Land Use Changes and Their Driving Forces in a Debris Flow Active Area of Gansu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Methodology
3. Results
3.1. Temporal and Spatial Patterns of Land Use Transformation in DFWSL
3.1.1. Overall Conditions of Land Use Transformation in Wudu District
3.1.2. Land Use and Transformation in a Typical DFWSL
3.2. Driving Forces of Land Use and Land Changes of DFWSL
3.2.1. Natural Driving Forces
3.2.2. Characteristics of Land Transformation and Demographic Migration
3.2.3. Changes in Land Use Policies and Strategies
4. Discussion
4.1. A Comparison between Our Study and Other Similar Area
4.2. Development Mode Based on Local Conditions
4.3. Relationship between Population Change and Land Use and Transformation
4.4. Limitations and Recommendations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, B. Ecosystem Services and Ecological Security; Higher Education Press: Beijing, China, 2013. [Google Scholar]
- Wang, X.; Bao, Y. Study on the methods of dynamic change of Land use. Adv. Geogr. 1999, 181, 81–87. [Google Scholar]
- Lesschen, J.P.; Verburg, P.H.; Staal, S.J. Statistical Methods for Analysing the Spatial Dimension of Changes in Land Use and Farming Systems; Wageningen University: Wageningen, The Netherlands, 2005. [Google Scholar]
- Chen, Y.; Yang, P. New progress in the study of land use/land cover change in the world. Econ. Geogr. 2001, 21, 95–100. [Google Scholar]
- Stern, P.C.; Young, O.R.; Druckman, D. Global Environmental Change: Understanding the Human Dimension; National Research Council: Washington, DC, USA, 1992. [Google Scholar]
- Tumer, B.L.; Meyer, W.B.; Skole, D.L. Global land use/land cover change: Toward an integrated program of study. Ambio 1994, 23, 91–95. [Google Scholar]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Andrew, J.P.; Stephen, P.; John, C.; Withey, D.P.; Helmers, S.M.; Derric, P.; Volker, C.R. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curebal, I.; Efe, R.; Soykan, A.; Sonmez, S. Impacts of anthropogenic factors on land degradation during the anthropocene in Turkey. J. Environ. Biol. 2015, 36, 51–58. [Google Scholar] [PubMed]
- Pan, H.; Deal, B.; Chen, Y.; Geoffrey, H. A Reassessment of urban structure and land-use patterns: Distance to CBD or network-based? Evidence from Chicago. Reg. Sci. Urban Econ. 2018, 70, 215–228. [Google Scholar] [CrossRef]
- Brovkin, V.; Boysen, L.; Arora, V.K.; Boisier, J.P.; Cadule, P.; Chini, L.; Claussen, M.; Friedlingstein, P.; Gayler, V.; van den Hurk, B.J.J.M.; et al. Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Clim. 2013, 26, 6859–6881. [Google Scholar] [CrossRef]
- Wu, K.Y.; Ye, X.Y.; Qi, Z.F.; Zhang, H. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities 2013, 31, 276–284. [Google Scholar] [CrossRef]
- Vanloocke, A. The Impact of Land-Use And Global Change on Water-Related Agro-Ecosystem Services in the Midwest US. Ph.D. Thesis, University of Illinois at Urbana–Champaign, Champaign, IL, USA, 2012. [Google Scholar]
- Luyssaert, S.; Jammet, M.; Stoy, P.C.; Stephan, E.; Julia, P.; Eric, C.; Galina, C.; Axel, D.; KarlHeinz, E.; Morgan, F.; et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Skole, D.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land-Use and Land-Cover Change: Science/Research Plan; International Geosphere-Biosphere Programme: Stockholm, Sweden, 1995. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working paper Rome; FAO: Rome, Italy, 2012. [Google Scholar]
- Schmitz, C.; van Meijl, H.; Kyle, P.; Nelson, G.C.; Fujimori, S.; Gurgel, A.; Havlik, P.; Heyhoe, E.; d’Croz, D.M.; Popp, A.; et al. Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison. Agric. Econ. 2014, 45, 69–84. [Google Scholar] [CrossRef]
- Bajzelj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 2014, 4, 924–929. [Google Scholar] [CrossRef]
- Benton, T.G.; Bailey, R.; Froggatt, A.; King, R.; Lee, B.; Wellesley, L. Designing sustainable landuse in a 1.5° world: The complexities of projecting multiple ecosystem services from land. Curr. Opin. Environ. Sustain. 2018, 31, 88–95. [Google Scholar] [CrossRef]
- Jiang, Z. Strategic framework for sustainable use of land resources in China. Rural Econ. Technol. 2003, 13–16, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.H.; Zheng, D.; Shen, Y.C. Land use change and its driving forces on the Tibetan Plateau during 1990–2000. Catena 2008, 72, 56–66. [Google Scholar] [CrossRef]
- Li, X.Y.; Ma, Y.J.; Xu, H.Y.; Wang, J.H.; Zhang, D.S. Impact of landuse and land cover change on environmental degradation in Lake Qinghai watershed, northeast Qinghai-Tibet Plateau. Land Degrad. Dev. 2010, 20, 69–83. [Google Scholar] [CrossRef]
- Glasby, G.P. Sustainable development: The need for a new paradigm. Environ. Dev. Sustain. 2002, 4, 333–345. [Google Scholar] [CrossRef]
- Cao, S.; Liu, Y.; Yu, Z. China’s successes at combating desertification provide roadmap for other nations. Environ. Sci. Policy Sustain. Dev. 2018, 60, 16–24. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Bi, R.; Xu, Y.; Wang, S. Reuse type judgment of mining wasteland based on land use competitiveness. Trans. Chin. Soc. Agric. Eng. 2016, 32, 258–266. [Google Scholar]
- Chen, T.T.; Peng, L.; Liu, S.Q.; Wang, Q. Land cover change in different altitudes of Guizhou-Guangxi karst mountain area, China: Patterns and drivers. J. Mt. Sci. 2017, 14. [Google Scholar] [CrossRef]
- Zhang, J.; He, C.; Chen, L.; Cao, X. Improving food security in China by taking advantage of marginal and degraded lands. J. Clean Prod. 2018, 171, 1020–1030. [Google Scholar] [CrossRef]
- Cai, Y. It is possible to turn unused land into construction land. Chin. Land 2010, 8, 27–31. [Google Scholar]
- Dorn, R.I. Desert rock coatings. In Geomorphology of Desert Environments; Springer: Dordrecht, The Netherlands, 2009; pp. 153–186. [Google Scholar]
- Frankel, K.; Dolan, J. Characterizing arid region alluvial fan roughness with airborne laser swath mapping digital topographic data. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Blair, T.; McPherson, J. Processes and forms of alluvial fans. In Geomorphology of Desert Environments; Parsons, A., Abrahams, A., Eds.; Springer: New York, NY, USA, 2009; pp. 413–467. [Google Scholar]
- Marcato, G.; Bossi, G.; Rivelli, F.; Borgatti, L. Debris flood hazard documentation and mitigation on the Tilcara alluvial fan (Quebrada de Humahuaca, Jujuy province, North-West Argentina). Nat. Hazard Earth Syst. Sci. 2012, 12, 1873–1882. [Google Scholar] [CrossRef] [Green Version]
- Scheinert, C.; Wasklewicz, T.; Staley, D. Alluvial fan dynamics—Revisiting the field. Geogr. Compass 2012, 6, 752–775. [Google Scholar] [CrossRef]
- Blackwelder, E. Desert plains. J. Geol. 1931, 39, 133–140. [Google Scholar] [CrossRef]
- Bull, W.B. The alluvial fan environment. Prog. Phys. Geogr. 1977, 1, 222–270. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Inusah, B.; Katsura, K.; Fuseini, A.; Dogbe, W.; Zakaria, A.I.; Yoichi, F.; Masato, O.; Jun-Ichi, S. The effect of sulfur fertilization on rice yields and nitrogen use efficiency in a floodplain ecosystem of northern ghana. Field Crop Res. 2017, 211, 155–164. [Google Scholar] [CrossRef]
- Haas, T.D.; Densmore, A.L.; Stoffel, M.; Suwa, H.; Imaizumi, F.; Ballesteros-Cánovas, J.A.; Wasklewiczf, T. Avulsions and the spatio-temporal evolution of debris-flow fans. Earth Sci. Rev. 2018, 177, 53–57. [Google Scholar] [CrossRef]
- Staley, D.M.; Wasklewicz, T.A.; Blaszczynsky, J.S. Surficial patterns of debris-flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data. Geomorphology 2006, 74, 152–163. [Google Scholar] [CrossRef]
- Cavalli, M.; Marchi, L. Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR. Nat. Hazard Earth Syst. Sci. 2008, 8, 323–333. [Google Scholar] [CrossRef]
- Wang, D.; Cui, P.; Zhu, B.; Wei, F. Characteristics of High Sand flow and improvement of debris flow waste-shoal land in Jiangjia gully, Yunnan, China. Mt. Res. 2003, 6, 745–751. [Google Scholar]
- Bull, W.B. Geomorphology of Segmented Alluvial Fans in Western Fresno County, California; US Government Printing Office: Washington, DC, USA, 1964.
- Cui, P.; Ge, Y.; Zhuang, J.; Wang, D. Soil evolution features of debris flow waste-shoal land. J. Mt. Sci. 2009, 6, 181–188. [Google Scholar] [CrossRef]
- Sancho, C.; Pena, J.L.; Rivelli, F.; Rhodes, E.; Munoz, A. Geomorphological evolution of the Tilcara alluvial fan (Jujuy Province, NW Argentina): Tectonic implications and palaeoenvironmental considerations. J. South Am. Earth Sci. 2008, 26, 68–77. [Google Scholar] [CrossRef]
- Okunishi, K.; Suwa, H. Assessment of debris-flow hazards of alluvial fans. Nat. Hazards 2001, 23, 259–269. [Google Scholar] [CrossRef]
- Curry, G.N.; Koczberski, G.; Selwood, J. Cashing out, cashing in: Rural change on the south coast of Western Australia. Aust. Geogr. 2001, 32, 109–124. [Google Scholar] [CrossRef]
- Petit, S. The dimensions of land use change in rural landscapes: Lessons learnt from the GB Countryside Surveys. J. Environ. Manag. 2009, 90, 2851–2856. [Google Scholar] [CrossRef] [PubMed]
- Rudel, T.K. Tree farms: Driving forces and regional patterns in the global expansion of forest plantations. Land Use Policy 2009, 26, 545–550. [Google Scholar] [CrossRef]
- Poyatos, R.; Latron, J.; Llorens, P. Land use and land cover change after agricultural abandonment: The case of a Mediterranean mountain area (Catalan Pre-Pyrenees). Mt. Res. Dev. 2003, 23, 362–368. [Google Scholar] [CrossRef]
- Zhou, Z. Landscape changes in a rural area in China. Landsc. Urban Plan. 2000, 47, 33–38. [Google Scholar]
- Burgi, M.; Russell, E.W.B. Integrative methods to study landscape changes. Land Use Policy 2001, 18, 9–16. [Google Scholar] [CrossRef]
- Weng, Q.H. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef]
- Chen, L.D.; Messing, I.; Zhang, S.R.; Fu, B.J.; Ledin, S. Land use evaluation and scenario analysis towards sustainable planning on the Loess Plateau in China-case study in a small catchment. Catena 2003, 54, 303–316. [Google Scholar] [CrossRef]
- Lu, L.; Li, X.; Cheng, G.D. Landscape evolution in the middle Heihe River Basin of North-West China during the last decade. J. Arid Environ. 2003, 53, 395–408. [Google Scholar] [CrossRef]
- Jia, B.Q.; Zhang, Z.Q.; Ci, L.J.; Ren, Y.P.; Pan, B.R.; Zhang, Z. Oasis land-use dynamics and its influence on the oasis environment in Xinjiang, China. J. Arid Environ. 2004, 56, 11–26. [Google Scholar] [CrossRef]
- Zhao, H.L.; Zhao, X.Y.; Zhou, R.L.; Zhang, T.H.; Drake, S. Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. J. Arid Environ. 2005, 62, 309–319. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Ou, G.; Fan, J. The developing potentiality of slope farmland on the alluvial fans of debris flow in the midstream of Bailongjiang River. Res. Soil Water Conserv. 2011, 18, 92–96. [Google Scholar]
- Future Earth. Future Earth 2025 Vision; Future Earth Interim Secretariat: Paris, France, 2014. [Google Scholar]
- Liu, Y. Strategies to Guarantee Land Resources Safety in China. Proc. Chin. Acad. Sci. 2006, 21, 379–384. [Google Scholar]
- Records of Wudu County, Gansu Province, China. In Compilation Committee of Local Records of Wudu County; Sanlian Bookstore: Beijing, China, 1998.
- Longley, P.A. Geography: Will development in urban remote sensing and GIS lead to better urban geography? Prog. Hum. Geogr. 2002, 26, 231–239. [Google Scholar] [CrossRef]
- Braimoh, A.K. Random and systematic land-cover transitions in northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B. The impact of land use on spatial and temporal distribution of soil moisture on the Loess Plateau. Acta Geogr. Sin. 2000, 55, 84–91. [Google Scholar]
- Huang, Z.; Yu, Y. Distribution and Developmental characteristics of debris flow in Longnan area of the Upper reaches in Yangtze River. People Yangtze River 1998, 29, 42–44. [Google Scholar]
- Ning, N.; Tian, L.; Zhang, P.; Qi, S.; Ma, J. Risk Assessment of debris flow in Wudu area, South Gansu Province, China. Mt. Res. 2013, 31, 601–609. [Google Scholar]
- Wang, D.; Meng, X.; Guo, P.; Guo, J.; Tan, L. Dynamic changes of land use before and after returning farmland to forest in Wudu, Gansu Province, China. Guizhou Agric. Sci. 2012, 40, 227–229. [Google Scholar]
- Nagashima, K.; Sands, R.; Whyte, A.G.D.; Bilek, E.M.; Nobukazu, N. Regional landscape change as a consequence of plantation forestry expansion: An example in the Nelson rejoin, New Zealand. For. Ecol. Manag. 2002, 163, 245–261. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.; Deng, W.; Zhang, S. Spatio-temporal pattern changes of land space in hengduan mountains during 1990–2015. J. Geogr. Sci. 2018, 28, 529–542. [Google Scholar] [CrossRef]
- Yamanaka, H.; Yoshida, M.; Arita, K. Terrace landform and Quaternary deposit around Pokhara Valley, central Nepal. J. Nepal Geol. Soc. 1982, 2, 95–112. [Google Scholar]
- Gautam, P.; Panta, S.R.; Ando, H. Mapping of subsurface karst structure with gamma ray and electrical resistivity profiles: A case study from Pokhara valley, central Nepal. J. Appl. Geophys. 2000, 45, 97–110. [Google Scholar] [CrossRef]
- Rimal, B.; Baral, H.; Stork, N.; Kiran, P.; Sushila, R. Growing City and Rapid Land Use Transition: Assessing Multiple Hazards and Risks in the Pokhara Valley, Nepal. Land 2015, 4, 957–978. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.P.; Dale, V.H.; Doering, O.C.; Hamburg, S.P.; Melillo, J.M.; Wander, M.M.; Parton, W.J.; Adler, P.A.; Barney, J.N.; Cruse, R.M.; et al. Sustainable biofuels redux. Science 2008, 322, 49–50. [Google Scholar] [CrossRef] [PubMed]
- Caserta, G. Reclamation of abandoned lands in Mediterranean countries through the contribution of biomass and other renewable energy sources. A metodological proposal. In Proceedings of the Conference on Responsible Coastal Zone Management; 2000; pp. 275–280. Available online: https://www.researchgate.net/publication/295998952_Reclamation_of_abandoned_lands_in_Mediterranean_countries_through_the_contribution_of_biomass_and_other_renewable_energy_sources_A_metodological_proposal (accessed on 3 August 2018).
- Kammerbauer, J.; Ardon, C. Land use dynamics and landscape change pattern in a typical watershed in the hillside region of central Honduras. Agric. Ecosyst. Environ. 1999, 75, 93–100. [Google Scholar] [CrossRef]
- Verburg, P.H.; Veldkamp, T.A.; Bouma, J. Land use change under conditions of high population pressure: The case of Java. Glob. Environ. Chang. 1999, 9, 303–312. [Google Scholar] [CrossRef]
- Nemes, I. Land reclamation works applied in the amelioration perimeter in territorial agrarian fond otelec-uivar, Timiş County, Romania. Res. J. Agric. Sci. 2009, 41, 472–476. [Google Scholar]
- Xu, Y.; Tang, Q.; Fan, J.; Bennett, S.J.; Li, Y. Assessing construction land potential and its spatial pattern in china. Landsc. Urban. Plan. 2011, 103, 207–216. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Samuel, B.A.; Arild, A.; John, W.B.; Oliver, T.C.; Rodolfo, D.; Günther, F.; Carl, F.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Zhu, H.; He, S.; Zhang, M. Driving forces analysis of land use change in Bohai Rim. Geogr. Res. 2001, 20, 669–678. [Google Scholar]
- Deal, B.; Pan, H. Discerning and Addressing Environmental Failures in Policy Scenarios Using Planning Support System (PSS) Technologies. Sustainability 2016, 9, 13. [Google Scholar] [CrossRef]
Type | 2005 | 2010 | 2015 | |||
---|---|---|---|---|---|---|
Acreage (km2) | Ratio (%) | Acreage (km2) | Ratio (%) | Acreage (km2) | Ratio (%) | |
Grassland | 2388.8834 | 0.5218 | 2395.0128 | 0.5232 | 2406.3738 | 0.5257 |
Cultivated land | 1106.5583 | 0.2417 | 1098.9520 | 0.2400 | 1070.0188 | 0.2337 |
Woodland | 1018.3564 | 0.2223 | 1019.4410 | 0.2225 | 1020.5569 | 0.2228 |
Water | 15.4206 | 0.0034 | 15.7698 | 0.0034 | 16.4690 | 0.0036 |
Construction land | 40.1770 | 0.0088 | 40.2202 | 0.0088 | 54.0303 | 0.0118 |
Unused land | 8.4034 | 0.0018 | 8.4034 | 0.0018 | 10.3504 | 0.0023 |
Type | 2005 | 2010 | 2015 | 2005–2010 | 2010–2015 | 2005–2015 |
---|---|---|---|---|---|---|
Grassland | 2388.8834 | 2395.0128 | 2406.3738 | 6.1294 | 11.361 | 17.4904 |
Cultivated land | 1106.5583 | 1098.952 | 1070.0188 | −7.6063 | −28.9332 | −36.5395 |
Woodland | 1018.3564 | 1019.441 | 1020.5569 | 1.0846 | 1.1159 | 2.2005 |
Water | 15.4206 | 15.7698 | 16.469 | 0.3492 | 0.6992 | 1.0484 |
Construction land | 40.177 | 40.2202 | 54.0303 | 0.0432 | 13.8101 | 13.8533 |
Unused land | 8.4034 | 8.4034 | 10.3504 | 0 | 1.947 | 1.947 |
Type | Grassland | Cultivated Land | Woodland | Water | Construction Land | Unused Land | 2005 |
---|---|---|---|---|---|---|---|
Grassland | 2384.4447 | 4.2508 | 0 | 0 | 0.188 | 0 | 2388.8834 |
Cultivated land | 10.4233 | 1094.4575 | 1.2984 | 0.3791 | 0 | 0 | 1106.5583 |
Woodland | 0 | 0.2137 | 1018.1427 | 0 | 0 | 0 | 1018.3564 |
Water | 0 | 0.0299 | 0 | 15.3907 | 0 | 0 | 15.4206 |
Construction land | 0.1449 | 0 | 0 | 0 | 40.0322 | 0 | 40.177 |
Unused land | 0 | 0 | 0 | 0 | 0 | 8.4034 | 8.4034 |
2010 | 2395.0128 | 1098.9520 | 1019.4410 | 15.7698 | 40.2202 | 8.4034 | 4577.7992 |
Type | Grassland | Cultivated Land | Woodland | Water | Construction Land | Unused Land | 2010 |
---|---|---|---|---|---|---|---|
Grassland | 2389.1242 | 3.8906 | 0.8162 | 0 | 0.2071 | 0.9747 | 2395.0128 |
Cultivated land | 15.4292 | 1065.2159 | 2.3967 | 0.9400 | 13.9980 | 0.9722 | 1098.9520 |
Woodland | 1.8204 | 0.2467 | 1017.3440 | 0 | 0.0299 | 0 | 1019.4410 |
Water | 0 | 0.1809 | 0 | 15.5290 | 0.0598 | 0 | 15.7698 |
Construction land | 0 | 0.4847 | 0 | 0 | 39.7355 | 0 | 40.2202 |
Unused land | 0 | 0 | 0 | 0 | 0 | 8.4034 | 8.4034 |
2015 | 2406.3738 | 1070.0188 | 1020.5569 | 16.4690 | 54.0303 | 10.3503 | 4577.7992 |
Type | Woodland | Cultivated Land | Waters | Construction Land | 2014 |
---|---|---|---|---|---|
Woodland | 6.8687 | 0.04947 | 0.03942 | 0.06428 | 7.0219 |
Cultivated land | 0.2928 | 2.3796 | 0 | 1.0981 | 3.7704 |
Waters | 0 | 0.0066 | 0.3776 | 0 | 0.3842 |
Construction land | 0 | 0 | 0 | 0.5440 | 0.5440 |
2017 | 7.1615 | 2.4356 | 0.4170 | 1.7063 | 11.7205 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Wang, D.; Li, Y.; Zhao, P. Land Use Changes and Their Driving Forces in a Debris Flow Active Area of Gansu Province, China. Sustainability 2018, 10, 2759. https://doi.org/10.3390/su10082759
He S, Wang D, Li Y, Zhao P. Land Use Changes and Their Driving Forces in a Debris Flow Active Area of Gansu Province, China. Sustainability. 2018; 10(8):2759. https://doi.org/10.3390/su10082759
Chicago/Turabian StyleHe, Songtang, Daojie Wang, Yong Li, and Peng Zhao. 2018. "Land Use Changes and Their Driving Forces in a Debris Flow Active Area of Gansu Province, China" Sustainability 10, no. 8: 2759. https://doi.org/10.3390/su10082759
APA StyleHe, S., Wang, D., Li, Y., & Zhao, P. (2018). Land Use Changes and Their Driving Forces in a Debris Flow Active Area of Gansu Province, China. Sustainability, 10(8), 2759. https://doi.org/10.3390/su10082759