Application of the Vector Measure Construction Method and Technique for Order Preference by Similarity Ideal Solution for the Analysis of the Dynamics of Changes in the Poverty Levels in the European Union Countries
Abstract
:1. Introduction
2. Literature Review
2.1. The Aims of Sustainable Development
2.2. Poverty and Its Measure
- absolute (poverty entails having less than an objectively defined, absolute minimum),
- relative (poverty entails having less than others in society),
- self-assessed (poverty is a feeling that you do not have enough to get along).
3. Materials and Methods
- People at risk of poverty or social exclusion (sdg_01_10);
- People at risk of income poverty after social transfers (sdg_01_20);
- Severely materially deprived people (sdg_01_30);
- People living in households with very low work intensity (sdg_01_40);
- Housing cost overburden rate by poverty status (sdg_01_50);
- Population living in a dwelling with a leaking roof, damp walls, floors or foundation or rot in window frames of floor by poverty status (sdg_01_60);
- Self-reported unmet need for medical care by detailed reason (sdg_03_60);
- Population having neither a bath, nor a shower, nor indoor flushing toilet in their household by poverty status (sdg_06_10);
- Population unable to keep home adequately warm by poverty status (sdg_07_60);
- Overcrowding rate by poverty status (sdg_11_10).
3.1. TOPSIS Method
3.2. VMCM Method
- Stage 1. Selection of variables.
- Stage 2. Elimination of variables.
- Stage 3. Defining the diagnostic variables character.
- Stage 4. Assigning weights to diagnostic variables.
- Stage 5. Normalization of variables.
- Stage 6. Determination of the pattern and anti-pattern.
- Stage 7. Building the synthetic measure.
- Stage 8. Classification of objects.
3.2.1. Stage 1. Selection of Variables
3.2.2. Stage 2. Elimination of Variables
3.2.3. Stage 3. Defining the Diagnostic Variables Character
3.2.4. Stage 4. Assigning Weights to Diagnostic Variables
3.2.5. Stage 5. Normalization of Variables
3.2.6. Stage 6. Determination of Pattern and Anti-Pattern
- for n divided by 4:
- for n+1 divided by 4:
- for n+2 divided by 4:
- for n+3 divided by 4:
- for n divided by 4:
- for n+1 divided by 4:
- for n+2 divided by 4:
- for n+3 divided by 4:—the first, the third quartile;n—number of objects.
3.2.7. Stage 7. Construction of the Synthetic Measure
3.2.8. Stage 8. Classification of Objects
3.3. The Course of the Research Experiment
4. Results
4.1. TOPSIS Method
4.2. VMCM Method
4.3. Analysis of the Dynamics of Changes: TOPSIS and VMCM
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Helne, T.; Hirvilammi, T. Wellbeing and Sustainability: A Relational Approach: Wellbeing and Sustainability. Sustain. Dev. 2015, 23, 167–175. [Google Scholar] [CrossRef]
- Schleicher, J.; Schaafsma, M.; Burgess, N.D.; Sandbrook, C.; Danks, F.; Cowie, C.; Vira, B. Poorer without It? The Neglected Role of the Natural Environment in Poverty and Wellbeing: The neglected role of the natural environment in poverty and wellbeing. Sustain. Dev. 2018, 26, 83–98. [Google Scholar] [CrossRef]
- Waas, T.; Hugé, J.; Block, T.; Wright, T.; Benitez-Capistros, F.; Verbruggen, A. Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development. Sustainability 2014, 6, 5512–5534. [Google Scholar] [CrossRef] [Green Version]
- Arrow, K.J.; Dasgupta, P.; Goulder, L.H.; Mumford, K.J.; Oleson, K. Sustainability and the measurement of wealth: further reflections. Environ. Dev. Econ. 2013, 18, 504–516. [Google Scholar] [CrossRef]
- Bleys, B. The Regional Index of Sustainable Economic Welfare for Flanders, Belgium. Sustainability 2013, 5, 496–523. [Google Scholar] [CrossRef] [Green Version]
- Fleurbaey, M.; Blanchet, D. Beyond GDP: Measuring Welfare and Assessing Sustainability; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Costanza, R.; Kubiszewski, I.; Giovannini, E.; Lovins, H.; McGlade, J.; Pickett, KE.; Ragnarsdóttir, K.V.; Roberts, D.; De Vogli, R.; Wilkinson, R. Development: Time to leave GDP behind. Nature 2014, 505, 283–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleurbaey, M. On sustainability and social welfare. J. Environ. Econ. Manag. 2015, 71, 34–53. [Google Scholar] [CrossRef]
- Dresner, S. The Principles of Sustainability, 2nd ed.; Routledge: Abingdon, UK, 2008. [Google Scholar]
- Ciegis, R.; Ramanauskiene, J.; Martinkus, B. The Concept of Sustainable Development and its Use for Sustainability Scenarios. Eng. Econ. 2009, 62, 2. [Google Scholar]
- Hedlund-de Witt, A. Rethinking Sustainable Development: Considering How Different Worldviews Envision “Development” and “Quality of Life”. Sustainability 2014, 6, 8310–8328. [Google Scholar] [CrossRef] [Green Version]
- Adler, M.D.; Fleurbaey, M.; Cowell, F. Inequality and Poverty Measures. In Oxford Handbook of Well-Being and Public Policy; Matthew, D.A., Marc, F., Eds.; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Zheng, B. Aggregate Poverty Measures. J. Econ. Surv. 2002, 11, 123–162. [Google Scholar] [CrossRef] [Green Version]
- Haughton, J.H.; Khandker, S.R. Handbook on Poverty and Inequality; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Foster, J.; Seth, S.; Lokshin, M.; Sajaia, Z. A Unified Approach to Measuring Poverty and Inequality: Theory and Practice; The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Hellwig, Z. Application of the Taxonomic Method to the Countries Typology According to their Level of Development and the Structure of Resources and Qualified Staff. Przegląd Statystyczny 1968, 4, 307–326. (In Polish) [Google Scholar]
- Nermend, K. Metody Analizy Wielokryterialnej i Wielowymiarowej we Wspomaganiu Decyzji, 1st ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2017. [Google Scholar]
- Jajuga, K.; Marek, W.; Andrzej, B. On The General Distance Measure. In Exploratory Data Analysis in Empirical Research; Schwaiger, M., Opitz, O., Eds.; Springer: Berlin, Germany, 2003; pp. 104–109. [Google Scholar] [Green Version]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making. In Lecture Notes in Economics and Mathematical Systems; Springer Nature Switzerland AG: Basel, Switzerland, 1981; Volume 186. [Google Scholar]
- Shen, K.Y.; Tzeng, G.H. Advances in Multiple Criteria Decision Making for Sustainability: Modeling and Applications. Sustainability 2018, 10, 1600. [Google Scholar] [CrossRef]
- Balcerzak, A.; Pietrzak, M. Application of TOPSIS Method for Analysis of Sustainable Development in European Union Countries. In Proceedings of the 10th International Days of Statistics and Economics, Prague, Czech Republic, 8–10 September 2016. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Roy, B. ELECTRE III: Un algorithme de rangement fonde sur une representation floue des preferences en presence de criteres multiples. Cahiers du Centre d’etudes de recherche operationnelle. 1978, 20, 3–24. [Google Scholar]
- United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. Available online: www.naturalcapital.vn/wp-content/uploads/2017/02/UNDP-Viet-Nam.pdf. (accessed on 15 April 2018).
- Waas, T.; Hugé, J.; Verbruggen, A.; Wright, T. Sustainable Development: A Bird’s Eye View. Sustainability 2011, 3, 1637–1661. [Google Scholar] [CrossRef] [Green Version]
- Strengers, Y.; Maller, C. (Eds.) Social Practices, Intervention and Sustainability: Beyond Behaviour Change (Routledge Studies in Sustainability); Routledge: Los Angeles, LA, USA, 2016. [Google Scholar]
- Hugé, J.; Waas, T.; Eggermont, G.; Verbruggen, A. Impact assessment for a sustainable energy future—Reflections and practical experiences. Energ. Pol. 2011, 39, 6243–6253. [Google Scholar] [CrossRef]
- Sachs, J.D. From Millennium Development Goals to Sustainable Development Goals. Lancet 2012, 379, 2206–2211. [Google Scholar] [CrossRef]
- UTCTAD. Development and Globalization: Facts and Figures. Available online: http://stats.unctad.org/Dgff2016/DGFF2016.pdf (accessed on 15 April 2018).
- Le Blanc, D. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets: The sustainable development goals as a network of targets. Sustain. Dev. 2015, 23, 176–187. [Google Scholar] [CrossRef]
- World Commission on Environment and Development. Our Common Future. World Commission on Environment and Development; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Beisheim, M.; Løkken, H.; Aus, D.M.N.; Pintér, L.; Rickels, W. Measuring Sustainable Development: How Can Science Contribute to Realizing the SDGs? SWP Berlin: Berlin, Germany, 2015; Volume 8, pp. 1–32. [Google Scholar]
- MacFeely, S. Measuring the Sustainable Development Goals: What does it mean for Ireland? Administration 2017, 65, 41–71. [Google Scholar] [CrossRef]
- Rieckmann, M. Education for Sustainable Development Goals: Learning Objectives; UNESCO: Paris, France, 2017. [Google Scholar]
- International Council for Science. A Guide to SDG Interactions: From Science to Implementation; International Council for Science: Paris, France, 2017. [Google Scholar]
- Eurostat. Sustainable Development in the European Union: Monitoring Report on Progress towards the SDGs in an EU Context; Publications office of the European Union: Luxemburg, 2017. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Next Steps for A Sustainable European Future—European Action for Sustainability. Available online: https://ec.europa.eu/europeaid/sites/devco/files/communication-next-steps-sustainable-europe-20161122_en.pdf (accessed on 15 April 2018).
- Barkin, D.; Lemus, B. Understanding Progress: A Heterodox Approach. Sustainability 2013, 5, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Spicker, P.; Álvarez Leguizamón, S.; Gordon, D. Comparative Research Programme on Poverty; Zed Books: London, UK, 2007. [Google Scholar]
- Hagenaars, A.; de Vos, K. The Definition and Measurement of Poverty. J. Hum. Resource. Manag. 1988, 23, 211–221. [Google Scholar] [CrossRef]
- Foster, J.E. Absolute versus Relative Poverty. Am. Econ. Rev. 1998, 88, 335–341. [Google Scholar]
- Lok-Dessallien, R. Review of Poverty Concepts and Indicators. Available online: https://pdfs.semanticscholar.org/a358/eb2139bf8c50b338863d0ecb63d4c6dedb21.pdf (accessed on 15 June 2018).
- Weziak-Bialowolska, D.; Dijkstra, L. Regional Human Poverty Index: Poverty in the Regions of the European; Publications office of the European Union: Luxemburg, 2014. [Google Scholar]
- Sen, A. Inequality Reexamined; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Alkire, S.; Santos, M.E. A Multidimensional Approach: Poverty Measurement & Beyond. Soc. Indicat. Res. 2013, 112, 239–257. [Google Scholar] [Green Version]
- Alkire, S.; Foster, J. Counting and multidimensional poverty measurement. J. Publ. Econ. 2011, 95, 476–487. [Google Scholar] [CrossRef]
- Alkire, S.; Foster, J. Understandings and misunderstandings of multidimensional poverty measurement. J. Econ. Inequal. 2011, 9, 289–314. [Google Scholar] [CrossRef] [Green Version]
- Antony, G.M.; Visweswara Rao, K. A composite index to explain variations in poverty, health, nutritional status and standard of living: Use of multivariate statistical methods. Publ. Health. 2007, 121, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Bellani, L. Multidimensional indices of deprivation: The introduction of reference groups weights. J. Econ. Inequal. 2013, 11, 495–515. [Google Scholar] [CrossRef]
- Betti, G.; Gagliardi, F.; Lemmi, A.; Verma, V. Subnational indicators of poverty and deprivation in Europe: Methodology and applications. Camb. J. Regions. Econ. Soc. 2012, 5, 129–147. [Google Scholar] [CrossRef]
- Ravallion, M. On multidimensional indices of poverty. J. Econ. Inequal. 2011, 9, 235–248. [Google Scholar] [CrossRef]
- Wagle, U. Multidimensional Poverty Measurement; Springer US: New York, NY, USA, 2008; ISBN 978-0-387-75874-9. [Google Scholar]
- Sen, A. Poor, Relatively Speaking. Oxf. Econ. Paper. 1983, 35, 153–169. [Google Scholar] [CrossRef]
- Sen, A. Commodities and Capabilities; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Tsui, K. Multidimensional poverty indices. Soc. Choice. Welfare. 2002, 19, 69–93. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, A.B. Multidimensional Deprivation: Contrasting Social Welfare and Counting Approaches. J. Econ. Inequal. 2003, 1, 51–65. [Google Scholar] [CrossRef]
- Bourguignon, F.; Chakravarty, S.R. Multidimensional Poverty Orderings: Theory and Applications. In Arguments for a Better World: Essays in Honor of Amartya Sen; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Duclos, J.-Y.; Luca Tiberti, L. Multidimensional Poverty Indices: A Critical Assessment. In the Oxford Handbook of Well-Being and Public Policy; Adler, M.D., Fleurbaey, M., Eds.; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Alkire, S. The Capability Approach and Well-Being Measurement for Public Policy. Available online: https://www.ophi.org.uk/wp-content/uploads/OPHIWP094.pdf. (accessed on 15 June 2018).
- Chakravarty, S.R.; Mukherjee, D.; Ranade, R.R. On the family of subgroup and factor decomposable measures of multidimensional poverty. Res. Econ. Inequal. Res. Annu. 1998, 8, 175–194. [Google Scholar]
- Bourguignon, F.; Chakravarty, S. The Measurement of Multidimensional Poverty. J. Econ. Inequal. 2003, 1, 25–49. [Google Scholar] [CrossRef]
- Chakravarty, S.R.; D’Ambrosio, C. The Measurement of Social Exclusion. Rev. Income Wealth 2006, 52, 377–398. [Google Scholar] [CrossRef]
- Chakravarty, S.R.; Silber, J. Measuring Multidimensional Poverty: The Axiomatic Approach. In Quantitative Approaches to Multidimensional Poverty Measurement; Kakwani, N., Silber, J., Eds.; Palgrave Macmillan: London, UK, 2008; pp. 192–209. [Google Scholar]
- Bossert, W.; Chakravarty, S.R.; D’Ambrosio, C. Multidimensional Poverty and Material Deprivation with Discrete Data. Rev. Income Wealth 2013, 59, 29–43. [Google Scholar] [CrossRef]
- Maasoumi, E.; Lugo Maria, A. The Information Basis of Multivariate Poverty Assessments. In Quantitative Approaches to Multidimensional Poverty Measurement; Kakwani, N., Silber, J., Eds.; Palgrave Macmillan: London, UK, 2008; pp. 1–29. [Google Scholar]
- Silber, J. Economic Studies in Inequality, Social Exclusion and Well-Being. In Fuzzy Set Approach to Multidimensional Poverty Measurement; Lemmi, A., Betti, G., Eds.; Springer: New York, NY, USA, 2006; Volume 3. [Google Scholar]
- Kakwani, N.C.; Silber, J. Quantitative Approaches to Multidimensional Poverty Measurement; Palgrave Macmillan: Basingstoke, UK, 2008. [Google Scholar]
- Asselin, L.-M. Analysis of Multidimensional Poverty: Theory and Case Studies; Springer New York: New York, NY, USA, 2009. [Google Scholar]
- UN Development Programme (UNDP). The Rise of the South: Human Progress in a Diverse World; United Nations Development Programme: New York, NY, USA, 2013. [Google Scholar]
- Kevin, W. Human Development Report 2007/2008. Available online: http://hdr.undp.org/sites/default/files/hdr_20072008_summary_english.pdf (accessed on 17 June 2018).
- Sabina, A.; Maria, E.S. Measuring Acute Poverty in the Developing World: Robustness and Scope of the Multidimensional Poverty Index. World Dev. 2013, 59, 251–274. [Google Scholar]
- Alkire, S.; Santos, M.E.; Seth, S.; Gaston, Y. Is the Multidimensional Poverty Index Robust to Different Weights? Available online: https://ophi.org.uk/ophi-research-in-progress-22a/ (accessed on 17 June 2018).
- Cornford, A. Multidimensional Poverty and its Measurement. In Guide on Poverty Measurement; United Nations Economic Commission for Europe: Geneva, The Switzerland, 2016. [Google Scholar]
- Walesiak, M. Multivariate Statistical Analysis in Marketing Research. Available online: http://keii.ue.wroc.pl/pracownicy/mw/1993_Walesiak_SAW_w_badaniach_marketingowych_OCR.pdf (accessed on 20 February 2018). (In Polish).
- Tarczyński, W. A Taxonomic Measure of the Attraction of Investments in Securities. Przegląd Statystyczny 1994, 41, 275–300. (In Polish) [Google Scholar]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems. Fac. Civ. Eng. Belgrad. 1998, 2, 5–21. [Google Scholar]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Zakuan, N.; Jusoh, A.; Nor, K.M.; Khoshnoudi, M. A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015. Renew. Sustain. Energ. Rev. 2017, 71, 216–256. [Google Scholar] [CrossRef]
- Wątróbski, J.; Małecki, K.; Kijewska, K.; Iwan, S.; Karczmarczyk, A.; Thompson, R. Multi-Criteria Analysis of Electric Vans for City Logistics. Sustainability 2017, 9, 1453. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Govindan, K.; Amat Senin, A.; Jusoh, A. VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. Sustainability 2016, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, J.; Zioło, M.; Karczmarczyk, A.; Wątróbski, J. Towards Sustainability in Viral Marketing with User Engaging Supporting Campaigns. Sustainability 2017, 10, 15. [Google Scholar] [CrossRef]
- Wu, D.; Yang, Z.; Wang, N.; Li, C.; Yang, Y. An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units. Sustainability 2018, 10, 1700. [Google Scholar] [CrossRef]
- Erdogan, S.; Sayin, C. Selection of the Most Suitable Alternative Fuel Depending on the Fuel Characteristics and Price by the Hybrid MCDM Method. Sustainability 2018, 10, 1583. [Google Scholar] [CrossRef]
- Wątróbski, J.; Ziemba, P.; Jankowski, J.; Zioło, M. Green Energy for a Green City—A Multi-Perspective Model Approach. Sustainability 2016, 8, 702. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energ. Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Lotfi, F.H.; Izadikhah, M. An algorithmic method to extend TOPSIS for decision-making problems with interval data. Appl. Math. Comput. 2006, 175, 1375–1384. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Lotfi, F.H.; Davoodi, A.R. Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Math. Comput. Model. 2009, 49, 1137–1142. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K.M. Development of TOPSIS method to solve complicated decision-making problems: An overview on developments from 2000 to 2015. Int. J. Inform. Tech. Decis. 2016, 15, 645–682. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, R.; Wang, M.; Xu, J. Measurement and Prediction of Regional Tourism Sustainability: An Analysis of the Yangtze River Economic Zone, China. Sustainability 2018, 10, 1321. [Google Scholar] [CrossRef]
- Niu, D.; Li, Y.; Dai, S.; Kang, H.; Xue, Z.; Jin, X.; Song, Y. Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm. Sustainability 2018, 10, 231. [Google Scholar] [CrossRef]
- Yang, W.; Liu, L.; Yu, X. Evaluating the Comprehensive Benefit of Group-Affiliated New Energy Power Generation Enterprises for Sustainability: Based on a Combined Technique of STBI and TOPSIS. Sustainability 2017, 10, 24. [Google Scholar] [CrossRef]
- You, P.; Guo, S.; Zhao, H.; Zhao, H. Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method. Sustainability 2017, 9, 2329. [Google Scholar] [CrossRef]
- Lu, C.; Xue, B.; Lu, C.; Wang, T.; Jiang, L.; Zhang, Z.; Ren, W. Sustainability Investigation of Resource-Based Cities in Northeastern China. Sustainability 2016, 8, 1058. [Google Scholar] [CrossRef]
- Zhao, H.; Li, N. Performance Evaluation for Sustainability of Strong Smart Grid by Using Stochastic AHP and Fuzzy TOPSIS Methods. Sustainability 2016, 8, 129. [Google Scholar] [CrossRef]
- Nermend, K. Vector Calculus in Regional Development Analysis: Comparative Regional Analysis Using the Example of Poland (Contributions to economics); Physica-Verlag: Verlag, Germany, 2009. [Google Scholar]
- Kukuła, K. Metoda Unitaryzacji Zerowanej; Wydaw. Naukowe PWN: Warszawa, Poland, 2000; ISBN 978-83-01-13097-8. (In Polish) [Google Scholar]
- Nermend, K. Taxonomic Vector Measure of Region Development (TWMRR). Pol. J. Environ. Stud. 2007, 16, 195–198. [Google Scholar]
- Dodge, Y. The Concise Encyclopedia of Statistics, 1st ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Nermend, K. A synthetic measure of sea environment pollution. Pol. J. Environ. Stud. 2006, 15, 127–129. [Google Scholar]
- Boţa-Avram, C.; Groşanu, A.; Răchişan, P.-R.; Gavriletea, M. The Bidirectional Causality between Country-Level Governance, Economic Growth and Sustainable Development: A Cross-Country Data Analysis. Sustainability 2018, 10, 502. [Google Scholar] [CrossRef]
- Gruber, J. Public Finance and Public Policy, 5th ed.; Worth Publishers: New York, NY, USA, 2005. [Google Scholar]
MDGs | SDGs |
---|---|
They were meant to be an effective method of global mobilization to achieve a set of important social priorities worldwide, but they were mainly addressed to developing countries. | They are intended to be a universal development plan, adapted to different contexts, suitable for all nations (poor and rich, developed and developing) and organizations (of public, private and third sector) that work together. |
8 isolated objectives with 21 tasks, limited focus on sustainable development. | 17 objectives and 169 related tasks, interdependent and indivisible, ensuring a balance between three aspects of sustainable development: economic, social, and environmental. |
Goals:
| Goals:
|
Coordinated by the UN Secretariat. | Negotiated by UN member states over a three-year period, in the framework of a broad multi-stakeholder consultation. |
Implementation measures are limited to North-South financial flows; poor reporting, follow-up, and review (assessment). | Implementation measures include market access, technology transfer, production capacity, development, and policy support; a robust global architecture for monitoring, and review (assessment). |
Country | Aggregate Measure Value | Class | Country | Aggregate Measure Value | Class |
---|---|---|---|---|---|
Matrix 2005—2016 | Matrix 2005—2009 | ||||
Luxembourg (LU) | 0.919188 | 1 | Luxembourg (LU) | 0.9195312 | 1 |
Finland (FI) | 0.9087791 | 1 | Finland (FI) | 0.909813 | 1 |
Austria (AT) | 0.9060152 | 1 | Austria (AT) | 0.9046456 | 1 |
Malta (MT) | 0.8941268 | 1 | Malta (MT) | 0.8910249 | 1 |
France (FR) | 0.8919219 | 1 | France (FR) | 0.8900952 | 1 |
Ireland (IE) | 0.8630927 | 1 | Spain | 0.8563746 | 1 |
Spain (ES) | 0.8604633 | 2 | Ireland (IE) | 0.852028 | 2 |
Slovenia (SI) | 0.8343386 | 2 | Slovenia (SI) | 0.8348277 | 2 |
Belgium (BE) | 0.8305824 | 2 | Belgium (BE) | 0.8190273 | 2 |
Netherlands (NL) | 0.8195208 | 2 | Czech Republic | 0.8094322 | 2 |
United Kingdom (UK) | 0.8160691 | 2 | Netherlands (NL) | 0.8089658 | 2 |
Czech Republic (CZ) | 0.8109651 | 2 | United Kingdom (UK) | 0.8055587 | 2 |
Germany (DE) | 0.8011931 | 3 | Germany (DE) | 0.7940888 | 3 |
Italy (IT) | 0.781004 | 3 | Italy (IT) | 0.7764396 | 3 |
Slovakia (SK) | 0.7532666 | 3 | Slovakia (SK) | 0.7535074 | 3 |
Cyprus (CY) | 0.7509063 | 3 | Cyprus (CY) | 0.7501683 | 3 |
Portugal (PT) | 0.7359236 | 3 | Portugal (PT) | 0.7367252 | 3 |
Estonia (EE) | 0.7209004 | 3 | Estonia (EE) | 0.7247206 | 3 |
Greece (EL) | 0.7096923 | 3 | Greece | 0.7048103 | 3 |
Hungary (HU) | 0.69836 | 4 | Hungary (HU) | 0.6938693 | 4 |
Poland (PL) | 0.5827657 | 4 | Poland (PL) | 0.5737577 | 4 |
Lithuania (LT) | 0.5735386 | 4 | Lithuania (LT) | 0.5709637 | 4 |
Latvia (LV) | 0.5119876 | 4 | Latvia (LV) | 0.4987653 | 4 |
Romania (RO) | 0.3730833 | 4 | Romania (RO) | 0.3118062 | 4 |
Bulgaria (BG) | 0.3286086 | 4 | Bulgaria (BG) | 0.2772499 | 4 |
Country | Aggregate Measure Value | Class | Country | Aggregate Measure Value | Class |
---|---|---|---|---|---|
Matrix 2005–2016 | Matrix 2010–2016 | ||||
Malta (MT) | 0.9138941 | 1 | Malta (MT) | 0.9147967 | 1 |
Austria (AT) | 0.8973168 | 1 | Austria (AT) | 0.8936852 | 1 |
France (FR) | 0.8890368 | 1 | France (FR) | 0.8922209 | 1 |
Czech Republic (CZ) | 0.8888729 | 1 | Finland (FI) | 0.8867295 | 1 |
Finland (FI) | 0.8795007 | 1 | Czech Republic (CZ) | 0.8838527 | 1 |
Netherlands (NL) | 0.8754592 | 1 | Netherlands (NL) | 0.8742172 | 1 |
Luxembourg (LU) | 0.8742212 | 2 | Luxembourg (LU) | 0.8685915 | 2 |
Slovenia (SI) | 0.8676948 | 2 | Slovenia (SI) | 0.8567746 | 2 |
Germany (DE) | 0.8443896 | 2 | United Kingdom (UK) | 0.838913 | 2 |
United Kingdom (UK) | 0.8421819 | 2 | Germany (DE) | 0.8380422 | 2 |
Slovakia (SK) | 0.8365326 | 2 | Belgium (BE) | 0.8305774 | 2 |
Belgium (BE) | 0.8306865 | 2 | Ireland (IE) | 0.8218881 | 2 |
Ireland (IE) | 0.8199287 | 3 | Spain (ES) | 0.8121488 | 3 |
Spain (ES) | 0.8160613 | 3 | Slovakia (SK) | 0.8063653 | 3 |
Portugal (PT) | 0.781445 | 3 | Cyprus (CY) | 0.7617556 | 3 |
Cyprus (CY) | 0.7746519 | 3 | Poland (PL) | 0.75565 | 3 |
Poland (PL) | 0.773316 | 3 | Portugal (PT) | 0.7528491 | 3 |
Estonia (EE) | 0.7683546 | 3 | Hungary (HU) | 0.7378458 | 3 |
Hungary (HU) | 0.7636977 | 3 | Italy (IT) | 0.7168631 | 3 |
Italy (IT) | 0.7379307 | 4 | Estonia (EE) | 0.7167442 | 4 |
Lithuania (LT) | 0.7187171 | 4 | Lithuania (LT) | 0.6713309 | 4 |
Latvia (LV) | 0.6974377 | 4 | Latvia (LV) | 0.6648696 | 4 |
Bulgaria (BG) | 0.5872442 | 4 | Bulgaria (BG) | 0.5395987 | 4 |
Romania (RO) | 0.5573889 | 4 | Greece (EL) | 0.522515 | 4 |
Greece (EL) | 0.55532 | 4 | Romania (RO) | 0.5019261 | 4 |
Country | Aggregate Measure Value | Class | Country | Aggregate Measure Value | Class |
---|---|---|---|---|---|
Year 2006, Matrix 2005—2016 and 2005—2009 | Year 2016, Matrix 2005—2016 and 2010—2016 | ||||
Finland (FI) | 4.348407 | 1 | Finland (FI) | 4.174976 | 1 |
Luxembourg (LU) | 4.004848 | 1 | Czech Republic (CZ) | 3.801552 | 1 |
Austria (AT) | 3.853023 | 1 | Malta (MT) | 3.691067 | 1 |
Malta (MT) | 4.023814 | 1 | Austria (AT) | 3.485677 | 1 |
France (FR) | 3.570847 | 1 | France (FR) | 3.353817 | 1 |
Slovenia (SI) | 3.004549 | 2 | Netherlands (NL) | 3.015486 | 2 |
Netherlands (NL) | 2.819745 | 2 | Slovenia (SI) | 2.686604 | 2 |
Ireland (IE) | 2.700868 | 2 | Slovakia (SK) | 2.556605 | 2 |
Belgium (BE) | 2.486702 | 2 | Luxembourg (LU) | 2.538398 | 2 |
Spain (ES) | 2.289893 | 2 | Ireland (IE) | 2.238362 | 2 |
Czech Republic (CZ) | 2.380558 | 2 | United Kingdom (UK) | 2.230718 | 2 |
Germany (DE) | 2.115742 | 3 | Belgium (BE) | 2.224804 | 2 |
United Kingdom (UK) | 1.535527 | 3 | Estonia (EE) | 2.113401 | 3 |
Cyprus (CY) | 2.039538 | 3 | Germany (DE) | 2.044179 | 3 |
Portugal (PT) | 1.517306 | 3 | Poland (PL) | 1.798574 | 3 |
Slovakia (SK) | 1.679037 | 3 | Cyprus (CY) | 1.727453 | 3 |
Italy (IT) | 0.5970357 | 3 | Spain (ES) | 1.206837 | 3 |
Estonia (EE) | 0.6393845 | 3 | Hungary (HU) | 1.03574 | 3 |
Romania (RO) | 0 | 4 | Portugal (PT) | 0.9027341 | 3 |
Greece (EL) | −0.7634719 | 4 | Italy (IT) | 0.1622312 | 4 |
Hungary (HU) | −0.5104298 | 4 | Lithuania (LT) | 0.1179027 | 4 |
Bulgaria (BG) | −5.386681 | 4 | Latvia (LV) | −0.1751512 | 4 |
Lithuania (LT) | −1.53016 | 4 | Romania (RO) | −1.840548 | 4 |
Poland (PL) | −2.807585 | 4 | Bulgaria (BG) | −2.100671 | 4 |
Latvia (LV) | −3.304577 | 4 | Greece (EL) | −3.146309 | 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piwowarski, M.; Miłaszewicz, D.; Łatuszyńska, M.; Borawski, M.; Nermend, K. Application of the Vector Measure Construction Method and Technique for Order Preference by Similarity Ideal Solution for the Analysis of the Dynamics of Changes in the Poverty Levels in the European Union Countries. Sustainability 2018, 10, 2858. https://doi.org/10.3390/su10082858
Piwowarski M, Miłaszewicz D, Łatuszyńska M, Borawski M, Nermend K. Application of the Vector Measure Construction Method and Technique for Order Preference by Similarity Ideal Solution for the Analysis of the Dynamics of Changes in the Poverty Levels in the European Union Countries. Sustainability. 2018; 10(8):2858. https://doi.org/10.3390/su10082858
Chicago/Turabian StylePiwowarski, Mateusz, Danuta Miłaszewicz, Małgorzata Łatuszyńska, Mariusz Borawski, and Kesra Nermend. 2018. "Application of the Vector Measure Construction Method and Technique for Order Preference by Similarity Ideal Solution for the Analysis of the Dynamics of Changes in the Poverty Levels in the European Union Countries" Sustainability 10, no. 8: 2858. https://doi.org/10.3390/su10082858
APA StylePiwowarski, M., Miłaszewicz, D., Łatuszyńska, M., Borawski, M., & Nermend, K. (2018). Application of the Vector Measure Construction Method and Technique for Order Preference by Similarity Ideal Solution for the Analysis of the Dynamics of Changes in the Poverty Levels in the European Union Countries. Sustainability, 10(8), 2858. https://doi.org/10.3390/su10082858