Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades?
Abstract
:1. Research Issue and Methodology: Basics of the Paris Agreement and Its Legally-Binding Nature
2. Climate Policy between Art. 2 and Art. 4 PA: Global Zero Emissions in Just a Few Years Instead of the End of the 21st Century?
3. Lack of Clarity in the Data: On Base Year, Certainties, Climate Sensitivity, Frictions of Scenarios and a Precautionary Principle Strengthened by Human Rights
- Firstly, many calculations are based on limiting global warming to two degrees, which is less ambitious than staying “well below 2 degrees” in accordance with Art. 2 para. 1 PA. Following a two degrees pathway will not only lead to higher budgets, but also to underestimating the extent of the challenge: zero emissions within a short period of time. The longstanding discourse on the compatibility of economic growth and environmental protection for instance widely ignores this by not choosing the required level of ambition (in detail, see [3,54,55,56]; not discussed by [57]; on costs, see also [58]).
- Secondly, not all budgets include non-carbon-dioxide emissions. The inclusion of non-CO2 emission in the scenario calculations has different implications, since they have different global warming potentials (GWP; lifetime in the atmosphere and radiative efficiency) [59]. Some models include only CO2 (on TCRE, see [60]). In other scenarios, non-CO2 emissions are included, but it is not yet possible to include the complexity of their varying GWP changing their amounts. Therefore, a fixed level of non-CO2 emissions is chosen in current scenarios, inclining recent studies to assume that their impact is currently underestimated [17,37,41,60]. Even so, other greenhouse gases do not remain in the atmosphere as long as carbon dioxide, and they cannot be disregarded in their effect on the climate [18,59]. Concluding the need for action in terms of greenhouse gas emissions from a carbon-dioxide-only budget, the scope of the problem is artificially reduced.
- Thirdly, budget calculations become rather liberal by setting the base year of the “pre-industrial level” (Art. 2 para. 1 PA) rather late, meaning when climate change had already set in. This leads to an underestimation of human-induced global warming (IPCC data are also compiled at [23]). Generally, a baseline is needed to make consistent calculations. As mentioned earlier, a base year between 1860 and 1880 is most commonly used in calculations of the temperature limit; however, 1750 is also mentioned [20,24]. This leads to the question of when exactly industrialization, respectively the increase of emissions actually started. The IPCC draws the line initially in the year 1750 [17]. However, calculations and estimations of the average global warming are either based on the year 1850 or 1870, because there is little temperature data on the time prior to the 19th Century. However, data that do exist are limited to the Northern Hemisphere [1,17]. The increase of carbon dioxide before 1850 accounts for a temperature rise of 0.1 to 0.2 degrees Celsius [28]. On the bottom line, defining “pre-industrial level” is merely a free-floating empirical discussion about the emissions level of the respective time. However, looking at the term “pre-industrial level” in the PA as a legal document, it seems mandatory to assume 1750 as the base year; because this is when the industrial revolution in Western countries actually started, and not as late as between 1860 and 1880.
- Fourthly, existing calculations seem also quite liberal, if comparing other assumptions on climate sensitivity. Equilibrium climate sensitivity (ECS) [18] indicates the temperature rise if CO2 equivalents in the atmosphere double. It is therefore an important reference for climate modelling and lastly also in determining the temperature limit of Art. 2 para. 1 PA [17]. According to [22], the ECS is probably between 1.5 and 4.5 degrees Celsius. Newer studies by [61,62] suggest that the ECS has been underestimated and might be at the higher end of the range or even above it. Paleoclimatic research showed for instance that climate sensitivity changes with the state of the climate. In warm phases (such as we are in right now), the ECS is significantly higher, according to the calculations of [61], 4.88 degrees Celsius; thus, clearly above the IPCC range. The authors in [62] found in their study that the amount of solar radiation reflected by clouds into space is not as high as assumed so far. Instead, more radiation penetrates the cloud layer and warms the Earth more strongly. Depending on the cloudiness, climate sensitivity is up to 1.3 Kelvin higher than so far expected [47].
- Fifthly, budget calculations are based on accepting a high probability of missing the temperature limit. However, the willingness to live with success probabilities of 50 or 55 percent is astonishing (even if 100 percent certainty will obviously never be reached when dealing with future situations). Therefore, we need to consider: some critical tipping points like the melting of the Greenland or the West Antarctic ice shield, and coral bleaching will probably even occur if the temperature rise stays well below two degrees [31,63]. A target range between 1.5 and 1.8 degrees guarantees therefore by no means landing in an array, which leaves a margin for error.
- It has to be pointed out that governments cannot accept staying within 1.7 to 1.8 degrees, but have to aim at 1.5. As said before: the obligation to make “efforts” towards the 1.5-degree target does legally not allow for an easy dismissal of this objective. Rather, actual measures have to be taken to achieve more reductions than probably required for a 1.7- or 1.8-degree target.
- Human rights contain the obligation for climate protection to secure elementary preconditions of freedom, which are life, health and subsistence [3,6,46,64,65,66,67,68,69]. This obligation is at the same time explicitly recalled in the preamble of the PA: knowing that unrestricted anthropogenic global warming interferes with food and water security and will therefore (alongside more natural catastrophes) increase the likelihood of migration movements and wars over shrinking resources. This may endanger the foundations of human civilization [2]. While it is true that balancing human rights obligation to climate change is prima facie left to political margins (for instance, due to the contradicting freedom rights of enterprises and consumers), which is only limited by those balancing rules that have to be complied with, one of these rules states that political margins of decision-making end where political action or non-action will endanger the liberal-democratic system as such [3] (on further rules, see also [44,46]). This is exactly the effect unchecked climate change might have. For this reason, ambitious climate policies are obligatory in view of human rights.
- This raises the question how strongly and how quickly emissions have to be reduced. It is obvious that all those developments described are well possible, however not in all details definitely certain to occur. However, basic rights protect not only against certain dangers, if the danger is at the moment of occurrence irreversible; and exactly this is the case with climate change. Otherwise, the protection provided by basic rights runs empty [3,11,69]. Human rights thus contain a precautionary principle; even if this were disputed, it remains undisputed that the precautionary principle (also) exists independently of human rights on national, EU and international law. This is manifest, e.g., in the Framework Convention on Climate Change (UNFCCC) in Art. 3 para. 2 UNFCCC, in the Treaty on the Functioning of the European Union (TFEU) in Art. 191 TFEU or in the German Constitution in Art. 20 lit. a Grundgesetz (German Constitution, GG). Precaution means taking measures in view of long-term, cumulating or uncertain damages [3,9,70,71]. All this applies to climate change. The connection to human rights only served to emphasize (and provide grounds for litigation) what is already enshrined in the precautionary principle: the bigger the impending damage in its occurrence, the more ambitious the necessary protection measures have to be; which also includes measures at the cost of mentioned goods like economic freedom. Therefore, in dealing with existential dangers, it is not enough to accept moderate probabilities for their defense, even if 100 percent certainty can of course never be reached regarding future events.
- Furthermore, as we will see in Section 4, it is not allowed from the legal point of view to calculate TABs based on an overshoot or on geoengineering measures.
4. Results: Legal Interpretation and Resolution of the Relationship between Art. 2 and 4 PA
- In favor of the priority of Art. 2 para. 1 PA standing firstly, that it is an overarching objective. Art. 4 PA deals subordinately with concrete strategies in order to achieve this objective. Art. 3 and Art. 4 para. 1 PA literally state this twice. The point of orientation, and accordingly the prior norm, is therefore Art. 2 PA.
- From the perspective of history and the purpose of the norm, Art. 4 para. 1 PA means above all (even if the wording includes all states, due to the term “Parties”) that developing countries and emerging countries (not, however, industrialized countries) should still have time to reduce their emissions. This is also reflected in Art. 4 para. 4 PA. For developing countries, this is not possible without violating Art. 2 para. 1 PA. Anyhow, the fact that primarily one group of states is meant shows two things: Art. 4 para 1 PA has a rather operative and serving character. For industrialized countries in particular, it is highly doubtful whether Art. 4 para. 1 PA is intended to stand in contradiction to Art. 2 para. 1 PA.
- A third, systematic point can be framed as follows: if interpreting the norm hierarchy in favor of Art. 4, Art. 2 would still be violated. If, on the other hand, interpreting in favor of Art. 2, Art. 4 PA is not violated; it is rather overachieved, as Art. 4 PA does not prohibit being faster than formulated. The phrase “keep well below 2 degrees” in Art. 2 PA underlines also that emissions cannot rise indefinitely and then brought back to a level accommodating the temperature level. Art. 3 PA clearly states that states have to comply with Art. 2 PA by continually increasing their level of ambition (on the current level of efforts in the following chapter). It reads: “As nationally determined contributions to the global response to climate change, all Parties are to undertake and communicate ambitious efforts as defined in Articles 4, 7, 9, 10, 11 and 13 with the view to achieving the purpose of this Agreement as set out in Article 2. The efforts of all Parties will represent a progression over time, while recognizing the need to support developing country Parties for the effective implementation of this Agreement”.
- A fourth systematic reason speaks for the priority of Art. 2 PA over Art. 4 PA: the PA is in its legal systematic interpretation a concretization of the UNFCCC, respectively implementing a legal treaty within the UNFCCC. Especially, Art. 2 UNFCCC contains the overarching objective of all international climate law to prevent dangerous anthropogenic disruptions of the global climate. This disruption can, as shown previously, only be prevented if Art. 2 para. 1 PA is treated priory to Art. 4 para. 1 PA, because the indications in Art. 4 para. 1 PA would allow for such a substantial global warming. According to the Art. 31 para. 3 Vienna Convention on the Law of Treaties, such a systematic interpretation of the PA in light of other legal acts of international law is explicitly part of the interpretation process. This is all the truer as human rights guarantees also point in that direction, as seen earlier.
5. Discussion and Concluding Remarks: The Paris Objective and Climate Policy up to Date
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151.
- IPCC Climate Change 2014: Mitigation of Climate Change. In Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014.
- Ekardt, F. Sustainability. Transformation, Governance, Ethics, Law; Springer: Heidelberg, Germany, 2018; in print. [Google Scholar]
- Gupta, J.; Arts, K. Achieving the 1.5 °C objective: Just implementation through a right to (sustainable) development approach. Int. Environ. Agreem. Politics Law Econ. 2018, 18, 11–28. [Google Scholar] [CrossRef]
- Ekardt, F.; Zorn, A. Ozeanversauerung, Meeresumweltrecht, Klimavölkerrecht und die Menschenrechte; Jahrbuch des Umwelt- und Technikrechts 2018; EVS: Berlin, Germany, in print.
- Rajamani, L. The Increasing Currency and Relevance of Rights-Based Perspectives in the International Negotiations on Climate Change. J. Environ. Law 2010, 22, 391–429. [Google Scholar] [CrossRef]
- Ekardt, F.; Wieding, J. Rechtlicher Aussagegehalt des Paris-Abkommen—Eine Analyse der einzelnen Artikel. 2016. Available online: https://online.ruw.de/suche/zfu/Rechtlic-Aussagegeh-des-Par-Abkom--ein-Anal-der-ei-02896ae7f577ba3e7f6b14ce294c454b (accessed on 6 August 2018).
- Nückel, D. Rechtlicher Charakter des Pariser Übereinkommens—Hard law oder soft law? ZUR 2015, 10, 252–531. [Google Scholar]
- Sands, P.; Peel, J. Principles of International Environmental Law, 4th ed.; Cambridge Univ. Press: Cambridge, UK, 2018; ISBN 0521521068. [Google Scholar]
- Morseletto, P.; Biermann, F.; Pattberg, P. Governing by targets: Reductio ad unum and evolution of the two-degree climate target. Int. Environ. Agreem. Politics Law Econ. 2017, 17, 655–676. [Google Scholar] [CrossRef]
- Ekardt, F. Theorie der Nachhaltigkeit; Nomos: Baden-Baden, Germany, 2016. [Google Scholar]
- Available online: Climateactiontracker.org (accessed on 6 August 2018).
- UNEP Emissions Gap Report 2017; UNEP: Nairobi, Kenya, 2017.
- European Commission. Communication from the Commission to the European Parliament and the Council: The Paris Protocol—A Blueprint for Tackling Global Climate Change Beyond 2020; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Scientists Discuss the 1.5C Limit to Global Temperature Rise. Available online: https://www.carbonbrief.org/scientists-discuss-the-1-5c-limit-to-global-temperature-rise (accessed on 6 August 2018).
- Ma, J.; Oppong, A.; Acheampong, K.N.; Abruquah, L.A. Forecasting Renewable Energy Consumption under Zero Assumptions. Sustainability 2018, 10, 576. [Google Scholar] [CrossRef]
- IPCC Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, MY, USA, 2013; p. 1535.
- Buhofer, S. Der Klimawandel und Die Internationale Klimapolitik in Zahlen—Eine Übersicht; oekom: München, Germany, 2017. [Google Scholar]
- Höhne, N.; Kuramochi, T.; Sterl, S.; Röschel, L. Was Bedeutet das Pariser Abkommen für den Klimaschutz in Deutschland? Greenpeace: Berlin, Germany, 2016. [Google Scholar]
- Rahmstorf, S. Die Koalitionsgespräche und das Deutsche Emissionsbudget. Spectrum.de SciLogs. 17 October 2017. Available online: https://scilogs.spektrum.de/klimalounge/die-koalitionsgespraeche-und-das-deutsche-emissionsbudget/ (accessed on 6 August 2018).
- Ekardt, F.; Wieding, J.; Henkel, M. Climate Justice; BUNDposition. BUND, 19 July 2015. [Google Scholar]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbonbrief.org. Analysis: Only five years left before 1.5C carbon budget is blown. Infographics. 19 May 2016. Available online: https://www.carbonbrief.org/analysis-only-five-years-left-before-one-point-five-c-budget-is-blown (accessed on 6 August 2018).
- Peters, G. How Much Carbon Dioxide Can We Emit? Cicero: Oslo, Norway, 2017. [Google Scholar]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Schaeffer, M.; Friedlingstein, P.; Gillett, N.P.; van Vuuren, D.P.; Riahi, K.; Allen, M.; Knutti, R. Differences between carbon budget estimates unravelled. Nat. Clim. Chang. 2016, 6, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Hausfather, Z. Analysis: How Much “Carbon Budget” Is Left to Limit Global Warming to 1.5C? carbonbrief.org. 9 April 2018. Available online: https://www.carbonbrief.org/analysis-how-much-carbon-budget-is-left-to-limit-global-warming-to-1-5c (accessed on 6 August 2018).
- Schurer, A.P.; Mann, M.E.; Hawkins, E.; Tett, S.F.B.; Hegerl, G.C. Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nat. Clim. Chang. 2017, 7, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueres, C.; Schellnhuber, H.J.; Whiteman, G.; Rockström, J.; Hobley, A.; Rahmstorf, S. Three years to safeguard our climate. Nature 2017, 546, 593–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schellnhuber, H.J.; Rahmstorf, S.; Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Chang. 2016, 6, 649–653. [Google Scholar] [CrossRef]
- Revill, C.; Harris, V. 2020: The Climate Turning Point; Potsdam Institute for Climate Impact Research: Potsdam, Germany, 2017. [Google Scholar]
- Berger, J.; Günther, D.; Hain, B. Das Übereinkommen von Paris—Ein wichtiger Wegweiser für eine lebenswerte Zukunft und einen Politikwandel in Deutschland. 2016. Available online: https://online.ruw.de/suche/zfu/Das-uebereink-von-Paris--ein-wicht-Wegwe-fuer-eine-cd7d21f16866f72a4323ddeb3003139a (accessed on 6 August 2018).
- Canadell, P.; Le Quéré, C.; Peters, G. We Can Still Keep Global Warming below 2 °C—But the Hard Work Is about to Start; The Conversation: Melbourne, Australia, 2017. [Google Scholar]
- Anderson, K.; Broderick, J. Natural Gas and Climate Change; Friends of the Earth Europe: Brussels, Belgium, 2017. [Google Scholar]
- Meyer, L.; Steininger, K. Das Treibhausgas-Budget für Österreich; Wegener Center für Klima und Globalen Wandel: Graz, Austria, 2017. [Google Scholar]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G.; et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef]
- Kriegler, E.; Luderer, G.; Bauer, N.; Baumstark, L.; Fujimori, S.; Popp, A.; Rogelj, J.; Strefler, J.; van Vuuren, D.P. Pathways limiting warming to 1.5 °C: A tale of turning around in no time? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, J. Is the 2 °C world a fantasy? Nature 2015, 527, 436–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, G. Climate models produce projections, not probabilities. Bull. Atomic Sci. 2007. Available online: http://thebulletin.org/uncertainty-climate-modeling (accessed on 7 August 2018).
- MacDougall, A.H. The Transient Response to Cumulative CO2 Emissions: A Review. Curr. Clim. Chang. Rep. 2016, 2, 39–47. [Google Scholar] [CrossRef]
- Collins, W.J.; Webber, C.P.; Cox, P.M.; Huntingford, C.; Lowe, J.; Sitch, S.; Chadburn, S.E.; Comyn-Platt, E.; Harper, A.B.; Hayman, G.; et al. Increased importance of methane reduction for a 1.5 degree target. Environ. Res. Lett. 2018, 13, 54003. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Meinshausen, M.; Schaeffer, M.; Knutti, R.; Riahi, K. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming. Environ. Res. Lett. 2015, 10, 75001. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Meinshausen, M.; Arora, V.K.; Jones, C.D.; Anav, A.; Liddicoat, S.K.; Knutti, R. Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks. J. Clim. 2013, 27, 511–526. [Google Scholar] [CrossRef]
- Susnjar, D. Proportionality, Fundamental Rights and Balance of Powers; Brill: Leiden, The Netherlands, 2010. [Google Scholar]
- Meßerschmidt, K. Gesetzgebungsermessen; Öffentliches Recht 14; Berlin-Verl. Spitz: Berlin, Germany, 2000; Volume 14, ISBN 3830500041. [Google Scholar]
- Calliess, C. Rechtsstaat und Umweltstaat: Zugleich ein Beitrag zur Grundrechtsdogmatik im Rahmen Mehrpoliger Verfassungsrechtsverhältnisse; Jus Publicum 71; Mohr-Siebeck: Tübingen, Germany, 2001; Volume 71, ISBN 316147578X. [Google Scholar]
- Mauritsen, T.; Pincus, R. Committed warming inferred from observations. Nat. Clim. Chang. 2017, 7, 652–655. [Google Scholar] [CrossRef]
- Drouet, L.; Emmerling, J. Climate policy under socio-economic scenario uncertainty. Environ. Model. Softw. 2016, 79, 334–342. [Google Scholar] [CrossRef]
- Rose, S.K.; Richels, R.; Blanford, G.; Rutherford, T. The Paris Agreement and next steps in limiting global warming. Clim. Chang. 2017, 142, 255–270. [Google Scholar] [CrossRef]
- Ekardt, F. Rezension: Christian Dieckhoff, Modellierte Zukunft: Energieszenarien in der wissenschaftlichen Politikberatung und Christian Dieckhoff/Anna Leuschner (Hg.), Die Energiewende und ihre Modelle. Was uns Energieszenarien sagen können—und was nicht. ZfU 2017, 42, 284–286. [Google Scholar]
- Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H. Global Food Demand Scenarios for the 21st Century. PLoS ONE 2015, 10, e0139201. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, K.; Lotze-Campen, H.; Sands, R.; Tabeau, A.; van der Mensbrugghe, D.; Biewald, A.; Bodirsky, B.; Islam, S.; Kavallari, A.; Mason-D’Croz, D.; et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Raftery, A.E.; Zimmer, A.; Frierson, D.M.W.; Startz, R.; Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Chang. 2017, 7, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, U. Can Green Growth Really Work—And What Are the True (Socio-)Economics of Cliamte Change? Heinrich Böll Stiftung: Berlin, Germany, 2015. [Google Scholar]
- Jackson, T. Prosperity without Growth: Economics for a Finite Planet; Routledge: London, UK, 2009. [Google Scholar]
- Moreno, C.; Speich Chassé, D.; Fuhr, L. Carbon Metrics. Global Abstractions and Ecological Epistemicide; Ecology; Heinrich Böll Stiftung: Belin, Germany, 2015. [Google Scholar]
- Cifci, E.; Oliver, M. Reassessing the Links between GHG Emissions, Economic Growth, and the UNFCCC: A Difference-in-Differences Approach. Sustainability 2018, 10, 334. [Google Scholar] [CrossRef]
- Cassen, C.; Hamdi-Chérif, M.; Cotella, G.; Toniolo, J.; Lombardi, P.; Hourcade, J.-C. Low Carbon Scenarios for Europe: An Evaluation of Upscaling Low Carbon Experiments. Sustainability 2018, 10, 848. [Google Scholar] [CrossRef]
- IPCC AR4 Climate Change 2007. In Mitigation of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007.
- Millar, R.J.; Friedlingstein, P. The utility of the historical record for assessing the transient climate response to cumulative emissions. Philos. Trans. A Math. Phys. Eng. Sci. 2018, 376. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, T.; Timmermann, A.; Tigchelaar, M.; Elison Timm, O.; Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [PubMed]
- Tan, I.; Storelvmo, T.; Zelinka, M.D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 2016, 352, 224. [Google Scholar] [CrossRef] [PubMed]
- Frieler, K.; Meinshausen, M.; Golly, A.; Mengel, M.; Lebek, K.; Donner, S.D.; Hoegh-Guldberg, O. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Chang. 2012, 3, 165–170. [Google Scholar] [CrossRef]
- Knox, J.H. Report of the Independent Expert on the Issue of Human Rights Obligations Relating to the Enjoyment of a Safe, Clean, Healthy and Sustainable Environment; GA Human Rights Council: New York, NY, USA, 2013. [Google Scholar]
- Skillington, T. Climate change and the human rights challenge: Extending justice beyond the borders of the nation state. Int. J. Hum. Rights 2012, 16, 1196–1212. [Google Scholar] [CrossRef]
- Verheyen, R. Climate Change Damage and International Law; Interactive Factory: Leiden, The Netherlands, 2005; ISBN 978-90-04-14650-1. [Google Scholar]
- Unnerstall, H. Rechte Zukünftiger Generationen; Reihe Philosophie 247; Königshausen/Neumann: Würzburg, Germany, 1999; Volume 247, ISBN 3826016246. [Google Scholar]
- Schmidt-Radefeldt, R. Ökologische Menschenrechte: Ökologische Menschenrechtsinterpretation der EMRK und ihre Bedeutung für die Umweltschützenden Grundrechte des Grundgesetzes; Leipziger Schriften zum Völkerrecht, Europarecht und ausländischen öffentlichen Recht 2; 1. Aufl.; Nomos Verl.-Ges.: Baden-Baden, Germany, 2000; Volume 2, ISBN 3789064777. [Google Scholar]
- Koch, T. Der Grundrechtsschutz des Drittbetroffenen: Zur Rekonstruktion der Grundrechte als Abwehrrechte; Jus publicum 62; Mohr Siebeck: Tübingen, Germany, 2000; Volume 62, ISBN 3161474449. [Google Scholar]
- Arndt, B. Das Vorsorgeprinzip im EU-Recht; Recht der nachhaltigen Entwicklung, Mohr-Siebeck: Tübingen, Germany, 2009. [Google Scholar]
- Maurmann, D. Rechtsgrundsätze im Völkerrecht am Beispiel des Vorsorgeprinzips; Umweltrechtliche Studien 38; 1. Aufl.; Nomos: Baden-Baden, Germany, 2008; Volume 38, ISBN 9783832935320. [Google Scholar]
- Ekardt, F.; Wieding, J. Defending Environmental Economic Instruments Against the Economists and Their Opponents. In Environmental Law and Economics; Mathis, K., Huber, B.R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 83–106. ISBN 978-3-319-50932-7. [Google Scholar]
- Winter Gerd Climate Engineering and International Law: Last Resort or the End of Humanity? Rev. Eur. Community Int. Environ. Law 2012, 20, 277–289.
- Faran, T.S.; Olsson, L. Geoengineering: Neither economical, nor ethical—A risk–reward nexus analysis of carbon dioxide removal. Int. Environ. Agreem. Politics Law Econ. 2018, 18, 63–77. [Google Scholar] [CrossRef]
- UNEP. The Emissions Gap Report 2016; UNEP: Nairobi, Kenya, 2016. [Google Scholar]
- Hennig, B. Nachhaltige Landnutzung und Bioenergie; Metropolis: Marburg, Germany, 2017. [Google Scholar]
- Knutti, R.; Rogelj, J.; Sedláček, J.; Fischer, E.M. A scientific critique of the two-degree climate change target. Nat. Geosci. 2015, 9, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Becker, B.; Richter, C. Klimaschutz in Deutschland: Realität oder Rhetorik? Momentum Q. 2015, 4, 3–22. [Google Scholar]
- Chan, S.; Ellinger, P.; Widerberg, O. Exploring national and regional orchestration of non-state action for a < 1.5 °C world. Int. Environ. Agreem. Politics Law Econ. 2018, 18, 135–152. [Google Scholar] [Green Version]
- Schellnhuber, H.-J. Selbstverbrennung: Die Fatale Dreiecksbeziehung Zwischen Klima, Mensch und Kohlenstoff; C. Bertelsmann: München, Germany, 2015; ISBN 978-3-570-10262-6. [Google Scholar]
- Ekardt, F.; Wieding, J. The Temperature Target of the Paris Agreement and the Forgotten Aspects of a Meaningful Energy Transition. In Energy Law and Economics; Mathis, K., Ed.; Springer: Heidelberg, Germany, 2018; pp. 77–100. [Google Scholar]
- Bosnjak, N. Ein Emissionshandelssystem der Ersten Handelsstufe: Rechtliche, Politische und Ökonomische Aspekte Eines Gesetzgebungsvorschlags; Beiträge zur sozialwissenschaftlichen Nachhaltigkeitsforschung 16; Metropolis Verlag: Marburg, Germany, 2015; Volume 16, ISBN 9783731611370. [Google Scholar]
- Wolff, G. “Upstream” Reform of the EU Emissions Trading System. 2011. Available online: https://ec.europa.eu/clima/sites/clima/files/docs/0012/citizens/dr_gerry_wolff_reform_summary2_en.pdf (accessed on 6 August 2018).
- Von Bredow, H. Energieeffizienz als Rechts- und Steuerungsproblem: Unter Besonderer Berücksichtigung der Erneuerbaren Energien; Metropolis: Marburg, Germany, 2013. [Google Scholar]
- IEA. Act Locally, Trade Globally—Emissions Trading for Climate Policy; OECD/IEA: Paris, France, 2005. [Google Scholar]
- Paech, N. Liberation from Excess: The Road to a Post-Growth Economy; Oekom: München, Germany, 2012. [Google Scholar]
- Stengel, O. Suffizienz: Die Konsumgesellschaft in der Ökologischen Krise; Wuppertaler Schriften zur Forschung für Eine Nachhaltige Entwicklung Band 1; oekom: München, Germany, 2011; Volume Band 1, ISBN 3865812805. [Google Scholar]
- Scheidler, F. Das Ende der Megamaschine. In Geschichte einer Scheiternden Zivilisation; Promedia: Wien, Austria, 2015. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekardt, F.; Wieding, J.; Zorn, A. Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades? Sustainability 2018, 10, 2812. https://doi.org/10.3390/su10082812
Ekardt F, Wieding J, Zorn A. Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades? Sustainability. 2018; 10(8):2812. https://doi.org/10.3390/su10082812
Chicago/Turabian StyleEkardt, Felix, Jutta Wieding, and Anika Zorn. 2018. "Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades?" Sustainability 10, no. 8: 2812. https://doi.org/10.3390/su10082812
APA StyleEkardt, F., Wieding, J., & Zorn, A. (2018). Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades? Sustainability, 10(8), 2812. https://doi.org/10.3390/su10082812