Coastal Vulnerability to Erosion Using a Multi-Criteria Index: A Case Study of the Xiamen Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assessment Index System and Data Sources
2.3. Calculation and Classification of Indexes
2.4. Index Data Analysis
2.4.1. Weight Calculation
2.4.2. Calculation model
3. Results
3.1. Natural Vulnerability Distribution
3.2. Socio-Economic Vulnerability Distribution
3.3. Distribution of Coastal Vulnerability to Erosion
3.4. Indexes System of Coastal Vulnerability to Erosion
4. Discussion
4.1. Characteristics and Applicability of the Index System
4.2. Indexes Influencing the Class of Coastal Vulnerability to Erosion
4.3. Support for Coastal Zone Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Codignotto, J.; Hay, J.; McLean, R.; Ragoonaden, S.; Woodroffe, C.D.; Abuodha, P.; Arblaster, J. Coastal systems and low-lying areas. 2007. [Google Scholar]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Masselink, G.; Hughes, M.G. An Introduction to Coastal Processes and Geomorphology; Routledge: Abingdon-on-Thames, UK, 2014. [Google Scholar]
- Lins-de-Barros, F.M. Integrated coastal vulnerability assessment: A methodology for coastal cities management integrating socioeconomic, physical and environmental dimensions—Case study of Regido dos Lagos, Rio de Janeiro, Brazil. Ocean Coast. Manag. 2017, 149, 1–11. [Google Scholar] [CrossRef]
- Kantamaneni, K.; Phillips, M.; Thomas, T.; Jenkins, R. Assessing coastal vulnerability: Development of a combined physical and economic index. Ocean Coast. Manag. 2018, 158, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913. [Google Scholar] [CrossRef]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810. [Google Scholar] [CrossRef]
- Shepard, C.C.; Agostini, V.N.; Gilmer, B.; Allen, T.; Stone, J.; Brooks, W.; Beck, M.W. Assessing future risk: Quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York. Nat. Hazards 2011, 60, 727–745. [Google Scholar] [CrossRef]
- Leatherman, S.P.; Zhang, K.; Douglas, B.C. Sea level rise shown to drive coastal erosion. Eos Trans. Am. Geophys. Union 2000, 81, 55–57. [Google Scholar] [CrossRef]
- Masselink, G.; Russell, P. Impacts of climate change on coastal erosion. MCCIP Sci. Rev. 2013, 2013, 71–86. [Google Scholar]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Chang. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Bird, E. Coastline Changes. A Global Review; Wiley: Hoboken, NJ, USA, 1985. [Google Scholar]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.-F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef]
- Hinkel, J.; Nicholls, R.J.; Vafeidis, A.T.; Tol, R.S.J.; Avagianou, T. Assessing risk of and adaptation to sea-level rise in the European Union: An application of diva. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 703–719. [Google Scholar] [CrossRef]
- Mujabar, P.S.; Chandrasekar, N. Coastal erosion hazard and vulnerability assessment for southern coastal Tamil Nadu of India by using remote sensing and gis. Nat. Hazards 2013, 69, 1295–1314. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Natesan, U. Coastal vulnerability assessment: A case study on erosion and coastal change along Tuticorin, Gulf of Mannar. Nat. Hazards 2015, 75, 1713–1729. [Google Scholar] [CrossRef]
- Alexandrakis, G.; Poulos, S. An holistic approach to beach erosion vulnerability assessment. Sci. Rep. 2014, 4, 6078. [Google Scholar] [CrossRef] [PubMed]
- Nel, R.; Campbell, E.E.; Harris, L.; Hauser, L.; Schoeman, D.S.; McLachlan, A.; du Preez, D.R.; Bezuidenhout, K.; Schlacher, T.A. The status of sandy beach science: Past trends, progress, and possible futures. Estuar. Coast. Shelf Sci. 2014, 150, 1–10. [Google Scholar] [CrossRef]
- Cai, F.; Su, X.; Liu, J.; Li, B.; Lei, G. Coastal erosion in China under the condition of global climate change and measures for its prevention. Prog. Nat. Sci. 2009, 19, 415–426. [Google Scholar] [CrossRef]
- Theuerkauf, E.J.; Rodriguez, A.B.; Fegley, S.R.; Luettich, R.A. Sea level anomalies exacerbate beach erosion. Geophys. Res. Lett. 2014, 41, 5139–5147. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, V.; de Sousa Junior, W.; De Freitas, D. A climate change vulnerability index and case study in a Brazilian coastal city. Sustainability 2016, 8, 811. [Google Scholar] [CrossRef]
- Hinkel, J.; Nicholls, R.J.; Tol, R.S.J.; Wang, Z.B.; Hamilton, J.M.; Boot, G.; Vafeidis, A.T.; McFadden, L.; Ganopolski, A.; Klein, R.J.T. A global analysis of erosion of sandy beaches and sea-level rise: An application of diva. Glob. Planet. Chang. 2013, 111, 150–158. [Google Scholar] [CrossRef]
- Sousa, P.H.G.O.; Siegle, E.; Tessler, M.G. Vulnerability assessment of massaguaçú beach (SE Brazil). Ocean Coast. Manag. 2013, 77, 24–30. [Google Scholar] [CrossRef]
- Luo, S.; Wang, H.; Cai, F. An integrated risk assessment of coastal erosion based on fuzzy set theory along Fujian coast, southeast China. Ocean Coast. Manag. 2013, 84, 68–76. [Google Scholar] [CrossRef]
- Tahri, M.; Maanan, M.; Maanan, M.; Bouksim, H.; Hakdaoui, M. Using fuzzy analytic hierarchy process multi-criteria and automatic computation to analyse coastal vulnerability. Prog. Phys. Geogr. 2017, 41, 268–285. [Google Scholar] [CrossRef]
- Anthony, E.J. Natural and artificial shores of the French Riviera: An analysis of their interrelationship. J. Coast. Res. 1994, 10, 48–58. [Google Scholar]
- Bernatchez, P.; Fraser, C. Evolution of coastal defence structures and consequences for beach width trends, Québec, Canada. J. Coast. Res. 2012, 28, 1550–1566. [Google Scholar] [CrossRef]
- Luo, S.; Cai, F.; Liu, H.; Lei, G.; Qi, H.; Su, X. Adaptive measures adopted for risk reduction of coastal erosion in the People’s Republic of China. Ocean Coast. Manag. 2015, 103, 134–145. [Google Scholar] [CrossRef]
- Kienberger, S.; Blaschke, T.; Zaidi, R.Z. A framework for spatio-temporal scales and concepts from different disciplines: The ‘vulnerability cube’. Nat. Hazards 2012, 68, 1343–1369. [Google Scholar] [CrossRef]
- McLaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Di Luccio, D.; Benassai, G.; Di Paola, G.; Rosskopf, C.; Mucerino, L.; Montella, R.; Contestabile, P. Monitoring and modelling coastal vulnerability and mitigation proposal for an archaeological site (Kaulonia, Southern Italy). Sustainability 2018, 10, 2017. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, D.-X.; Zhu, J.; Darko, A.; Gou, Z.-H. Promoting and implementing urban sustainability in china: An integration of sustainable initiatives at different urban scales. Habitat Int. 2018, 82, 83–93. [Google Scholar] [CrossRef]
- Nguyen, T.T.X.; Bonetti, J.; Rogers, K.; Woodroffe, C.D. Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean Coast. Manag. 2016, 123, 18–43. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ayllon, S. Long-term gis analysis of seaside impacts associated to infrastructures and urbanization and spatial correlation with coastal vulnerability in a mediterranean area. Water 2018, 10, 1642. [Google Scholar] [CrossRef]
- Fitton, J.M.; Hansom, J.D.; Rennie, A.F. A national coastal erosion susceptibility model for Scotland. Ocean Coast. Manag. 2016, 132, 80–89. [Google Scholar] [CrossRef]
- Ashraful Islam, M.; Mitra, D.; Dewan, A.; Akhter, S.H. Coastal multi-hazard vulnerability assessment along the Ganges deltaic coast of Bangladesh—A geospatial approach. Ocean Coast. Manag. 2016, 127, 1–15. [Google Scholar] [CrossRef]
- Gornitz, V.; Kanciruk, P. Assessment of Global Coastal Hazards from Sea Level Rise; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1989.
- Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Tribbia, J.; Moser, S.C. More than information: What coastal managers need to plan for climate change. Environ. Sci. Policy 2008, 11, 315–328. [Google Scholar] [CrossRef]
- Bonetti, J.; da Fontoura Klein, A.H.; Muler, M.; De Luca, C.B.; da Silva, G.V.; Toldo, E.E.; González, M. Spatial and numerical methodologies on coastal erosion and flooding risk assessment. In Coastal Hazards; Finkl, C.W., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 423–442. [Google Scholar]
- Tintoré, J.; Medina, R.; Gómez-Pujol, L.; Orfila, A.; Vizoso, G. Integrated and interdisciplinary scientific approach to coastal management. Ocean Coast. Manag. 2009, 52, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Liu, W.; Yang, S.; Brown, S.; Nicholls, R.J.; Hinkel, J.; Shi, X.; Shi, P. Spatial-temporal changes of coastal and marine disasters risks and impacts in mainland China. Ocean Coast. Manag. 2017, 139, 125–140. [Google Scholar] [CrossRef]
- Cheng, R. Coastal erosion and protection measures in China. J. Soil Water Conserv. 2000, 14, 44–47. [Google Scholar]
- Xia, D.; Wang, W. Coastal erosion in China. Acta Geogr. Sin. 1993, 48, 468–476. [Google Scholar]
- Ji, Z. The characteristics of coastal erosion and cause of erosion. J. Nat. Disasters 1996, 5, 65–75. [Google Scholar]
- SOA. China Maritime Disaster Bulletin; China Ocean Press: Beijing, China, 2017. [Google Scholar]
- Ma, Z.; Melville, D.S.; Liu, J.; Chen, Y.; Yang, H.; Ren, W.; Zhang, Z.; Piersma, T.; Li, B. Rethinking China’s new great wall. Science 2014, 346, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Peng, B. Integrating values of ecosystem services into decision making in coastal management in xiamen. Ocean Coast. Manag. 2018. [Google Scholar] [CrossRef]
- Ma, D.; Fang, Q.; Liao, S. Applying the ocean health index framework to the city level: A case study of Xiamen, China. Ecol. Indic. 2016, 66, 281–290. [Google Scholar] [CrossRef]
- XCSB. Yearbook of Xiamen Special Economic Zone in 2018; China Statistics Press: Beijing, China, 2018.
- TIO SOA. Coastal Erosion Assessment and Control: Assessment System and Model of Coastal Erosion; TIO SOA: Xiamen, China, 2010; p. 178. [Google Scholar]
- Thia-Eng, C.; Yu, H.; Guoqiang, C. From sectoral to integrated coastal management: A case in Xiamen, China. Ocean Coast. Manag. 1997, 37, 233–251. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, M.; Gao, L.; Yang, B.; Shi, L. Development and application of a comprehensive ecological risk assessment indicator system in Xiamen, China. Int. J. Sustain. Dev. World Ecol. 2018, 25, 468–476. [Google Scholar] [CrossRef]
- Xue, X.; Hong, H.; Charles, A.T. Cumulative environmental impacts and integrated coastal management: The case of Xiamen, China. J. Environ. Manag. 2004, 71, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Marchand, M. Modelling Coastal Vulnerability: Design and Evaluation of a Vulnerability Model for Tropical Storms and Floods; IOS Press: Amsterdam, The Netherlands, 2009; Volume 5. [Google Scholar]
- Bevacqua, A.; Yu, D.; Zhang, Y. Coastal vulnerability: Evolving concepts in understanding vulnerable people and places. Environ. Sci. Policy 2018, 82, 19–29. [Google Scholar] [CrossRef]
- Kantamaneni, K.; Du, X.; Aher, S.; Singh, R. Building blocks: A quantitative approach for evaluating coastal vulnerability. Water 2017, 9, 905. [Google Scholar] [CrossRef]
- Fraser, C.; Bernatchez, P.; Dugas, S. Development of a GIS coastal land-use planning tool for coastal erosion adaptation based on the exposure of buildings and infrastructure to coastal erosion, Québec, Canada. Geomat. Nat. Hazards Risk 2017, 8, 1103–1125. [Google Scholar] [CrossRef]
- Guneralp, B.; Guneralp, I.; Castillo, C.R.; Filippi, A.M. Land change in the Mission-Aransas Coastal region, Texas: Implications for coastal vulnerability and protected areas. Sustainability 2013, 5, 4247–4267. [Google Scholar] [CrossRef]
- FPSB. Yearbook of Fujian Province in 2017; China Statistics Press: Beijing, China, 2017.
- Denner, K.; Phillips, M.R.; Jenkins, R.E.; Thomas, T. A coastal vulnerability and environmental risk assessment of Loughor Estuary, South Wales. Ocean Coast. Manag. 2015, 116, 478–490. [Google Scholar] [CrossRef]
- Liquete, C.; Zulian, G.; Delgado, I.; Stips, A.; Maes, J. Assessment of coastal protection as an ecosystem service in Europe. Ecol. Indic. 2013, 30, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Sharp, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K. Invest 2.3.0 User’s Guide: Integrated Valuation of Ecosystem Services and Tradeoffs; The Natural Capital Project; Stanford University: Stanford, CA, USA, 2011. [Google Scholar]
- Li, X.; Zhou, Y.X.; Tian, B.; Kuang, R.Y.; Wang, L.H. Gis-based methodology for erosion risk assessment of the muddy coast in the Yangtze Delta. Ocean Coast. Manag. 2015, 108, 97–108. [Google Scholar] [CrossRef]
- Cai, F.; Cao, H.-M.; Su, X.-Z.; Dong, X.X. Analysis on morphodynamics of sandy beaches in South China. J. Coast. Res. 2007, 23, 236–246. [Google Scholar]
- USACE. The Coastal Engineering Manual (CEM), Water Wave Mechanics, Chapter 1, Part II. 2008. Available online: http://www.a-jacks.com/coastal/generalinfo/cem/PartII_CoastalHydrodynamics/II-1_Water_Wave_Mechanics.pdf (accessed on 27 November 2018).
- Amante, C. Etopo1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. 2009. Available online: http://www. ngdc.noaa.gov/mgg/global/global.html (accessed on 20 October 2018).
- Kantamaneni, K. Coastal infrastructure vulnerability: An integrated assessment model. Nat. Hazards 2016, 84, 139–154. [Google Scholar] [CrossRef]
- Trimble. eCognition Developer 8.7 Reference Book; Trimble: Munich Germany, 2011. [Google Scholar]
- Gornitz, V. Vulnerability of the east coast, USA to future sea level rise. J. Coast. Res. 1990, 1, 201–237. [Google Scholar]
- Peña-Alonso, C.; Fraile-Jurado, P.; Hernández-Calvento, L.; Pérez-Chacón, E.; Ariza, E. Measuring geomorphological vulnerability on beaches using a set of indicators (gvi): A tool for management. J. Environ. Manag. 2017, 204, 230–245. [Google Scholar] [CrossRef]
- Serafim, M.B.; Siegle, E.; Corsi, A.C.; Bonetti, J. Coastal vulnerability to wave impacts using a multi-criteria index: Santa Catarina (Brazil). J. Environ. Manag. 2019, 230, 21–32. [Google Scholar] [CrossRef]
- Tedim, F.; Garcin, M.; Vinchon, C.; Carvalho, S.; Desramaut, N.; Rohmer, J. Chapter 7—Comprehensive vulnerability assessment of forest fires and coastal erosion: Evidences from case-study analysis in Portugal. In Assessment of Vulnerability to Natural Hazards; Birkmann, J., Kienberger, S., Alexander, D.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 149–177. [Google Scholar]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Rank from comparisons and from ratings in the analytic hierarchy/network processes. Eur. J. Oper. Res. 2006, 168, 557–570. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Li, E.; Xu, C. Assessment model of ecoenvironmental vulnerability based on improved entropy weight method. Sci. World J. 2014, 2014, 797814. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Zheng, W.; Shi, H.; Sun, J.; Fu, Z. Spatial heterogeneity of estuarine wetland ecosystem health influenced by complex natural and anthropogenic factors. Sci. Total Environ. 2018, 634, 1445–1462. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S.; McKenna, J.; Cooper, J.A.G. Socio-economic data in coastal vulnerability indices: Constraints and opportunities. J. Coast. Res. 2002, 36, 487–497. [Google Scholar] [CrossRef]
- Bagdanavičiūtė, I.; Kelpšaitė, L.; Soomere, T. Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast. Manag. 2015, 104, 124–135. [Google Scholar] [CrossRef]
- Satta, A.; Snoussi, M.; Puddu, M.; Flayou, L.; Hout, R. An index-based method to assess risks of climate-related hazards in coastal zones: The case of Tetouan. Estuar. Coast. Shelf Sci. 2016, 175, 93–105. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, T.; Wu, W.T.; Zhou, Y.X.; Tian, B. Rapid risk assessment of wetland degradation and loss in low-lying coastal zone of Shanghai, China. Hum. Ecol. Risk Assess. 2017, 23, 82–97. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Tian, B.; Huang, Y.; Zhou, Y.; Zhang, T. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuar. Coast. Shelf Sci. 2018, 210, 153–161. [Google Scholar] [CrossRef]
- Maanan, M.; Maanan, M.; Rueff, H.; Adouk, N.; Zourarah, B.; Rhinane, H. Assess the human and environmental vulnerability for coastal hazard by using a multi-criteria decision analysis. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1642–1658. [Google Scholar] [CrossRef]
- Dawson, D.; Shaw, J.; Roland Gehrels, W. Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England. J. Transp. Geogr. 2016, 51, 97–109. [Google Scholar] [CrossRef]
- Fitton, J.M.; Hansom, J.D.; Rennie, A.F. A method for modelling coastal erosion risk: The example of Scotland. Nat. Hazards 2018, 91, 931–961. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Y.; Jin, R.; Zhang, J.; Wei, W. A guide to coastal management: Benefits and lessons learned of beach nourishment practices in china over the past two decades. Ocean Coast. Manag. 2016, 134, 207–215. [Google Scholar] [CrossRef]
Criteria | Elements | Index | Data Type | Data Sources | Period |
---|---|---|---|---|---|
Natural | Coastal characteristics | Coastal geomorphology | 0.81-m raster | Field survey, GF-2 images (Color) | 2017 |
Coastal elevation | 30-m raster, CSV (X, Y, Z) | GDEMV2, Field survey | 2009, 2018 | ||
Coastal slope | 30-m raster, CSV (X, Y, Z) | GDEMV2, Field survey | 2009, 2018 | ||
Natural coastal habitat | 0.81 m raster | Field survey, GF-2 images (Color) | 2018 | ||
Coastal buffer ability | CSV (X, Y, Z) | Field survey | 2018 | ||
Coastal forcing | Significant wave height | CSV (X, Y, Z) | SWAN model | 2018 | |
Storms | 0.81-m raster | Field survey, GF-2 images (Color) | 2018 | ||
Socio-economic | Coastal infrastructure | Value of roads | 0.81-m raster | Field survey, GF-2 images (Color) | 2017 |
Value of buildings | 0.81-m raster | Field survey, GF-2 images (Color) | 2017 | ||
Population activity | Raster | Baidu heat map | 2018 | ||
Disaster reduction | Fiscal revenue | Excel | [60] | 2017 | |
Per capita GDP | Excel | [60] | 2017 |
Criteria | Elements | Index | 1: Very Low Vulnerability | 2: Low Vulnerability | 3: Medium Vulnerability | 4: High Vulnerability | 5: Very High Vulnerability | References |
---|---|---|---|---|---|---|---|---|
Natural | Coastal Characteristics | Coastal geomorphology | Rock Sea-dike | Port | Seawall | Gravel Beach | Beach | [6,30,57] |
Coastal elevation (m) | 22–24 | 20–22 | 18–20 | 16–18 | 14–16 | [6,30,57,65] | ||
Coastal slope (degrees) | 5.1–10.7 | 3.3–5.1 | 1.9–3.3 | 0.9–1.9 | 0–0.9 | [57,65] | ||
Coastal natural habitat | Mangroves | Coastal Dunes | No nature habitat | [6,24] | ||||
Coastal buffer ability (m) | 2–4 | 0–2 | −3–0 | −6.5–−3 | <−6.5 | |||
Coastal Forcing | Significant wave height (m) | 0.1–0.2 | 0.2–0.3 | 0.3–0.4 | 0.4–0.5 | [6,24,30,65] | ||
Storms | 0–300 | 300–1100 | 1100–2500 | 2500–5600 | >5600 | |||
Socio-economic | Coastal infrastructure | Values of roads | 0–1280 | 1280–3531 | 3531–7045 | 7045–9790 | >9790 | [30,74] |
Values of buildings | 0–2534 | 2534–9184 | 9184–23,651 | 23,651–54,665 | >54,665 | [30,74] | ||
Population activity | No population | Blue | Green | Yellow | Orange | [30,74] | ||
Disaster reduction | Fiscal revenue (Billion yuan) | 4.5–5.5 | 3.5–4.5 | 2.5–3.5 | 1.5–2.5 | [24,74] | ||
GDP per capita (Ten thousand yuan) | 14–17 | 11–14 | 8–11 | 5–8 | [24,74] |
Weight/Rank Intensities | Intensities |
---|---|
1 | equal |
3 | moderately dominant |
5 | strongly dominant |
7 | very strongly dominant |
9 | extremely dominant |
2, 4, 6, 8 | intermediate values |
Reciprocals | for inverse judgements |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.-T.; Cai, F.; Chen, S.-L.; Gu, D.-Q.; Feng, A.-P.; Cao, C.; Qi, H.-S.; Lei, G. Coastal Vulnerability to Erosion Using a Multi-Criteria Index: A Case Study of the Xiamen Coast. Sustainability 2019, 11, 93. https://doi.org/10.3390/su11010093
Zhu Z-T, Cai F, Chen S-L, Gu D-Q, Feng A-P, Cao C, Qi H-S, Lei G. Coastal Vulnerability to Erosion Using a Multi-Criteria Index: A Case Study of the Xiamen Coast. Sustainability. 2019; 11(1):93. https://doi.org/10.3390/su11010093
Chicago/Turabian StyleZhu, Zheng-Tao, Feng Cai, Shen-Liang Chen, Dong-Qi Gu, Ai-Ping Feng, Chao Cao, Hong-Shuai Qi, and Gang Lei. 2019. "Coastal Vulnerability to Erosion Using a Multi-Criteria Index: A Case Study of the Xiamen Coast" Sustainability 11, no. 1: 93. https://doi.org/10.3390/su11010093
APA StyleZhu, Z. -T., Cai, F., Chen, S. -L., Gu, D. -Q., Feng, A. -P., Cao, C., Qi, H. -S., & Lei, G. (2019). Coastal Vulnerability to Erosion Using a Multi-Criteria Index: A Case Study of the Xiamen Coast. Sustainability, 11(1), 93. https://doi.org/10.3390/su11010093