Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods
Abstract
:1. Introduction
2. Literature Review
3. Proposed Approach to Achieve Complete Decomposition
4. Empirical Analysis
4.1. Data Collection
4.2. Traditional Approach
4.3. The Proposed Approach
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Liu, X.; Zhang, M.; Song, X. Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China’s energy consumption. Energy 2014, 67, 617–622. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, M.; Mu, H.; Su, X. Study on decoupling analysis between energy consumption and economic growth in Liaoning Province. Energy Policy 2016, 97, 414–420. [Google Scholar] [CrossRef]
- Hoover, K.D. Applied Intermediate Macroeconomics; Cambridge University Press: Cambridge, UK, 2014; Volume 73, p. 580. [Google Scholar]
- Ma, C.; Stern, D.I. China’s changing energy intensity trend: A decomposition analysis. Energy Econ. 2008, 30, 1037–1053. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2012, 34, 177–188. [Google Scholar] [CrossRef]
- Hu, Y.; Yin, Z.; Ma, J.; Du, W.; Liu, D.; Sun, L. Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing. Appl. Energy 2017, 196, 162–169. [Google Scholar] [CrossRef]
- Marpaung, C.O.; Shresta, R.M. Structural Decomposition Analysis of CO2 Emission Reduction due to Energy Tax in Power Sector Planning. Int. J. Smart Grid Sustain. Energy Technol. 2018, 1, 39–44. [Google Scholar]
- Croner, D.; Frankovic, I. A Structural Decomposition Analysis of Global and National Energy Intensity Trends. Energy J. 2018, 39, 103–122. [Google Scholar]
- Pinjie, X.; Shuangshuang, G.; Feihu, S. An analysis of the Decoupling Relationship between CO2 Emission in power industry and GDP in China Based on LMDI Method. J. Clean. Prod. 2018, 211, 598–606. [Google Scholar]
- Zhou, X.; Zhou, D.; Wang, Q. How does information and communication technology affect China’s energy intensity? A three-tier structural decomposition analysis. Energy 2018, 151, 748–759. [Google Scholar] [CrossRef]
- Cansino, J.M.; Román, R.; Ordóñez, M. Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis. Energy Policy 2016, 89, 150–159. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W.; Li, Y. Input-output and structural decomposition analysis of Singapore’s carbon emissions. Energy Policy 2017, 105, 484–492. [Google Scholar] [CrossRef]
- Wei, J.; Huang, K.; Yang, S.; Li, Y.; Hu, T.; Zhang, Y. Driving forces analysis of energy-related carbon dioxide (CO2) emissions in Beijing: An input–output structural decomposition analysis. J. Clean. Prod. 2016, 163, 58–68. [Google Scholar] [CrossRef]
- Zhu, B.; Su, B.; Li, Y. Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08–2013/14. Appl. Energy 2018, 230, 1545–1556. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q. A survey of index decomposition analysis in energy and environmental studies. Energy 2000, 25, 1149–1176. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, M.; Li, R. Decoupling sectoral economic output from carbon emissions on city level: A comparative study of Beijing and Shanghai, China. J. Clean. Prod. 2019, 209, 126–133. [Google Scholar] [CrossRef]
- Xu, X.Y.; Ang, B.W. Index decomposition analysis applied to CO2 emission studies. Ecol. Econ. 2013, 93, 313–329. [Google Scholar] [CrossRef]
- Xu, X.Y.; Ang, B.W. Analysing residential energy consumption using index decomposition analysis. Appl. Energy 2014, 113, 342–351. [Google Scholar] [CrossRef]
- Li, D.Q.; Wang, D.Y. Decomposition analysis of energy consumption for an freeway during its operation period: A case study for Guangdong, China. Energy 2016, 97, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Jianbo, H.U.; Ren, Y.; Guo, F.; Economics, S.O. Review of Carbon Emission Factor Decomposition Method in International Trade. Environ. Sci. Technol. 2016, 39, 69–72. [Google Scholar]
- Wang, Q.; Su, M.; Li, R. Toward to economic growth without emission growth: The role of urbanization and industrialization in China and India. J. Clean. Prod. 2018, 205, 499–511. [Google Scholar] [CrossRef]
- Lin, B.; Long, H. Emissions reduction in China’s chemical industry—Based on LMDI. Renew. Sustain. Energy Rev. 2016, 53, 1348–1355. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R. Journey to burning half of global coal: Trajectory and drivers of China’s coal use. Renew. Sustain. Energy Rev. 2016, 58, 341–346. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. Energy policies for managing China’s carbon emission. Renew. Sustain. Energy Rev. 2015, 50, 470–479. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Ang, B.W.; Choi, K.H. Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method. Energy J. 1997, 18, 59–73. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L.; Chew, E.P. Perfect decomposition techniques in energy and environmental analysis. Energy Policy 2003, 31, 1561–1566. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q.; Choi, K.H. Factorizing changes in energy and environmental indicators through decomposition. Energy 2014, 23, 489–495. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, X.-T.; Li, R. Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China. Energy 2017, 127, 78–88. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, N. Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy 2007, 35, 238–246. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, M.; Li, R.; Su, M. Decomposition and decoupling analysis of carbon emissions from economic growth: A comparative study of China and the United States of America. J. Clean. Prod. 2018, 197, 178–184. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, R. Will Trump’s coal revival plan work?—Comparison of results based on the optimal combined forecasting technique and an extended IPAT forecasting technique. Energy 2019, 169, 762–775. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, H.; Huang, X.; Chuai, X.; Wu, C. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China. Energy 2015, 82, 414–425. [Google Scholar] [CrossRef]
- Li, R.; Jiang, R. Moving Low-Carbon Construction Industry in Jiangsu Province: Evidence from Decomposition and Decoupling Models. Sustainability 2017, 9, 1013. [Google Scholar]
- Zhao, M.-M.; Li, R. Decoupling and decomposition analysis of carbon emissions from economic output in Chinese Guangdong Province: A sector perspective. Energy Environ. 2018, 29, 543–555. [Google Scholar] [CrossRef]
- Jiang, R.; Zhou, Y.; Li, R. Moving to a Low-Carbon Economy in China: Decoupling and Decomposition Analysis of Emission and Economy from a Sector Perspective. Sustainability 2018, 10, 978. [Google Scholar] [CrossRef]
- Lu, Y.; Cui, P.; Li, D. Carbon emissions and policies in China’s building and construction industry: Evidence from 1994 to 2012. Build. Environ. 2016, 95, 94–103. [Google Scholar] [CrossRef]
- Jiang, R.; Li, R. Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector. Sustainability 2017, 9, 793. [Google Scholar] [CrossRef]
- Ren, S.; Yin, H.; Chen, X.H. Using LMDI to analyze the decoupling of carbon dioxide emissions by China’s manufacturing industry. Environ. Dev. 2014, 9, 61–75. [Google Scholar] [CrossRef]
- Lin, B.; Liu, K. Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry. Sustainability 2017, 9, 1198. [Google Scholar]
- Zhang, S.; Wang, J.; Zheng, W. Decomposition Analysis of Energy-Related CO2 Emissions and Decoupling Status in China’s Logistics Industry. Sustainability 2018, 10, 1340. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Jiang, R. Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China. Sustainability 2016, 8, 1059. [Google Scholar] [CrossRef]
- Akbostancı, E.; Tunç, G.İ.; Türüt-Aşık, S. CO emissions of Turkish manufacturing industry: A decomposition analysis. Appl. Energy 2011, 88, 2273–2278. [Google Scholar] [CrossRef]
- Mousavi, B.; Stephen, N.; Lopez, A.; Bienvenido, J.; Biona, M.; Chiu, A.S.F.; Blesl, M.; Mousavi, B.; Stephen, N.; Lopez, A. Driving forces of Iran’s CO2 emissions from energy consumption: An LMDI decomposition approach. Appl. Energy 2017, 206, 804–814. [Google Scholar] [CrossRef]
- Jeong, K.; Kim, S. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector. Energy Policy 2013, 62, 1245–1253. [Google Scholar] [CrossRef]
- Achour, H.; Belloumi, M. Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method. Transp. Policy 2016, 52, 64–71. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Yi-Chong, X. Accident like the Fukushima unlikely in a country with effective nuclear regulation: Literature review and proposed guidelines. Renew. Sustain. Energy Rev. 2013, 17, 126–146. [Google Scholar] [CrossRef]
- Liu, L.C.; Fan, Y.; Wu, G.; Wei, Y.M. Using LMDI method to analyze the change of China’s industrial CO emissions from final fuel use: An empirical analysis. Energy Policy 2007, 35, 5892–5900. [Google Scholar] [CrossRef]
- EIA. U.S. Energy Information Administration—Data. Available online: https://www.eia.gov/environment/data.php#summary (accessed on 5 December 2017).
- BLS. Databases, Tables & Calculators by Subject. Available online: https://www.bls.gov/data/#employment (accessed on 5 December 2017).
- BEA. U.S Bureau Economic Analysis—Fixed Assets. Available online: https://www.bea.gov/iTable/index_FA.cfm (accessed on 5 December 2017).
- Andreoni, V.; Galmarini, S. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors. Energy 2012, 45, 595–602. [Google Scholar] [CrossRef]
- Andreoni, V.; Galmarini, S. Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption. Energy 2012, 44, 682–691. [Google Scholar] [CrossRef]
- Hammond, G.P.; Norman, J.B. Decomposition analysis of energy-related carbon emissions from UK manufacturing. Energy 2012, 41, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, H.; Li, L.; Liu, Z.; Liang, S. Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis. Energy Policy 2013, 58, 312–318. [Google Scholar] [CrossRef]
- Brizga, J.; Feng, K.; Hubacek, K. Drivers of greenhouse gas emissions in the Baltic States: A structural decomposition analysis. Ecol. Econ. 2014, 98, 22–28. [Google Scholar] [CrossRef]
- Kang, J.; Zhao, T.; Liu, N.; Zhang, X.; Xu, X.; Lin, T. A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China. Energy 2014, 68, 562–571. [Google Scholar] [CrossRef]
- Fan, F.; Lei, Y. Factor analysis of energy-related carbon emissions: A case study of Beijing. J. Clean. Prod. 2015, 163, S277–S283. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Da, Y.B. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- Cansino, J.M.; Sánchez-Braza, A.; Rodríguez-Arévalo, M.L. Driving forces of Spain’s CO2 emissions: A LMDI decomposition approach. Renew. Sustain. Energy Rev. 2015, 48, 749–759. [Google Scholar] [CrossRef]
- Du, G.; Sun, C.; Ouyang, X.; Zhang, C. A decomposition analysis of energy-related CO2 emissions in Chinese six high-energy intensive industries. J. Clean. Prod. 2018, 184, 1102–1112. [Google Scholar] [CrossRef]
- Chen, B.; Li, J.; Zhou, S.; Yang, Q.; Chen, G. GHG emissions embodied in Macao’s internal energy consumption and external trade: Driving forces via decomposition analysis. Renew. Sustain. Energy Rev. 2018, 82, 4100–4106. [Google Scholar] [CrossRef]
Year | ΔCFt | ΔCSt | ΔCIt | ΔCKt | ΔCLt | ΔCtot | ΔCactual |
---|---|---|---|---|---|---|---|
2000–2001 | 15,893 | 1.003 | −180,539 | 177,222 | 46,659 | 60,238 | −107,315 |
2001–2002 | 1.411 | −13,073 | −49,302 | 157,527 | 45,149 | 141,713 | 41,232 |
2002–2003 | 9.477 | 19,956 | −140,047 | 159,936 | 65,754 | 115,076 | 50,378 |
2003–2004 | 5.263 | −4.827 | −102,687 | 167,982 | 35,771 | 101,502 | 116,974 |
2004–2005 | 5.170 | 14,480 | −193,020 | 162,028 | 77,223 | 65,880 | 23,053 |
2005–2006 | −1.941 | −1.020 | −236,972 | 165,472 | 83,268 | 8.806 | −83,605 |
2006–2007 | 8.886 | −15.262 | −7.676 | 143,823 | 66,192 | 195,964 | 90,714 |
2007–2008 | 1.813 | −0.945 | −175,539 | 99,006 | 44,581 | −31,083 | −191,848 |
2008–2009 | −16,475 | −55,218 | −194,149 | 37,848 | −5.248 | −233,242 | −422,989 |
2009–2010 | −7.334 | 8.974 | 58,076 | 42,451 | −8.988 | 93,179 | 196,535 |
2010–2011 | −2.434 | −35,095 | −187,356 | 53,242 | −9.732 | −181,375 | −137,469 |
2011–2012 | −1.947 | −77,848 | −250,248 | 64,174 | 46,858 | −219,012 | −212,956 |
2012–2013 | −10,620 | 5.944 | 45,741 | 71,518 | 14,098 | 126,680 | 128,982 |
2013–2014 | 3.009 | −10,542 | −83,002 | 82,173 | 18,394 | 10,033 | 45,733 |
2014–2015 | −2.531 | −83,132 | −210,671 | 86,779 | 41,047 | −168,509 | −146,286 |
2015–2016 | −0.101 | −42,790 | −120,131 | 81,144 | 67,689 | −14,189 | −86,274 |
2000–2016 | 7.537 | −289.39 | −2027.522 | 1752.33 | 628,716 | 71,662 | −695,141 |
Year | ΔCFt | ΔCSt | ΔCIt | ΔCKt | ΔCLt | ΔCAt | ΔCtot | ΔCactual |
---|---|---|---|---|---|---|---|---|
2000–2001 | 15,893 | 1.003 | −180,539 | 56,711 | 31,728 | −32,111 | −107,315 | −107,315 |
2001–2002 | 1.411 | −13.073 | −49,302 | 50,409 | 30,702 | 21,085 | 41,232 | 41,232 |
2002–2003 | 9.477 | 19,956 | −140,047 | 51,179 | 44,713 | 65,099 | 50,378 | 50,378 |
2003–2004 | 5.263 | −4.827 | −102,687 | 53,754 | 24,325 | 141,147 | 116,974 | 116,974 |
2004–2005 | 5.170 | 14,480 | −193,020 | 51,849 | 52,511 | 92,063 | 23,053 | 23,053 |
2005–2006 | −1.941 | −1.020 | −236,972 | 52,951 | 56,622 | 46,755 | −83,605 | −83,605 |
2006–2007 | 8.886 | −15,262 | −7.676 | 46,023 | 45,011 | 13,731 | 90,714 | 90,714 |
2007–2008 | 1.813 | −0.945 | −175,539 | 31,682 | 30,315 | −79,174 | −191,848 | −191,848 |
2008–2009 | −16,475 | −55,218 | −194,149 | 12,112 | −3.569 | −165,690 | −422,989 | −422,989 |
2009–2010 | −7.334 | 8.974 | 58,076 | 13,584 | −6.112 | 129,346 | 196,535 | 196,535 |
2010–2011 | −2.434 | −35,095 | −187,356 | 17,037 | −6.618 | 76,997 | −137,469 | −137,469 |
2011–2012 | −1.947 | −77,848 | −250,248 | 20,536 | 31,864 | 64,689 | −212,956 | −212,956 |
2012–2013 | −10,620 | 5.944 | 45,741 | 22,886 | 9.586 | 55,445 | 128,982 | 128,982 |
2013–2014 | 3.009 | −10,542 | −83,002 | 26,295 | 12,508 | 97,464 | 45,733 | 45.733 |
2014–2015 | −2.531 | −83,132 | −210,671 | 27,769 | 27,912 | 94,368 | −146,286 | −146,286 |
2015–2016 | −0.101 | −42,790 | −120,131 | 25,966 | 46,029 | 4.753 | −86,274 | −86,274 |
2000–2016 | 7.537 | −289,394 | −2027.522 | 560,744 | 427,527 | 625,967 | −695,141 | −695,141 |
Author | Year | Journal | Research Object | Decomposition Method | Influencing Factors |
---|---|---|---|---|---|
Akbostanci et al. [45] | 2011 | Applied Energy | CO2 emissions in Turkish manufacturing industry | LMDI method | economy activity, economy structure, sectoral energy intensity, sectoral energy structure and carbon emission coefficient. |
Andreoni V et al. [54] | 2012 | Energy | CO2 emissions in European transport | decomposition method developed by Sun | emissions intensity, energy intensity, structural changes and economy activity. |
Andreoni V et al. [55] | 2012 | Energy | CO2 emissions of Italy | decomposition method developed by Sun | CO2 intensity, energy intensity, structural changes and economic activity. |
Hammond et al. [56] | 2012 | Energy | CO2 emissions of UK manufacturing | LMDI method | economy output, industrial structure, energy intensity, fuel structure and electricity emission factor. |
Wang et al. [57] | 2013 | Energy Policy | CO2 emissions of Beijing | IO-SDA method | urban trades, urban residential consumption, government consumption, and fixed capital formation, emission intensity, final demand activities and production structure. |
Jeong et al. [47] | 2013 | Energy Policy | CO2 emissions of Korean manufacturing sector | LMDI method | activity effect, structure effect, intensity effect, energy-mix effect and emission-factor effect. |
Brizga J et al. [58] | 2014 | Ecological Economics | greenhouse gas emissions in the Baltic States | SDA method | the final demand, emission intensity, consumption patterns and per capita GDP. |
Kang J et al. [59] | 2014 | Energy | greenhouse gas emissions of Tianjin | multi-sectoral LMDI method | economic growth, energy efficiency, energy mix and emission coefficient. |
Fan et al. [60] | 2015 | Journal of Cleaner Production | CO2 emissions of Beijing | a multivariate generalized Fisher index decomposition model | economic growth, population size, energy intensity and energy structure. |
Lu et al. [35] | 2015 | Energy | Jiangsu’s ICE | LMDI method | industrial scale, industrial structure, energy intensity, energy structure and emission factor. |
Zhang et al. [61] | 2015 | Renewable & Sustainable Energy Reviews | CO2 emissions of China | LMDI method | the economic growth, final energy consumption structure, energy intensity, industrial structure. |
Cansino J M et al. [62] | 2015 | Renewable & Sustainable Energy Reviews | Spain’s CO2 emissions | LMDI method | carbon intensity, energy intensity, economy structure, population, economic activity. |
José M. Cansino et al. [11] | 2016 | Energy Policy | CO2 emissions of Spanish | SDA method | carbonization, energy intensity, technology, structural demand, consumption pattern and scale. |
Lu et al. [39] | 2016 | Building & Environment | CO2 emissions of China’s building and construction industry | LMDI method | carbon dioxide emission factor, energy structure, energy intensity, unit cost, automation level, machinery efficiency. |
Wang et al. [44] | 2016 | Sustainability | CO2 emissions of China’s industry sector | LMDI method | energy structure, energy intensity, per capita wealth effect, and population. |
Bin Su et al. [12] | 2017 | Energy Policy | CO2 emissions of Singapore | SDA method | the per capita final demand, the per capita energy consumption, population. |
Mousavi B et al. [46] | 2017 | Applied Energy | CO2 emissions of Iran | LMDI method | population, economy, per capita GDP, economic structure, energy intensity, carbon intensity, fraction of locally generated electricity |
Lin et al. [42] | 2017 | Sustainability | CO2 emissions of China’s Heavy Industry | LMDI method | labor productivity, energy intensity, industry scale, energy structure, carbon intensity. |
Hu et al. [6] | 2017 | Applied Energy | GHG emissions of Chongqing | SDA method | intensity, input-output structure, final demand. |
Du et al. [63] | 2018 | Journal of Cleaner Production | CO2 emissions in six high-energy intensive industries of China | LMDI method | industrial scale, industrial structure, energy intensity, energy structure, carbon coefficient. |
Chen et al. [64] | 2018 | Renewable and Sustainable Energy Reviews | GHG emissions in Macao | LMDI method | economic scale, industry structure, energy intensity and energy structure. |
Wang et al. [16] | 2019 | Journal of Cleaner Production | carbon emissions from sector at city-level | LMDI method | emission intensity, intermediate demand, consumption structure, consumption level, population size. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, R.; Li, R.; Wu, Q. Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods. Sustainability 2019, 11, 334. https://doi.org/10.3390/su11020334
Jiang R, Li R, Wu Q. Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods. Sustainability. 2019; 11(2):334. https://doi.org/10.3390/su11020334
Chicago/Turabian StyleJiang, Rui, Rongrong Li, and Qiuhong Wu. 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods" Sustainability 11, no. 2: 334. https://doi.org/10.3390/su11020334
APA StyleJiang, R., Li, R., & Wu, Q. (2019). Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods. Sustainability, 11(2), 334. https://doi.org/10.3390/su11020334