More than Yield: Ecosystem Services of Traditional versus Modern Crop Varieties Revisited
Abstract
:1. Introduction
- (1)
- Do landraces and modern varieties differ in terms of provisioning and regulating ecosystem services?
- (2)
- When and why do farmers prefer cultural ecosystem services of landraces over high-yielding, modern varieties?
2. Materials and Methods
3. Results and Discussion
3.1. Provisioning Services
3.1.1. Crop Yield
3.1.2. Crop Nutrient Use Efficiency
3.1.3. Cultivation Effort and Crop Storability
3.1.4. Context Dependency of Provisioning Ecosystem Services
3.2. Regulating Services
3.2.1. Resilience to Environmental Changes
3.2.2. Biological Pest and Disease Control
3.2.3. Biodiversity Richness and Pollination
3.2.4. Landrace Promote Regulating Ecosystem Services
3.3. Cultural Services
Landrace Provide Cultural Ecosystem Services
4. General Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dalrymple, D.G. Development and Spread of High-Yielding Rice Varieties in Developing Countries; Bureau for Science and Technology Agency for International Development: Washington, DC, USA, 1986. [Google Scholar]
- Evenson, R.E.; Gollin, D. Assessing the impact of the Green Revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the Unit Nations. Ending Poverty and Hunger by Investing in Agriculture and Rural Areas. 2017. Available online: http://www.fao.org/3/a-i7556e.pdf (accessed on 8 August 2018).
- Von Braun, J.; Hill, R.V.; Pandya-Lorch, R. The Poorest and Hungry: Assessments, Analyses, and Actions; IFPRI 2020 Book; International Food Policy Research Institute: Washington, DC, USA, 2009; Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/25B0EA78AAC872B149257680001F0E4A-ifpri-oct2009.pdf (accessed on 8 August 2018).
- United Nations Secretariat. Bulletin on the Eradication of Poverty 2003. Available online: http://www.un.org/esa/socdev/poverty/documents/boep_10_2003_EN.pdf (accessed on 8 August 2018).
- Holt-Giménez, E.; Shattuck, A.; Altieri, M.; Herren, H.; Gliessman, S. We Already Grow Enough Food for 10 Billion People... and Still Can’t End Hunger. J. Sustain. Agric. 2012, 36, 595–598. [Google Scholar] [CrossRef]
- FAO. The State of Food Insecurity in the World; FAO: Rome, Italy, 2009; ISBN 9789251062883. [Google Scholar]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Messmer, M.M. Plant Breeding Techniques: An Assessment for Organic Farming; Research Institute of Organic Agriculture: Frick, Switzerland, 2015; p. 37. [Google Scholar]
- Danial, D.; Parlevliet, J.; Almekinders, C.; Thiele, G. Farmers’ participation and breeding for durable disease resistance in the Andean region. Euphytica 2007, 153, 385–396. [Google Scholar] [CrossRef]
- Peroni, N.; Hanazaki, N. Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic Forest. Agric. Ecosyst. Environ. 2002, 92, 171–183. [Google Scholar] [CrossRef]
- Tsegaye, B.; Berg, T. Utilization of durum wheat landraces in East Shewa, central Ethiopia: Are home uses an incentive for on-farm conservation? Agric. Hum. Values 2007, 24, 219–230. [Google Scholar] [CrossRef]
- FAO. Women—Users, Preservers and Managers of Agrobiodiversity; FAO: Rome, Italy, 1999; pp. 1–4. [Google Scholar]
- Van de Wouw, M.; van Hintum, T.; Kik, C.; van Treuren, R.; Visser, B. Genetic diversity trends in twentieth century crop cultivars: A meta analysis. Theor. Appl. Genet. 2010, 120, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Buck, M.; Hamilton, C. The Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity. Rev. Eur. Community Int. Environ. Law 2011, 20, 47–61. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Gupta, B.B. Plant Genetic Resources and Traditional Knowledge for Food Security; Springer: Berlin, Germany, 2015. [Google Scholar]
- Olson, M.B.; Morris, K.S.; Mendez, V.E. Cultivation of maize landraces by small-scale shade coffee farmers in western El Salvador. Agric. Syst. 2012, 111, 63–74. [Google Scholar] [CrossRef]
- Sthapit, B.; Rana, R.; Eyzaguirre, P.; Jarvis, D. The value of plant genetic diversity to resource-poor farmers in Nepal and Vietnam. Int. J. Agric. Sustain. 2008, 6, 148–166. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assestment. Ecosystems and Human Well-Being; Word Health Organization: Washington, DC, USA, 2005; Volume 5, ISBN 1559634022. [Google Scholar]
- Thrupp, L.A. Linking Agricultural Biodiversity and Food Security: The Valuable Role of Sustainable Agriculture on JSTOR. Int. Aff. 2000, 76, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A.; Funes-Monzote, F.R.; Petersen, P. Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agron. Sustain. Dev. 2012, 32, 1–13. [Google Scholar] [CrossRef]
- Gruber, K. Agrobiodiversity: The living library. Nature 2017, 544, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Li, W. Man and the Biosphere Series. In Agro-Ecological Farming Systems in China; Taylor & Francis: Abingdon, UK, 2001; Volume 26. [Google Scholar]
- Nature, P.; Ourselves, P. Millennium ecosystem assessment. Science 2006, 314, 257–258. [Google Scholar]
- Garibaldi, L.A.; Gemmill-Herren, B.; D’Annolfo, R.; Graeub, B.E.; Cunningham, S.A.; Breeze, T.D. Farming Approaches for Greater Biodiversity, Livelihoods, and Food Security. Trends Ecol. Evol. 2017, 32, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C.; Akar, T.; Baresel, J.P.; Bebeli, P.J.; Bettencourt, E.; Bladenopoulos, K.V.; Czembor, J.H.; Fasoula, D.A.; Katsiotis, A.; Koutis, K.; et al. Cereal landraces for sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Villa, T.C.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and identifying crop landraces. Plant Genet. Resour. Charact. Util. 2005, 3, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Teshome, A.; Baum, B.R.; Fahrig, L.; Torrance, J.K.; Arnason, T.J.; Lambert, J.D. Sorghum [Sorghum bicolor (L.) Moench] landrace variation and classification in north Shewa and south Welo, Ethiopia. Euphytica 1997, 97, 255–263. [Google Scholar] [CrossRef]
- Jackson, L.E.; Pascual, U.; Hodgkin, T. Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric. Ecosyst. Environ. 2007, 121, 196–210. [Google Scholar] [CrossRef]
- Yadav, O.P. Drought response of pearl millet landrace-based populations and their crosses with elite composites. Field Crops Res. 2010, 118, 51–56. [Google Scholar] [CrossRef]
- Brocke, K.V.; Trouche, G.; Weltzien, E.; Kondombo-Barro, C.P.; Sidibe, A.; Zougmore, R.; Goze, E. Helping Farmers Adapt to Climate and Cropping System Change through Increased Access to Sorghum Genetic Resources Adapted to Prevalent Sorghum Cropping Systems in Burkina Faso. Exp. Agric. 2014, 50, 284–305. [Google Scholar] [CrossRef]
- Li, J.; van Bueren, E.T.L.; Jiggins, J.; Leeuwis, C. Farmers’ adoption of maize (Zea mays L.) hybrids and the persistence of landraces in Southwest China: Implications for policy and breeding. Genet. Resour. Crop Evol. 2012, 59, 1147–1160. [Google Scholar] [CrossRef]
- Kante, M.; Rattunde, H.F.W.; Leiser, W.L.; Nebié, B.; Diallo, B.; Diallo, A.; Touré, A.O.; Weltzien, E.; Haussmann, B.I.G. Can tall guinea-race sorghum hybrids deliver yield advantage to smallholder farmers in west and central Africa? Crop Sci. 2017, 57, 833–842. [Google Scholar] [CrossRef]
- Sangabriel-Conde, W.; Negrete-Yankelevich, S.; Eduardo Maldonado-Mendoza, I.; Trejo-Aguilar, D. Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake. Biol. Fertil. Soils 2014, 50, 405–414. [Google Scholar] [CrossRef]
- Lafitte, H.R.; Edmeades, G.O.; Taba, S. Adaptive strategies identified among tropical maize landraces for nitrogen-limited environments. Field Crops Res. 1997, 49, 187–204. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, B.; Liu, L.; Gu, Y.; Liu, Q.; Turner, N.C.; Li, F.M. Does a mixture of old and modern winter wheat cultivars increase yield and water use efficiency in water-limited environments? Field Crops Res. 2014, 156, 12–21. [Google Scholar] [CrossRef]
- Maggs-Kolling, G.L.; Christiansen, J.L. Variability in Namibian landraces of watermelon (Citrullus lanatus). Euphytica 2003, 132, 251–258. [Google Scholar] [CrossRef]
- Moreno, L.L.; Tuxill, J.; Moo, E.Y.; Reyes, L.A.; Alejo, J.C.; Jarvis, D.I. Traditional maize storage methods of mayan farmers in Yucatan, Mexico: Implications for seed selection and crop diversity. Biodivers. Conserv. 2006, 15, 1771–1795. [Google Scholar] [CrossRef]
- Annicchiarico, P. Diversity, genetic structure, distinctness and agronomic value of Italian lucerne (Medicago sativa L.) landraces. Euphytica 2006, 148, 269–282. [Google Scholar] [CrossRef]
- Mazvimbakupa, F.; Modi, A.T.; Mabhaudhi, T. Seed quality and water use characteristics of maize landraces compared with selected commercial hybrids. Chil. J. Agric. Res. 2015, 75, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Perea, C.G.; Allen, R.G.; Westermann, D.T.; Wright, J.L.; Singh, S.P. Water use efficiency among dry bean landraces and cultivars in drought-stressed and non-stressed environments. Euphytica 2007, 155, 393–402. [Google Scholar] [CrossRef]
- Fenzi, M.; Jarvis, D.I.; Arias Reyes, L.M.; Latournerie Moreno, L.; Tuxill, J. Longitudinal analysis of maize diversity in Yucatan, Mexico: Influence of agro-ecological factors on landraces conservation and modern variety introduction. Plant Genet. Resour. 2017, 15, 51–63. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; Rispail, N.; Flores, F.; Emeran, A.A.; Sillero, J.C.; Rubiales, D.; Prats, E. Higher rust resistance and similar yield of oat landraces versus cultivars under high temperature and drought. Agron. Sustain. Dev. 2017, 37. [Google Scholar] [CrossRef]
- Patil, J.V.; Reddy, P.S.; Prabhakar; Umakanth, A.V.; Gomashe, S.; Ganapathy, K.N. History of post-rainy season sorghum research in India and strategies for breaking the yield plateau. Indian J. Genet. Plant Breed. 2014, 74, 271–285. [Google Scholar] [CrossRef]
- Tamiru, A.; Bruce, T.J.A.; Woodcock, C.M.; Caulfield, J.C.; Midega, C.A.O.; Ogol, C.K.P.O.; Mayon, P.; Birkett, M.A.; Pickett, J.A.; Khan, Z.R. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol. Lett. 2011, 14, 1075–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biasi, R.; Brunori, E. The on-farm conservation of grapevine (Vitis vinifera L.) landraces assures the habitat diversity in the viticultural agro-ecosystem. Vitis 2015, 54, 265–269. [Google Scholar]
- Zimmerer, K.S. Conserving agrobiodiversity amid global change, migration, and nontraditional livelihood networks: The dynamic uses of cultural landscape knowledge. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef]
- Montes-Hernandez, S.; Merrick, L.C.; Eguiarte, L.E. Maintenance of squash (Cucurbita spp.) landrace diversity by farmers’ activities in Mexico. Genet. Resour. Crop Evol. 2005, 52, 697–707. [Google Scholar] [CrossRef]
- Zeven, A.C. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Noguera, D.; Laossi, K.-R.; Lavelle, P.; de Carvalho, M.H.C.; Asakawa, N.; Botero, C.; Barot, S. Amplifying the benefits of agroecology by using the right cultivars. Ecol. Appl. 2011, 21, 2349–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knezevic-Jaric, J.; Prodanovic, S.; Iwarsson, M. Decline of the maize landrace cultivation in Eastern Serbia. Rom. Agric. Res. 2014, 31, 11–16. [Google Scholar]
- Bardsley, D.; Thomas, I. Valuing local wheat landraces for agrobiodiversity conservation in Northeast Turkey. Agric. Ecosyst. Environ. 2005, 106, 407–412. [Google Scholar] [CrossRef]
- Calvet-Mir, L.; Calvet-Mir, M.; Vaque-Nunez, L.; Reyes-Garcia, V. Landraces in situ Conservation: A Case Study in High-Mountain Home Gardens in Vall Fosca, Catalan Pyrenees, Iberian Peninsula. Econ. Bot. 2011, 65, 146–157. [Google Scholar] [CrossRef]
- Anastasi, U.; Sortino, O.; Tuttobene, R.; Gresta, F.; Giuffrè, A.M.; Santonoceto, C. Agronomic performance and grain quality of sesame (Sesamum indicum L.) landraces and improved varieties grown in a Mediterranean environment. Genet. Resour. Crop Evol. 2017, 64, 127–137. [Google Scholar] [CrossRef]
- Oupkaew, P.; Pusadee, T.; Sirabanchongkran, A.; Rerkasem, K.; Jamjod, S.; Rerkasem, B. Complexity and adaptability of a traditional agricultural system: Case study of a gall midge resistant rice landrace from northern Thailand. Genet. Resour. Crop Evol. 2011, 58, 361–372. [Google Scholar] [CrossRef]
- Boutraa, T.; Sanders, F.E. Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolus vulgaris L.). J. Agron. Crop Sci. 2001, 187, 251–257. [Google Scholar] [CrossRef]
- Kolech, S.A.; Halseth, D.; Perry, K.; De Jong, W.; Tiruneh, F.M.; Wolfe, D. Identification of Farmer Priorities in Potato Production Through Participatory Variety Selection. Am. J. Potato Res. 2015, 92, 648–661. [Google Scholar] [CrossRef] [Green Version]
- Vaezi, B.; Bavei, V.; Shiran, B. Screening of barley genotypes for drought tolerance by agro-physiological traits in field condition. Afr. J. Agric. Res. 2010, 5, 881–892. [Google Scholar] [CrossRef]
- Yong’an, L.; Quanwen, D.; Zhiguo, C.; Deyong, Z. Effect of drought on water use efficiency, agronomic traits and yield of spring wheat landraces and modern varieties in Northwest China. Afr. J. Agric. Res. 2010, 5, 1598–1608. [Google Scholar]
- Leiser, W.L.; Rattunde, H.F.W.; Piepho, H.-P.; Weltzien, E.; Diallo, A.; Toure, A.; Haussmann, B.I.G. Phosphorous Efficiency and Tolerance Traits for Selection of Sorghum for Performance in Phosphorous-Limited Environments. Crop Sci. 2015, 55, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Du, Y.; Wang, J.; Wu, A.; Qiao, S.; Xu, B.; Zhang, S.; Siddique, K.H.M.; Chen, Y. Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat. Front. Plant Sci. 2017, 8, 672. [Google Scholar] [CrossRef] [PubMed]
- López-Forment, I.S. Changes in Diversity in the Process of Milpa Intensification in the Henequen Zone in Yucatán, México. In Proceedings of the Meeting of the Latin American Studies Association, Chicago, IL, USA, 24–26 September 1998; pp. 1–14. [Google Scholar]
- Tripp, R. Biodiversity and Modern Crop Varieties: Sharpening the Debate. Agric. Hum. Values 1994, 13, 48–63. [Google Scholar] [CrossRef]
- Brush, S.B.; Meng, E. Farmers’valuation and conservation of crop genetic resources. Genet. Resour. Crop Evol. 1998, 139–150. [Google Scholar] [CrossRef]
- Chapin, F.S.; Carpenter, S.R.; Kofinas, G.P.; Folke, C.; Abel, N.; Clark, W.C.; Olsson, P.; Smith, D.M.S.; Walker, B.; Young, O.R.; et al. Ecosystem stewardship: Sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 2010, 25, 241–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggs, R.O.; Rhode, C.; Archibald, S.; Kunene, L.M.; Mutanga, S.S.; Nkuna, N.; Ocholla, P.O.; Phadima, L.J. Strategies for managing complex social-ecological systems in the face of uncertainty: Examples from South Africa and beyond. Ecol. Soc. 2015, 20. [Google Scholar] [CrossRef]
- Chappell, M.J.; Wittman, H.; Bacon, C.M.; Ferguson, B.G.; Barrios, L.G.; Barrios, R.G.; Jaffee, D.; Lima, J.; Méndez, V.E.; Morales, H.; et al. Food sovereignty: An alternative paradigm for poverty reduction and biodiversity conservation in Latin America. F1000Research 2013, 2014. [Google Scholar] [CrossRef] [PubMed]
- Maffi, L.; Dilts, O. An Introduction to Biocultural Diversity. Biocult. Divers. Toolkit 2014, 1, 44. [Google Scholar]
- Kloppenburg, J. Re-purposing the master’s tools: The open source seed initiative and the struggle for seed sovereignty. J. Peasant Stud. 2014, 41, 1225–1246. [Google Scholar] [CrossRef]
- Galie, A. Governance of seed and food security through participatory plant breeding: Empirical evidence and gender analysis from Syria. Nat. Resour. Forum 2013, 37, 31–42. [Google Scholar] [CrossRef]
- Wenzel, K.; Wilbois, K.-P. Ökologisch-Partizipative Pflanzenzüchtung; Research Institute of Organic Agriculture: Frick, Switzerland, 2011. [Google Scholar]
- Calvet-Mir, L.; Calvet-Mir, M.; Luis Molina, J.; Reyes-Garcia, V. Seed Exchange as an Agrobiodiversity Conservation Mechanism. A Case Study in Vall Fosca, Catalan Pyrenees, Iberian Peninsula. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef] [Green Version]
- Pautasso, M.; Aistara, G.; Barnaud, A.; Caillon, S.; Clouvel, P.; Coomes, O.T.; Delêtre, M.; Demeulenaere, E.; de Santis, P.; Döring, T.; et al. Seed exchange networks for agrobiodiversity conservation. A review. Agron. Sustain. Dev. 2013, 33, 151–175. [Google Scholar] [CrossRef]
Ecosystem Services | Measured Performance | Total No. of Publications | Positive Effect | Negative Effect | Unclear Effect | Most Important Findings |
---|---|---|---|---|---|---|
Provisioning services | Crop yield | 26 | 9 | 8 | 9 | |
Crop nutrient use efficiency | 6 | 3 | 1 | 2 |
| |
Cultivation effort and crop storability | 4 | 2 | 1 | 1 |
| |
Regulating services | Resilience to environmental changes | 24 | 22 | 1 | 1 |
|
Biological pest & disease control | 10 | 6 | 2 | 2 |
| |
Crop pollination | 1 | 1 | 0 | 0 | Small sized vineyards based on the use of local landraces maintain complex ecological infrastructures, i.e., treed riparian strips, as well as forest remnants, natural edges, out of forest trees, which positively influence pollinator’s presence [46] | |
Biodiversity richness | 1 | 1 | 0 | 0 | To maintain landscape complexity, and therefore biodiversity richness, accounts also the viticulture that is tightly linked to the local grapevine genetic resources. The structure of the vineyards, at the base of a traditional use of the local landraces, reflects the principle of landscape ecology. That maintains landscape complexity, and therefore species and biodiversity richness [46] | |
Cultural services | Tradition, cooking characteristics, nutritional values, taste, and color | 5 | 5 | 0 | 0 |
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficiciyan, A.; Loos, J.; Sievers-Glotzbach, S.; Tscharntke, T. More than Yield: Ecosystem Services of Traditional versus Modern Crop Varieties Revisited. Sustainability 2018, 10, 2834. https://doi.org/10.3390/su10082834
Ficiciyan A, Loos J, Sievers-Glotzbach S, Tscharntke T. More than Yield: Ecosystem Services of Traditional versus Modern Crop Varieties Revisited. Sustainability. 2018; 10(8):2834. https://doi.org/10.3390/su10082834
Chicago/Turabian StyleFiciciyan, Anoush, Jacqueline Loos, Stefanie Sievers-Glotzbach, and Teja Tscharntke. 2018. "More than Yield: Ecosystem Services of Traditional versus Modern Crop Varieties Revisited" Sustainability 10, no. 8: 2834. https://doi.org/10.3390/su10082834
APA StyleFiciciyan, A., Loos, J., Sievers-Glotzbach, S., & Tscharntke, T. (2018). More than Yield: Ecosystem Services of Traditional versus Modern Crop Varieties Revisited. Sustainability, 10(8), 2834. https://doi.org/10.3390/su10082834