Sustainability Assessment of Organic Vegetable Production Using a Qualitative Multi-Attribute Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment of Agro-Ecological Sustainability by DEXi-BIOrt
2.2. DEXi-BIOrt Sensitivity Analysis
- SI(L:Y) is the sensitivity index of the variable Y with respect to the descendant variable L
- (E(Y|L)) is the expectation of Y conditional on L
- Var(Y) is the variance of the variable Y
2.3. Organic Vegetable Production Scenarios
2.3.1. MOVE LTE and the Adriatic Coast Scenarios (Central Italy)
2.3.2. MITIORG LTE and the Metaponto Plan Scenarios (Southern Italy)
3. Results
3.1. DEXi-BIOrt Sensitivity Analysis
3.2. The Sustainability Evaluation of the Adriatic Coast Scenarios (Central Italy)
3.3. The Sustainability Evaluation of the Metaponto Plan Scenarios (Southern Italy)
4. Discussion
4.1. Strengths and Weaknesses of DEXi-BIOrt
4.2. Sustainability Performances of the Assessed Scenarios
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Spiertz, J.H.J.; Ewert, F. Crop production and resource use to meet the growing demand for food, feed and fuel: Opportunities and constraints. NJAS Wagen. J. Life Sci. 2009, 56, 281–300. [Google Scholar] [CrossRef]
- Craheix, D.; Bergez, J.E.; Angevin, F.; Bockstaller, C.; Craheix, D.; Bohanec, M.; Colomb, B.; Doré, T.; Fortino, G.; Guichard, L.; et al. Guidelines to design models assessing agricultural sustainability, based upon feedbacks from the DEXi decision support system. Agron. Sustain. Dev. 2015, 35, 1431–1447. [Google Scholar] [CrossRef] [Green Version]
- Ikerd, J.E. The need for a systems approach to sustainable agriculture. Agric. Ecosyst. Environ. 1993, 46, 147–160. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Kirwan, K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. 2014, 46, 138–148. [Google Scholar] [CrossRef]
- Sala, S.; Farioli, F.; Zamagni, A. Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int. J. Life Cycle Assess. 2013, 18, 1686–1697. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2009, 9, 189–212. [Google Scholar] [CrossRef]
- Schader, C.; Grenz, J.; Meier, M.S.; Stolze, M. Scope and precision of sustainability assessment approaches to food systems. Ecol. Soc. 2014, 19, 42. [Google Scholar] [CrossRef]
- Bockstaller, C.; Feschet, P.; Angevin, F. Issues in evaluating sustainability of farming systems with indicators. Ol. Corp. Gras Lipides 2015, 22, 12. [Google Scholar] [CrossRef]
- Bouyssou, D.; Marchant, T.; Pirlot, M.; Tsoukiàs, A.; Vincke, P. Evaluation and Decision Models with Multiple Criteria: Stepping Stones for the Analyst, 1st ed.; International Series in Operations Research & Management Science; Springer: Berlin, Germany, 2006; Volume 86. [Google Scholar]
- Zopounidis, C.; Pardalos, P.M. Handbook of Multicriteria Analysis; Springer: Berlin, Germany, 2010. [Google Scholar]
- Carpani, M.; Bergez, J.E.; Monod, H. Sensitivity analysis of a hierarchical qualitative model for sustainability assessment of cropping systems. Environ. Model. Softw. 2012, 27, 15–22. [Google Scholar] [CrossRef]
- Sadok, W.; Angevin, F.; Bergez, J.É.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Dorè, T. Ex ante assessment of the sustainability of alternative cropping systems: Implications for using multi-criteria decision-aid methods. A review. Agron. Sustain. Dev. 2008, 28, 163. [Google Scholar] [CrossRef]
- Bohanec, M. DEXi: Program for Multi-Criteria Decision Making, User’s Manual, Version 4.0; IJS Report DP-113401134011340; Jožef Stefan Institute: Ljubljana, Slovenia, 2013. [Google Scholar]
- Craheix, D.; Angevin, F.; Bergez, J.E.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Doré, T. MASC 2.0, un outil d’évaluation multicritère pour estimer la contribution des systèmes de culture au développement durable. Innovat. Agron. 2012, 20, 35–48. [Google Scholar]
- Pelzer, E.; Fortino, G.; Bockstaller, C.; Angevin, F.; Lamine, C.; Moonen, C.; Vasileiadis, V.; Guérin, D.; Guichard, L.; Reau, R.; et al. Assessing innovative cropping systems with DEXiPM, a qualitative multi-criteria assessment tool derived from DEXi. Ecol. Indic. 2012, 18, 171–182. [Google Scholar] [CrossRef]
- Sadok, W.; Angevin, F.; Bergez, J.É.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Messéan, A.; Doré, T. MASC, a qualitative multiattribute decision model for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. Dev. 2009, 29, 447–461. [Google Scholar] [CrossRef]
- Salles, P. Conception d’un Outil D’évaluation Multicritère de la Durabilité des Successions en Systèmes Légumiers de Plein Champ: DEXI-Légumes. Ph.D. Thesis, Agrocampus Ouest, Rennes, France, 2007. [Google Scholar]
- Vazzana, C.; Moonen, A.C.; Bigongiali, F.; Bàrberi, P.; Lazzerini, G.; Moschini, V.; Colombo, L. Manuale di DEXI-BIOrt uno Strumento per la Valutazione Agro-Ambientale delle Aziende Orticole Biologiche Italiane; Progetto SOS-BIO, Finanziato dal Ministero delle Politiche Agricole, Alimentari e Forestali: Rome, Italy, 2012. (In Italian) [Google Scholar]
- Alaphilippe, A.; Angevin, F.; Guérin, A.; Guillermin, P.; Velu, A.; Zavagli, F. DEXIFruits, un outil d’évaluation multicritère des systèmes de production de fruits: D’un modèle de recherche à un outil terrain co-construit. Innovat. Agrono. 2017, 59, 205–212. [Google Scholar]
- Mouron, P.; Heijne, B.; Naef, A.; Strassemeyer, J.; Hayer, F.; Avilla, J.; Alaphilippe, A.; Höhn, H.; Hernandez, J.; Mack, G.; et al. Sustainability assessment of crop protection systems: SustainOS methodology and its application for apple orchards. Agric. Syst. 2012, 113, 1–15. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 1 December 2017).
- Baldock, J.O.; Hedtcke, J.L.; Posner, J.L.; Hall, J.A. Organic and Conventional Production Systems in the Wisconsin Integrated Cropping Systems Trial: III. Yield Trends. Agron. J. 2014, 106, 1509–1522. [Google Scholar] [CrossRef]
- Delate, K.; Cambardella, C.; Chase, C.; Turnbull, R. A review of long-term organic comparison trials in the US. In Sustainable Development of Organic Agriculture: Historical Perspectives, 1st ed.; Etingoff, K., Ed.; Apple Academic Press: New York, NY, USA, 2017; p. 79. [Google Scholar]
- Peronti, M.; Bàrberi, P.; Campanelli, G.; Ceccarelli, D.; Ceglie, F.G.; Ferlito, F.S.; Mazzoncini, M.; Montemurro, F.; Roccuzzo, G.; Tittarelli, F.; et al. The Italian organic long term field experiments network. In Proceedings of the IFOAM Agribiomediterraneo International Conference Agroecology for Organic Agriculture in the Mediterranean, Vignola Castle (Modena) and SANA, Bologna, Italy, 10–13 September 2015. [Google Scholar]
- Raupp, J.; Pekrun, C.; Oltmanns, M.; Köpke, U. Long-Term Field Experiments in Organic Farming; ISOFAR Scientific Series No 1; Verlag Dr. Köster: Berlin, Germany, 2006. [Google Scholar]
- Campanelli, G.; Canali, S. Crop production and environmental effects in conventional and organic vegetable farming systems: The case of a long-term experiment in mediterranean conditions (Central Italy). J. Sustain. Agric. 2012, 36, 599–619. [Google Scholar] [CrossRef]
- UNESCO-FAO. Ecological Study of the Mediterranean Zone. Bioclimatic Map of the Mediterranean Zone Explanatory Notes; NS.162/III. 22/A; UNESCO-FAO: Paris, France, 1963. [Google Scholar]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Natural Resources Conservation Service, U.S. Department of Agriculture Handbook: Washington, DC, USA, 1999; p. 436.
- Canali, S.; Diacono, M.; Campanelli, G.; Montemurro, F. Organic no-till with roller crimpers: Agro-ecosystem services and applications in organic Mediterranean vegetable productions. Sustain. Agric. Res. 2015, 4, 70. [Google Scholar] [CrossRef]
- Canali, S.; Campanelli, G.; Ciaccia, C.; Leteo, F.; Testani, E.; Montemurro, F. Conservation tillage strategy based on the roller crimper technology for weed control in Mediterranean vegetable organic cropping systems. Eur. J. Agron. 2013, 50, 11–18. [Google Scholar] [CrossRef]
- Diacono, M.; Fiore, A.; Farina, R.; Canali, S.; Di Bene, C.; Testani, E.; Montemurro, F. Combined agro-ecological strategies for adaptation of organic horticultural systems to climate change in Mediterranean environment. Ital. J. Agron. 2016, 11, 85–91. [Google Scholar] [CrossRef]
- Bockstaller, C.; Girardin, P. How to validate environmental indicators. Agric. Syst. 2003, 76, 639–653. [Google Scholar] [CrossRef]
- Craheix, D.; Angevin, F.; Doré, T.; de Tourdonnet, S. Using a multicriteria assessment model to evaluate the sustainability of conservation agriculture at the cropping system level in France. Eur. J. Agron. 2016, 76, 75–86. [Google Scholar] [CrossRef]
- Munda, G. Multiple criteria decision analysis and sustainable development. In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ed.; Springer: New York, NY, USA, 2005; pp. 953–986. [Google Scholar]
- Costantini, E. Sostanza organica: Conti e bilanci. Agricoltura Biologica Suppl. Notiziario Ersa Friuli Venezia Giulia 1995, 5, 3–27. (In Italian) [Google Scholar]
- Costantini, E. Facciamo i conti con l’humus. Bioagricultura 2004, 4, 32–35. (In Italian) [Google Scholar]
- Migliorini, P. Il Programma FARM. In Un Modello di Calcolo per la Gestione Sostenibile delle Aziende Agricole e sua Applicazione su un Azienda Zootecnica di Produzione di Latte da Agricoltura Biologica; Università degli Studi di Firenze: Firenze, Italy, 2005. (In Italian) [Google Scholar]
- Brock, C.; Franko, U.; Oberholzer, H.R.; Kuka, K.; Leithold, G.; Kolbe, J. Humus balancing in Central Europe-concepts, state of the art, and further challenges. J. Plant Nutr. Soil Sci. 2013, 176, 3–11. [Google Scholar] [CrossRef]
- Migliorini, P.; Galioto, F.; Chiorri, M.; Vazzana, M. An integrated sustainability score based on agro-ecological and socioeconomic indicators. A case study of stockless organic farming in Italy. Agroecol. Sustain. Food 2018, 42, 1–26. [Google Scholar] [CrossRef]
- Migliorini, P.; Scaltriti, B. Evaluation of sustainability of the farms in the Agricultural Park of South Milan and their production chain. New Medit 2012, 11, 53–56. [Google Scholar]
- Mijatović, D.; Van Oudenhoven, F.; Eyzaguirre, P.; Hodgkin, T. The role of agricultural biodiversity in strengthening resilience to climate change: Towards an analytical framework. J. Agric. Sustain. 2013, 11, 95–107. [Google Scholar] [CrossRef]
- Pretty, J.; Sutherland, W.J.; Ashby, J.; Auburn, J.; Baulcombe, D.; Bell, M.; Bentley, J.; Bickersteth, S.; Brown, K.; Burke, J.; et al. The top 100 questions of importance to the future of global agriculture. Int. J. Agric. Sustain. 2011, 8, 219–236. [Google Scholar] [CrossRef]
- Gravesen, L. The treatment frequency index—An indicator for pesticide use and dependency as well as overall load on the environment. In Reducing Pesticide Dependency in Europe to Protect Health, Environment and Biodiversity, Pesticides Action Network Europe (PAN); Pure Conference: Copenhagen, Denmark, 2003. [Google Scholar]
- Reus, J.; Leendertse, P.; Bockstaller, C.; Fomsgaard, I.; Gutsche, V.; Lewis, K.; Nilsson, C.; Pussemier, L.; Trevisan, M.; van der Werf, H.; et al. Comparing Environmental Risk Indicators for Pesticides—Results of the European CAPER Project; European CAPER, Centre For Agriculture and Environment: Utrecht, The Netherlands, 1999. [Google Scholar]
- Mäder, P.; Fließbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Norton, L.; Johnson, P.; Joys, A.; Stuart, R.; Chamberlain, D.; Feber, R.; Firbank, L.; Manley, W.; Wolfe, M.; Hart, B.; et al. Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agric. Ecosyst. Environ. 2009, 129, 221–227. [Google Scholar] [CrossRef] [Green Version]
- IPES-Food. From Uniformity to Diversity: A Paradigm Shift from Industrial Agriculture to Diversified Agroecological Systems; International Panel of Experts on Sustainable Food Systems Report; IPES-Food: Brussels, Belgium, 2016. [Google Scholar]
- Médiène, S.; Valantin-Morison, M.; Sarthou, J.P.; Tourdonnet, S.; Gosme, M.; Bertrand, M.; Roger-Estrade, J.; Aubertot, J.N.; Rusch, A.; Motisi, N.; et al. Agroecosystem management and biotic interactions: A review. Agron. Sustain. Dev. 2011, 31, 491–514. [Google Scholar] [CrossRef]
- Scherr, S.J.; McNeely, J.A. Biodiversity conservation and agricultural sustainability: Towards a new paradigm of “ecoagriculture” landscapes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 477–494. [Google Scholar] [CrossRef] [PubMed]
- Diacono, M.; Persiani, A.; Fiore, A.; Montemurro, F.; Canali, S. Agro-ecology for potential adaptation of horticultural systems to climate change: Agronomic and energetic performance evaluation. Agronomy 2017, 7, 35. [Google Scholar] [CrossRef]
- Jadidi, M.R.; Sabuni, M.S.; Homayounifar, M.; Mohammadi, A. Assessment of energy use pattern for tomato production in Iran: A case study from the Marand region. Res. Agric. Eng. 2012, 58, 50–56. [Google Scholar] [CrossRef] [Green Version]
Adriatic Coast | Metaponto Plan | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CO2007 | AE2016 | SU2016 | Scenario A | Scenario B | Scenario C | Scenario D | Scenario E | Scenario F | ||
Cash crops | Tomato, melon, fennel, lettuce, cauliflower, bean | Tomato, melon, fennel, lettuce, cauliflower, bean | Tomato, melon, fennel, lettuce, cauliflower, bean | Cauliflower, fennel, tomato, zucchini | Cauliflower, fennel, tomato, zucchini | Cauliflower, fennel, tomato, zucchini | Cauliflower, fennel, tomato, zucchini | Cauliflower, fennel, tomato, zucchini | Cauliflower, fennel, tomato, zucchini | |
ASC as break crops | Hairy vetch, barley, radish | Hairy vetch, barley, radish | No | No | No | Rice, field pea, rapeseed | No | Rice, field pea, rapeseed | Rice, field pea, rapeseed | |
ASC as living mulch | No | No | No | No | No | No | Burr medic | Burr medic | Burr medic | |
Strip cropping | No | No | No | No | On ridge-furrow system | On ridge-furrow system | On ridge-furrow system | On ridge-furrow system | On ridge-furrow system | |
Crop genetic diversification | N. crops | 9 | 9 | 6 | 4 | 4 | 7 | 5 | 8 | 8 |
N. cultivars | 14 | 14 | 8 | 4 | 4 | 7 | 5 | 8 | 12 | |
N. local cultivars | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
Tillage system | MT | ILRC | MT | MT | MT | MT | MT | MT | MT | |
Percentage of on-farm seedling production | 100% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | |
Amount of off-farm N inputs (kg ha−1) | 200 | 100 | 200 | 350 | 286 | 286 | 286 | 286 | 286 | |
Rate of plant protection products (kg ha−1, active ingredient) | Pyrethrum | 0.18 | 0.016 | 0.032 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 |
Cu | 3.5 | 0.75 | 1.5 | 1.14 | 1.14 | 1.14 | 1.14 | 1.14 | 1.14 | |
S | 1.5 | 0.75 | 1.5 | 3 | 3 | 3 | 3 | 3 | 3 | |
Total used water (m3 ha−1 per year) | 10,000 | 10,000 | 10,000 | 6550 | 6550 | 6550 | 6550 | 6550 | 6550 | |
Percentage of area irrigated by micro-irrigation system to total irrigated area | 60% | 60% | 60% | 100% | 100% | 100% | 100% | 100% | 100% | |
Destination of the products | Short chain/local market | 100% | 100% | 0% | 0% | 50% | 50% | 50% | 50% | 100% |
Large scale distribution/export | 0% | 0% | 100% | 100% | 50% | 50% | 50% | 50% | 0% |
Low | Medium | High | |
---|---|---|---|
Overall Sustainability | 0.675 | 0.198 | 0.127 |
Soil | 0.400 | 0.318 | 0.282 |
Water | 0.195 | 0.553 | 0.252 |
Biodiversity | 0.134 | 0.739 | 0.127 |
Production | 0.240 | 0.540 | 0.220 |
Adriatic Coast | Metaponto Plan | ||||||||
---|---|---|---|---|---|---|---|---|---|
CO2007 | AE2016 | SU2016 | Scenario A | Scenario B | Scenario C | Scenario D | Scenario E | Scenario F | |
Soil | M | H | H | M | M | M | M | M | M |
Physical quality | M | H | H | M | M | M | M | M | M |
Chemical-biological quality | M | M | M | M | M | M | M | M | M |
Water | H | H | H | H | H | H | H | H | H |
Biodiversity | H | H | M | L | M | M | M | M | H |
Genetic | H | H | L | L | L | L | L | L | H |
Specific | H | H | M | L | M | M | M | H | H |
Habitat | H | H | H | M | M | M | M | M | H |
Production | H | H | L | L | H | H | H | H | H |
Energy | H | H | M | H | H | H | H | H | H |
Phytosanitary management | H | H | L | M | H | H | H | H | H |
Fertilizer management | L | L | L | L | L | L | L | L | L |
Product value | M | M | L | L | M | M | M | M | M |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iocola, I.; Campanelli, G.; Diacono, M.; Leteo, F.; Montemurro, F.; Persiani, A.; Canali, S. Sustainability Assessment of Organic Vegetable Production Using a Qualitative Multi-Attribute Model. Sustainability 2018, 10, 3820. https://doi.org/10.3390/su10103820
Iocola I, Campanelli G, Diacono M, Leteo F, Montemurro F, Persiani A, Canali S. Sustainability Assessment of Organic Vegetable Production Using a Qualitative Multi-Attribute Model. Sustainability. 2018; 10(10):3820. https://doi.org/10.3390/su10103820
Chicago/Turabian StyleIocola, Ileana, Gabriele Campanelli, Mariangela Diacono, Fabrizio Leteo, Francesco Montemurro, Alessandro Persiani, and Stefano Canali. 2018. "Sustainability Assessment of Organic Vegetable Production Using a Qualitative Multi-Attribute Model" Sustainability 10, no. 10: 3820. https://doi.org/10.3390/su10103820
APA StyleIocola, I., Campanelli, G., Diacono, M., Leteo, F., Montemurro, F., Persiani, A., & Canali, S. (2018). Sustainability Assessment of Organic Vegetable Production Using a Qualitative Multi-Attribute Model. Sustainability, 10(10), 3820. https://doi.org/10.3390/su10103820