Temperature of the coldest month (T1) | 22 | 23 |
Temperature of the warmest month (T7) | 18.2 | 25.6 |
Extreme temperature (Tmin) | 13.8 | 3 |
Annual solar radiation (Q) | 7.8 | 1.9 |
Annual mean temperature (T) | 6.2 | 1.9 |
Grades | P (mm) | Q (104 W/m2) | T (°C) | T1 (°C) | Tmin (°C) | T7 (°C) |
---|---|---|---|---|---|---|
Most suitable area | 105 to 704 | 10.8 to 17.4 | −1.5 to 13.1 | −16.5 to 1.1 | −41.1 to −19.0 | 10.1 to 30.7 |
Medium suitable area | 97 to 797 | 10.4 to 17.6 | −2.2 to 15.1 | −19.9 to 4.7 | −46.0 to −12.5 | 7.1 to 29.5 |
Less suitable area | 95 to 904 | 10.0 to 17.9 | −5.5 to 17.4 | −26.4 to 6.7 | −50.0 to −6.6 | 4.0 to 28.8 |
Years | Most Suitable Area | Medium Suitable Area | Less Suitable Area | Unsuitable Area |
---|---|---|---|---|
1961–1990 | 11.61 | 14.25 | 18.66 | 52.66 |
1966–1995 | 11.54 | 13.89 | 19.23 | 52.51 |
1971–2000 | 12.58 | 13.70 | 18.53 | 52.37 |
1976–2005 | 13.19 | 12.98 | 18.80 | 52.25 |
1981–2010 | 14.66 | 14.09 | 19.31 | 49.12 |
2011–2040 (RCP4.5) | 20.37 | 16.45 | 17.73 | 42.62 |
2011–2040 (RCP8.5) | 15.01 | 11.96 | 16.41 | 53.80 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Zhou, G. Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change. Sustainability 2018, 10, 3767. https://doi.org/10.3390/su10103767
Lv X, Zhou G. Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change. Sustainability. 2018; 10(10):3767. https://doi.org/10.3390/su10103767
Chicago/Turabian StyleLv, Xiaomin, and Guangsheng Zhou. 2018. "Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change" Sustainability 10, no. 10: 3767. https://doi.org/10.3390/su10103767
APA StyleLv, X., & Zhou, G. (2018). Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change. Sustainability, 10(10), 3767. https://doi.org/10.3390/su10103767