Site Selection Models in Natural Disaster Shelters: A Review
Abstract
:1. Introduction
2. Single-Objective Model
2.1. p-Median Model
2.1.1. Basic Model
2.1.2. Capacitated p-Median Problem
2.2. p-Center Model
2.3. Covering Model
2.3.1. Set Covering Model
2.3.2. Maximal Covering Model
2.3.3. Generalized Maximal Covering Location
2.4. Summary of the Single-Objective Model
3. Multiobjective Model
4. Hierarchical Model
4.1. General Hierarchical Model
4.2. Bilevel Model
4.3. Summary of the Hierarchical Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weber, A. Theory of the Location of Industries (1929 English Edition); The University of Chicago Press: Chicago, IL, USA, 1929. [Google Scholar]
- Hotelling, H. Stability in competition. Econ. J. 1929, 39, 41–57. [Google Scholar] [CrossRef]
- Smithies, A. Optimum location in spatial competition. J. Political Econ. 1941, 49, 423–439. [Google Scholar] [CrossRef]
- Stevens, B.H. An application of game theory to a problem in location strategy. Pap. Reg. Sci. Assoc. 1961, 7, 143–157. [Google Scholar] [CrossRef]
- Hakimi, S.L. Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 1964, 12, 450–459. [Google Scholar] [CrossRef]
- Centre for Research on the Epidemiology of Disasters (CRED). EM-DAT | The International Disasters Database. Available online: https://www.emdat.be/ (accessed on 7 December 2018).
- Srinivas, H.; Nakagawa, Y. Environmental implications for disaster preparedness: Lessons learnt from the Indian Ocean Tsunami. J. Environ. Manag. 2008, 89, 4–13. [Google Scholar] [CrossRef]
- Woods, C.; West, C.; Buettner, P.; Usher, K. “Out of our control”: Living through Cyclone Yasi. Int. J. Qual. Stud. Health Well-Being 2014, 9, 19821. [Google Scholar] [CrossRef]
- Sorensen, J.H.; Shumpert, B.L.; Vogt, B.M. Planning for protective action decision making: Evacuate or shelter-in-place. J. Hazard. Mater. 2004, 109, 1–11. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Sun, Y.; Huang, R.; Hu, Q.; Wang, J.; Gao, F. Planning emergency shelters for urban disaster resilience: An integrated location-allocation modeling approach. Sustainability 2017, 9, 2098. [Google Scholar] [CrossRef]
- Dai, S.; He, L. Research on urban disaster shelter planning. J. Catastrophol. 2010, 25, 50–54. (In Chinese) [Google Scholar] [CrossRef]
- Hakimi, S.L. Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 1965, 13, 462–475. [Google Scholar] [CrossRef]
- ReVelle, C.S.; Swain, R.W. Central facilities location. Geogr. Anal. 1970, 2, 30–42. [Google Scholar] [CrossRef]
- Mirchandani, P.B. Locational decisions on stochastic networks. Geogr. Anal. 1980, 12, 172–183. [Google Scholar] [CrossRef]
- Larson, R.C. A hypercube queuing model for facility location and redistricting in urban emergency services. Comput. Oper. Res. 1974, 1, 67–95. [Google Scholar] [CrossRef]
- Sherali, H.D.; Carter, T.B.; Hobeika, A.G. A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions. Transp. Res. Part B Methodol. 1991, 25, 439–452. [Google Scholar] [CrossRef]
- Pan, A. Typhoon disaster shelter selection model based on genetic algorithm. Intemet Fortune 2009, 218–219. (In Chinese) [Google Scholar]
- Kocatepe, A.; Ozguven, E.E.; Horner, M.; Ozel, H. Pet-and special needs-friendly shelter planning in south florida: A spatial capacitated p-median-based approach. Int. J. Disaster Risk Reduct. 2018, 31, 1207–1222. [Google Scholar] [CrossRef]
- Horner, M.W.; Ozguven, E.E.; Marcelin, J.M.; Kocatepe, A. Special needs hurricane shelters and the ageing population: Development of a methodology and a case study application. Disasters 2018, 42, 169–186. [Google Scholar] [CrossRef]
- Kongsomsaksakul, S.; Yang, C.; Chen, A. Shelter location-allocation model for flood evacuation planning. J. East. Asia Soc. Transp. Stud. 2005, 6, 4237–4252. [Google Scholar] [CrossRef]
- Gama, M.; Santos, B.F.; Scaparra, M.P. A multi-period shelter location-allocation model with evacuation orders for flood disasters. EURO J. Comput. Optim. 2015, 4, 1–25. [Google Scholar] [CrossRef]
- Bayram, V.; Tansel, B.Ç.; Yaman, H. Compromising system and user interests in shelter location and evacuation planning. Transp. Res. Part B Methodol. 2015, 72, 146–163. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Lin, P.; Lo, S. The application of P-median model on emergency shelter location planning. J. Basic Sci. Eng. 2004, 12, 62–66. (In Chinese) [Google Scholar]
- Zhou, X.; Liu, M.; Wang, Y. Emergency shelter amount confirm and location optimized. J. Saf. Environ. 2006, 6, 118–121. (In Chinese) [Google Scholar] [CrossRef]
- Elzinga, J.; Hearn, D.W. Geometrical solutions for some minimax location problems. Transp. Sci. 1972, 6, 379–394. [Google Scholar] [CrossRef]
- Kılcı, F.; Kara, B.Y.; Bozkaya, B. Locating temporary shelter areas after an earthquake: A case for Turkey. Eur. J. Oper. Res. 2015, 243, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Toregas, C.; Swain, R.; ReVelle, C.; Bergman, L. The location of emergency service facilities. Oper. Res. 1971, 19, 1363–1373. [Google Scholar] [CrossRef]
- Church, R.; Velle, C.R. The maximal covering location problem. Pap. Reg. Sci. Assoc. 1974, 32, 101–118. [Google Scholar] [CrossRef]
- Berman, O.; Krass, D. The generalized maximal covering location problem. Comput. Oper. Res. 2002, 29, 563–581. [Google Scholar] [CrossRef]
- Dalal, J.; Mohapatra, P.K.; Mitra, G.C. Locating cyclone shelters: A case. Disaster Prev. Manag. 2007, 16, 235–244. [Google Scholar] [CrossRef]
- Pan, A. The applications of maximal covering model in typhoon emergency shelter location problem. In Proceedings of the IEEE Industrial Engineering and Engineering Management (IEEM), Macao, China, 7–10 December 2010; pp. 1727–1731. [Google Scholar] [CrossRef]
- Gama, M.; Scaparra, M.P.; Santos, B.F. Optimal Location of Shelters for Mitigating Urban Floods. In Proceedings of the EWGT 2013—16th Meeting of the EURO Working Group on Transportation, Porto, Portugal, 4–6 September 2013. [Google Scholar]
- Ye, M.; Wang, J.; Huang, J.; Xu, S.; Chen, Z. Methodology and its application for community-scale evacuation planning against earthquake disaster. Nat. Hazards 2012, 61, 881–892. [Google Scholar] [CrossRef]
- Zhou, T.; Jian, F. Study on establishing the supporting system for location of the urgent refuge. Res. Soil Water Conserv. 2001, 8, 17–24. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, L.; Wang, K.; Wang, J. Theory and Method for Unban Emergency Shelter Planning; Science Press: Beijing, China, 2014; p. 143. (In Chinese) [Google Scholar]
- Hu, F.; Xu, W.; Li, X. A modified particle swarm optimization algorithm for optimal allocation of earthquake emergency shelters. Int. J. Geogr. Inf. Sci. 2012, 26, 1643–1666. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, X.; Qin, L.; Liang, P.; Zhou, H.; Yuan, Y.; Xu, W. A comparison of single-objective and bi-level location-allocation model for earthquake emergency shelters with the case of Rongcheng in Shandong. J. Catastrophol. 2017, 32, 189–194. (In Chinese) [Google Scholar] [CrossRef]
- Widener, M.J.; Horner, M.W. Modeling Hurricane Disaster Relief Distribution with a Hierarchical Capacitated-Median Model. Master’s Thesis, Florida State University, Tallahassee, FL, USA, 2009. [Google Scholar]
- Widener, M.J.; Horner, M.W. A hierarchical approach to modeling hurricane disaster relief goods distribution. J. Transp. Geogr. 2011, 19, 821–828. [Google Scholar] [CrossRef]
- Li, G.C. TISEM: A two-stage interval-stochastic evacuation management model. J. Environ. Inform. 2008, 12, 64–74. [Google Scholar] [CrossRef]
- Bozorgi-Amiri, A.; Jabalameli, M.S.; Alinaghian, M.; Heydari, M. A modified particle swarm optimization for disaster relief logistics under uncertain environment. Int. J. Adv. Manuf. Technol. 2012, 60, 357–371. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Y.; Zhu, S.; Wang, J. Maximal preparedness coverage model and its algorithm for emergency shelter location. J. Nat. Disasters 2015, 24, 8–14. (In Chinese) [Google Scholar] [CrossRef]
- Du, S. Urban Emergency Shelter Site Selection Method Based on Ant Colony Algorithm; Shanghai Normal University: Shanghai, China, 2018. (In Chinese) [Google Scholar]
- Xu, W.; Ma, Y.; Zhao, X.; Li, Y.; Qin, L.; Du, J. A comparison of scenario-based hybrid bilevel and multi-objective location-allocation models for earthquake emergency shelters: A case study in the central area of Beijing, China. Int. J. Geogr. Inf. Sci. 2018, 32, 236–256. [Google Scholar] [CrossRef]
- Barzinpour, F.; Esmaeili, V. A multi-objective relief chain location distribution model for urban disaster management. Int. J. Adv. Manuf. Technol. 2014, 70, 1291–1302. [Google Scholar] [CrossRef]
- Alçada Almeida, L.; Tralhao, L.; Santos, L.; Coutinho Rodrigues, J. A multiobjective approach to locate emergency shelters and identify evacuation routes in urban areas. Geogr. Anal. 2009, 41, 9–29. [Google Scholar] [CrossRef]
- Coutinho-Rodrigues, J.; Tralhão, L.; Alçada-Almeida, L. Solving a location-routing problem with a multiobjective approach: The design of urban evacuation plans. J. Transp. Geogr. 2012, 22, 206–218. [Google Scholar] [CrossRef]
- Doerner, K.F.; Gutjahr, W.J.; Nolz, P.C. Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectr. 2009, 31, 651–678. [Google Scholar] [CrossRef]
- Rodríguez-Espíndola, O.; Gaytán, J. Scenario-based preparedness plan for floods. Nat. Hazards 2015, 76, 1241–1262. [Google Scholar] [CrossRef]
- Nolz, P.C.; Semet, F.; Doerner, K.F. Risk approaches for delivering disaster relief supplies. OR Spectr. 2011, 33, 543–569. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wong, W. Decision support system for urban shelter locations. J. Tsinghua Univ. 2011, 51, 632–636. (In Chinese) [Google Scholar] [CrossRef]
- Hu, F.; Yang, S.; Xu, W. A non-dominated sorting genetic algorithm for the location and districting planning of earthquake shelters. Int. J. Geogr. Inf. Sci. 2014, 28, 1482–1501. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, W.; Ma, Y.; Hu, F. Scenario-based multi-objective optimum allocation model for earthquake emergency shelters using a modified particle swarm optimization algorithm: A case study in Chaoyang district, Beijing, China. PLoS ONE 2015, 10, e144455. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, W.; Ma, Y.; Qin, L.; Zhang, J.; Wang, Y. Relationships between evacuation population size, earthquake emergency shelter capacity, and evacuation time. Int. J. Disaster Risk Sci. 2017, 8, 457–470. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, M.; Wang, L. Study of urban shelter location planning based on multi-objective approach. J. Saf. Environ. 2010, 10, 205–209. (In Chinese) [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, X.; Qin, L.; Liang, P.; Zhou, H.; Yuan, Y.; Xu, W. Multi-objective Location-allocation Model for Earthquake Emergency Shelters with Multiple Constraints: A Case Study in Wenchang of Hainan Province. J. Catastrophol. 2018, 33, 218–224. (In Chinese) [Google Scholar] [CrossRef]
- Yushimito, W.F.; Jaller, M.; Ukkusuri, S. A Voronoi-based heuristic algorithm for locating distribution centers in disasters. Netw. Spat. Econ. 2012, 12, 21–39. [Google Scholar] [CrossRef]
- Tzeng, G.; Cheng, H.; Huang, T.D. Multi-objective optimal planning for designing relief delivery systems. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 673–686. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, X.; Ma, Y.; Li, Y.; Qin, L.; Wang, Y.; Du, J. A multi-objective optimization based method for evaluating earthquake shelter location-allocation. Geomat. Nat. Hazards Risk 2018, 9, 662–677. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Q. Risk-based optimization of emergency rescue facilities locations for large-scale environmental accidents to improve urban public safety. Nat. Hazards 2015, 75, 163–189. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Q.W.; Ma, J.; Cai, D. Optimizing temporary rescue facility locations for large-scale urban environmental emergencies to improve public safety. J. Environ. Inform. 2017, 29, 61–73. [Google Scholar] [CrossRef]
- Saadatseresht, M.; Mansourian, A.; Taleai, M. Evacuation planning using multiobjective evolutionary optimization approach. Eur. J. Oper. Res. 2009, 198, 305–314. [Google Scholar] [CrossRef]
- Bozorgi-Amiri, A.; Jabalameli, M.S.; Al-e-Hashem, S.M. A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty. OR Spectr. 2013, 35, 905–933. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, M.; Chen, F.F. A bottleneck Steiner tree based multi-objective location model and intelligent optimization of emergency logistics systems. Robot. Comput.-Integr. Manuf. 2013, 29, 48–55. [Google Scholar] [CrossRef]
- Jalali, S.; Seifbarghy, M.; Sadeghi, J.; Ahmadi, S. Optimizing a bi-objective reliable facility location problem with adapted stochastic measures using tuned-parameter multi-objective algorithms. Knowl.-Based Syst. 2016, 95, 45–57. [Google Scholar] [CrossRef]
- Trivedi, A.; Singh, A. A hybrid multi-objective decision model for emergency shelter location-relocation projects using fuzzy analytic hierarchy process and goal programming approach. Int. J. Proj. Manag. 2017, 35, 827–840. [Google Scholar] [CrossRef]
- Haghi, M.; Ghomi, S.M.T.F.; Jolai, F. Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource. J. Clean. Prod. 2017, 154, 188–202. [Google Scholar] [CrossRef]
- Narula, S.C.; Ogbu, U.I. An hierarchal location-allocation problem. Omega 1979, 7, 137–143. [Google Scholar] [CrossRef]
- Şahin, G.; Süral, H. A review of hierarchical facility location models. Comput. Oper. Res. 2007, 34, 2310–2331. [Google Scholar] [CrossRef]
- Farahani, R.Z.; Hekmatfar, M.; Fahimnia, B.; Kazemzadeh, N. Survey: Hierarchical facility location problem: Models, classifications, techniques, and applications. Comput. Ind. Eng. 2014, 68, 104–117. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, L.; Chen, J.; Li, Q. Study on hierarchical location of urban emergency shelters (I)-hierarchy analysis. J. Nat. Disasters 2010, 19, 151–155. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.; Li, Q.; Chen, J. Study on hierarchical location of urban emergency shelters (II)-three-hierarchical location models. J. Nat. Disasters 2010, 19, 13–19. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Li, Q.; Chen, J. The temporal hierarchy of shelters: A hierarchical location model for earthquake-shelter planning. Int. J. Geogr. Inf. Sci. 2013, 27, 1612–1630. [Google Scholar] [CrossRef]
- Li, Y. Study on the location selection and spatial layout of urban shelters against the earthquake disaster—A case study in Zhangqiu city. Master’s Thesis, Shandong Jianzhu University, Jinan, China, 2014. (In Chinese). [Google Scholar]
- Li, H.; Zhaong, Y.; Gao, P. Hierarchical location selection and layout optimization of emergency shelter system in satellite town—A case of Yanjiao Town in Hebei Province. Sci. Technol. Eng. 2017, 17, 96–104. (In Chinese) [Google Scholar]
- Li, H.; Zhao, L.; Huang, R.; Hu, Q. Hierarchical earthquake shelter planning in urban areas: A case for Shanghai in China. Int. J. Disaster Risk Reduct. 2017, 22, 431–446. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, W.; Qin, L.; Zhao, X.; Du, J. Hierarchical supplement location-allocation optimization for disaster supplies warehouse in the Beijing-Tianjin-Hebei region of China. Geomat. Nat. Hazards Risk 2018. [Google Scholar] [CrossRef]
- Du, J.; Li, X.; Yu, L.; Dan, R.; Zhou, J. Multi-depot vehicle routing problem for hazardous materials transportation: A fuzzy bilevel programming. Inf. Sci. 2017, 399, 201–218. [Google Scholar] [CrossRef]
- Von Stackelberg, H. Marktform und Gleichgewicht; Springer: Berlin, Germany, 1934. [Google Scholar]
- Dempe, S. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 2003, 52, 333–359. [Google Scholar] [CrossRef]
- Migdalas, A.; Pardalos, P.M.; Värbrand, P. Multilevel Optimization: Algorithms and Applications; Kluwer Academic Publishers: Dordrechts, The Netherlands, 1998. [Google Scholar]
- Dempe, S. Foundations of Bilevel Programming; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Bracken, J.; McGill, J.T. Mathematical programs with optimization problems in the constraints. Oper. Res. 1973, 21, 37–44. [Google Scholar] [CrossRef]
- Bracken, J.; McGill, J.T. Defense applications of mathematical programs with optimization problems in the constraints. Oper. Res. 1974, 22, 1086–1096. [Google Scholar] [CrossRef]
- Fisk, C.S. Game theory and transportation systems modelling. Transp. Res. Part B Methodol. 1984, 18, 301–313. [Google Scholar] [CrossRef]
- Dow, K.; Cutter, S.L. Emerging hurricane evacuation issues: Hurricane Floyd and South Carolina. Nat. Hazards Rev. 2002, 3, 12–18. [Google Scholar] [CrossRef]
- Chiu, Y.; Korada, P.; Mirchandani, P.B. Dynamic traffic management for evacuation. In Proceedings of the 84th Annual Meeting of the Transportation Research Board (CD-ROM), Washington, DC, USA, 9–13 January 2005. [Google Scholar]
- Karoonsoontawong, A.; Waller, S.T. Dynamic continuous network design problem: Linear bilevel programming and metaheuristic approaches. Transp. Res. Rec. J. Transp. Res. Board 2006, 1964, 104–117. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Wu, D.; Lou, Y.; Yin, Y. Robust shelter locations for evacuation planning with demand uncertainty. J. Transp. Saf. Secur. 2011, 3, 272–288. [Google Scholar] [CrossRef]
- Calvete, H.I.; Galé, C. Linear bilevel programs with multiple objectives at the upper level. J. Comput. Appl. Math. 2010, 234, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y. Multiobjective bilevel optimization for transportation planning and management problems. J. Adv. Transp. 2002, 36, 93–105. [Google Scholar] [CrossRef]
- Sinha, A.; Malo, P.; Frantsev, A.; Deb, K. Multi-objective stackelberg game between a regulating authority and a mining company: A case study in environmental economics. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 478–485. [Google Scholar] [CrossRef]
- Ankhili, Z.; Mansouri, A. An exact penalty on bilevel programs with linear vector optimization lower level. Eur. J. Oper. Res. 2009, 197, 36–41. [Google Scholar] [CrossRef]
- Calvete, H.I.; Galé, C. On linear bilevel problems with multiple objectives at the lower level. Omega 2011, 39, 33–40. [Google Scholar] [CrossRef]
- Limleamthong, P.; Guillén-Gosálbez, G. Rigorous analysis of Pareto fronts in sustainability studies based on bilevel optimization: Application to the redesign of the UK electricity mix. J. Clean. Prod. 2017, 164, 1602–1613. [Google Scholar] [CrossRef]
- Bonnel, H.; Morgan, J. Optimality conditions for semivectorial bilevel convex optimal control problems. In Computational and Analytical Mathematics; Springer: Berlin, Germany, 2013; pp. 45–78. [Google Scholar] [CrossRef]
- Halter, W.; Mostaghim, S. Bilevel optimization of multi-component chemical systems using particle swarm optimization. In Proceedings of the IEEE International Conference on Evolutionary Computation (CEC), Vancouver, BC, Canada, 16–21 July 2006; pp. 1240–1247. [Google Scholar] [CrossRef]
- Deb, K.; Sinha, A. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm. Evol. Comput. 2010, 18, 403–449. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Malo, P.; Deb, K.; Korhonen, P.; Wallenius, J. Solving bilevel multicriterion optimization problems with lower level decision uncertainty. IEEE Trans. Evol. Comput. 2016, 20, 199–217. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, T.; Zheng, Y.; Guo, X. An improved particle swarm optimization for solving bilevel multiobjective programming problem. J. Appl. Math. 2012, 2012, 359–373. [Google Scholar] [CrossRef]
- Eichfelder, G. Multiobjective bilevel optimization. Math. Program. 2010, 123, 419–449. [Google Scholar] [CrossRef]
- Shi, X.; Xia, H. Interactive bilevel multi-objective decision making. J. Oper. Res. Soc. 1997, 48, 943–949. [Google Scholar] [CrossRef]
- Shi, X.; Xia, H.S. Model and interactive algorithm of bi-level multi-objective decision-making with multiple interconnected decision makers. J. Multi-Criteria Decis. Anal. 2001, 10, 27–34. [Google Scholar] [CrossRef]
- Sinha, A.; Malo, P.; Deb, K. Transportation policy formulation as a multi-objective bilevel optimization problem. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 1651–1658. [Google Scholar] [CrossRef]
- Ng, M.W.; Park, J.; Waller, S.T. A Hybrid Bilevel Model for the Optimal Shelter Assignment in Emergency Evacuations. Comput.-Aided Civ. Infrastruct. Eng. 2010, 25, 547–556. [Google Scholar] [CrossRef]
- Li, L.; Jin, M.; Zhang, L. Sheltering network planning and management with a case in the Gulf Coast region. Int. J. Prod. Econ. 2011, 131, 431–440. [Google Scholar] [CrossRef]
- Li, A.C.Y.; Nozick, L.; Xu, N.; Davidson, R. Shelter location and transportation planning under hurricane conditions. Transp. Res. Part E Logist. Transp. Rev. 2012, 48, 715–729. [Google Scholar] [CrossRef]
- Paul, N.R.; Lunday, B.J.; Nurre, S.G. A multiobjective, maximal conditional covering location problem applied to the relocation of hierarchical emergency response facilities. Omega 2017, 66, 147–158. [Google Scholar] [CrossRef]
- Chen, H.; Chu, J.; Ma, D.; Sun, T. Location Selection of Emergency Shelter Optimization Model for Disaster Prevention. J. North China Univ. Sci. Technol. 2016, 38, 149–156. (In Chinese) [Google Scholar] [CrossRef]
- Gall, M. Where to go? Strategic modelling of access to emergency shelters in Mozambique. Disasters 2004, 28, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Shi, X. Evaluate the efficacy and optimize addressing option on urban disaster-prevention space. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2006. (In Chinese). [Google Scholar]
- Sanyal, J.; Lu, X.X. Ideal location for flood shelter: A geographic information system approach. J. Flood Risk Manag. 2009, 2, 262–271. [Google Scholar] [CrossRef]
- Xu, W.; Li, Y.; Okada, N.; Takeuchi, Y.; Kajitani, Y.; Shi, P. Collaborative modelling-based shelter planning analysis: A case study of the Nagata Elementary School Community in Kobe City, Japan. Disasters 2014, 38, 125–147. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chen, S.; Ling, H. Evolutionary optimization for disaster relief operations. Appl. Soft Comput. 2015, 27, 553–566. [Google Scholar] [CrossRef]
- Boonmee, C.; Arimura, M.; Asada, T. Facility location optimization model for emergency humanitarian logistics. Int. J. Disaster Risk Reduct. 2017, 24, 485–498. [Google Scholar] [CrossRef]
Classification Standard | Model Type | |
---|---|---|
Objective or hierarchy type | Single-objective model: p-median, p-centre and covering models with a single objective, including shelter area, distance, etc. | |
Multiobjective model: includes at least two objectives | ||
Hierarchical model: different types of facilities or different decision makers form various levels, and each level can be a single- or multiobjective model | ||
Type of optimization | p-median model: minimizing the sum of the weighted distance from all demands to the facilities using P facilities | |
p-centre model: minimizing the maximal distance from the demand points to facilities | ||
Covering model: | Set covering model: minimizing costs to cover all demands | |
Maximal covering model: covering as many demands as possible, with a fixed number of facilities | ||
Disaster type | Typhoon/hurricane | |
Flood | ||
Earthquake |
Authors | Classification of Site Selection Models | Objective | Constraint | Method for Solutions or Optimization Software Package | Targeted Hazard | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | Maximin | Maximal | Capacity | Distance | Number | ||||||||
Distance | Time | Risk | Cost | Number | Weight | Cover | |||||||
Sherali et al. [16] | p-median | √ | √ | Heuristic and an exact implicit enumeration algorithm based on the generalized Benders’ decomposition method | Hurricane | ||||||||
Widener [38], Widener and Horner [39] | p-median | √ | √ | √ | CPLEX | Hurricane | |||||||
Kocatepe et al. [18] | p-median | √ | √ | √ | GIS-based method | Hurricane | |||||||
Horner et al. [19] | p-median | √ | √ | √ | GIS-based method | Hurricane | |||||||
Dalal et al. [30] | Set covering | √ | √ | √ | Elzinga–Hearn algorithm | Typhoon | |||||||
Pan [17] | p-median | √ | √ | Genetic algorithm (GA) | Typhoon | ||||||||
Pan [31] | Maximal covering | √ | √ | Exact algorithm | Typhoon | ||||||||
Kongsomsaksakul et al. [20] | p-median | √ | √ | GA | Flood | ||||||||
Gama et al. [32] | Maximal covering | √ | √ | √ | √ | CPLEX 12.5 | Flood | ||||||
Gama et al. [21] | p-median | √ | √ | √ | Simulated annealing algorithm (SA) | Flood | |||||||
Zhou and Jian [34] | Maximal covering | √ | √ | √ | √ | Exact algorithm | Earthquake | ||||||
Huang et al. [23] | p-median | √ | √ | GA | Earthquake | ||||||||
Zhou et al. [24] | p-median | √ | √ | √ | Exact algorithm | Earthquake | |||||||
Hu et al. [36] | Set coving | √ | √ | √ | Modified particle swarm optimization (PSO) | Earthquake | |||||||
Ye et al. [33] | Maximal covering | √ | √ | Spatial analysis techniques of GIS | Earthquake | ||||||||
Zhao et al. [35] | Set coving | √ | √ | CPLEX 12.4 | Earthquake | ||||||||
Bayram et al. [22] | p-median | √ | √ | √ | √ | Second order cone programming approach | Earthquake | ||||||
Kılcı et al. [26] | p-center | √ | √ | Network Analyst extension of ESRI ArcGIS Desktop | Earthquake | ||||||||
Ma et al. [37] | Set coving | √ | √ | √ | Modified PSO | Earthquake | |||||||
Berman and Krass [29] | Maximal covering | √ | √ | Greedy heuristic, special-purpose IP algorithms | General | ||||||||
Li [40] | p-median | √ | √ | √ | Interactive method | General | |||||||
Bozorgi-Amiri et al. [41] | Set coving | √ | √ | Modified PSO | General | ||||||||
Yuan et al. [42] | Maximal covering | √ | √ | Modified GA | General | ||||||||
Du [43] | p-median | √ | Ant colony optimisation algorithm (ACO) | General |
Authors | Objective | Constraint | Method for Solutions or Optimization Software Package | Targeted Hazard | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | Maximin | Minimax | Maximal | Capacity | Distance | Budgetary | Demand | Utilisation | Number | |||||||||
Distance | Time | Risk | Cost | Number | Violation | Weight | Weight | Suitability | Cover | |||||||||
Alçada-Almeida et al. [46] | √ | √ | √ | √ | √ | GIS-based decision support system | Fire | |||||||||||
Coutinho-Rodrigues et al. [47] | √ | √ | √ | √ | √ | GIS-based decision support system | Fire | |||||||||||
Doerner et al. [48] | √ | √ | √ | √ | √ | NSGA-II | Tsunami | |||||||||||
Yushimito et al. [57] | √ | √ | Voronoi-based heuristic algorithm | Hurricane | ||||||||||||||
Rodríguez-Espíndola and Gaytán [49] | √ | √ | √ | √ | CPLEX 11.0 | Flood | ||||||||||||
Nolz et al. [50] | √ | √ | √ | √ | √ | Memetic algorithm based on NSGA-II | Flood and earthquake | |||||||||||
Tzeng et al. [58] | √ | √ | √ | √ | Fuzzy multiobjective programming | Earthquake | ||||||||||||
Wu and Wong [51] | √ | √ | √ | √ | √ | GIS-based decision support system | Earthquake | |||||||||||
Hu et al. [52] | √ | √ | √ | NSGA-II | Earthquake | |||||||||||||
Zhao et al. [53] Zhao et al. [54] | √ | √ | √ | √ | Modified PSO | Earthquake | ||||||||||||
Xu et al. [44] | √ | √ | √ | √ | Modified PSO | Earthquake | ||||||||||||
Xu et al. [59] | √ | √ | √ | √ | √ | √ | Modified PSO | Earthquake | ||||||||||
Zhou et al. [55] | √ | √ | √ | √ | LINGO | Earthquake | ||||||||||||
Ma et al. [56] | √ | √ | √ | √ | Modified PSO | Earthquake | ||||||||||||
Zhao and Chen [60] Zhao et al. [61] | √ | √ | √ | √ | √ | NSGA-II | Urban environmental disasters | |||||||||||
Saadatseresht et al. [62] | √ | √ | √ | NSGA-II | General | |||||||||||||
Bozorgi-Amiri et al. [63] | √ | √ | √ | Lp-metrics technique | General | |||||||||||||
Zhang et al. [64] | √ | √ | Stochastic diffusion search based intelligent algorithm | General | ||||||||||||||
Barzinpour and Esmaeili [45] | √ | √ | √ | LINGO 9.0 based on virtual zoning approach | General | |||||||||||||
Jalali et al. [65] | √ | √ | √ | √ | Multiobjective biogeography-based optimization algorithm (MOBBO) | General | ||||||||||||
Trivedi and Singh [66] | √ | √ | √ | √ | √ | √ | √ | √ | √ | Fuzzy AHP and goal programming | General | |||||||
Haghi et al. [67] | √ | √ | √ | √ | Combination of GA and SA | General |
Author | Classification of Site Selection Models | Objective | Constraint | Method for Solutions or Optimization Software Package | Targeted Hazard | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | Maximal | Capacity | Distance | Budgetary | Demand | Number | ||||||||
Distance | Time | Risk | Cost | Number | Cover | |||||||||
Widener [38], Widener and Horner [39] | General hierarchical | √ | √ | √ | CPLEX | Hurricane | ||||||||
Chen et al. [71,72] Chen et al. [73] | General hierarchical | √ | √ | √ | GIS context | Earthquake | ||||||||
Li et al. [76] | General hierarchical | √ | √ | √ | √ | Hybrid cross-entropy method | Earthquake | |||||||
Zhao et al. [10] | General hierarchical | √ | √ | √ | √ | Cross-entropy with a local search mechanism | Earthquake | |||||||
Li [74] | General hierarchical | √ | √ | GIS | Earthquake | |||||||||
Li [75] | General hierarchical | √ | √ | √ | √ | LINGO | Earthquake | |||||||
Paul et al. [108] | General hierarchical | √ | √ | √ | √ | CPLEX 12.6 | General | |||||||
Ma et al. [77] | General hierarchical | √ | √ | √ | √ | Modified PSO | General | |||||||
Ng et al. [105] | Bilevel | √ | √ | SA | Hurricane | |||||||||
Li et al. [106] | Bilevel | √ | √ | √ | L-shaped algorithm | Hurricane | ||||||||
Li et al. [107] | Bilevel | √ | √ | √ | √ | Lagrangian relaxation algorithm | Hurricane | |||||||
Kongsomsaksakul et al. [20] | Bilevel | √ | √ | GA | Flood | |||||||||
Xu et al. [44] | Bilevel | √ | √ | √ | Modified PSO | Earthquake | ||||||||
Karoonsoontawong and Waller [88] | Bilevel | √ | √ | √ | √ | Exact algorithm; SA, GA and random search | General | |||||||
Kulshrestha et al. [89] | Bilevel | √ | √ | √ | √ | Cutting plane algorithm | General | |||||||
Chen et al. [109] | Bilevel | √ | √ | √ | √ | LINGO 11.0 | General |
Methods | Advantages | Disadvantages | Authors | |
---|---|---|---|---|
GIS spatial analysis technology | Easy to solve and fast | Cannot solve complex problems | Kocatepe et al. [18]; Horner et al. [19]; Alçada-Almeida et al. [46]; Gall [110]; Shi [111]; Sanyal and Lu [112]; Ye et al. [33]; Kilci et al. [26]; Wu and Wong [51]; Coutinho-Rodrigues et al. [47]; Chen et al. [71,72]; Chen et al. [73]; Li [74] | |
Optimum algorithm | Exact algorithm | Can find the best solution | Difficult to solve complex problems within a reasonable time | Widener [38]; Widener and Horner [39]; Dalal et al. [30]; Pan [31]; Gama et al. [32]; Zhou and Jian [34]; Zhou et al. [24]; Zhao et al. [35]; Li et al. [40]; Rodríguez-Espíndola and Gaytán [49]; Bozorgi-Amiri et al. [63]; Kulshrestha et al. [89]; Paul et al. [108] |
Approximation algorithm | Can solve complex problems | Difficult to find the best solution | Sherali et al. [16]; Pan [17]; Kongsomsaksakul et al. [20]; Gama et al. [21]; Huang et al. [23]; Hu et al. [36]; Ma et al. [37]; Berman and Krass [29]; Bozorgi-Amiri et al. [41]; Yuan et al. [42]; Du [43]; Doerner et al. [48]; Yushimito et al. [57]; Nolz et al. [50]; Hu et al. [52]; Zhao et al. [53,54]; Zhou et al. [55]; Ma et al. [56]; Xu et al. [59]; Zhao and Chen [60]; Zhao et al. [61]; Saadatseresht et al. [62]; Zhang et al. [64]; Barzinpour and Esmaeili [45]; Jalali et al. [65]; Haghi et al. [67]; Li [75]; Li et al. [76]; Zhao et al. [10]; Ma et al. [77]; Ng et al. [105]; Li et al. [106]; Li et al. [107]; Kongsomsaksakul et al. [20]; Xu et al. [44]; Karoonsoontawong and Waller [88]; Chen et al. [109] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Xu, W.; Qin, L.; Zhao, X. Site Selection Models in Natural Disaster Shelters: A Review. Sustainability 2019, 11, 399. https://doi.org/10.3390/su11020399
Ma Y, Xu W, Qin L, Zhao X. Site Selection Models in Natural Disaster Shelters: A Review. Sustainability. 2019; 11(2):399. https://doi.org/10.3390/su11020399
Chicago/Turabian StyleMa, Yunjia, Wei Xu, Lianjie Qin, and Xiujuan Zhao. 2019. "Site Selection Models in Natural Disaster Shelters: A Review" Sustainability 11, no. 2: 399. https://doi.org/10.3390/su11020399
APA StyleMa, Y., Xu, W., Qin, L., & Zhao, X. (2019). Site Selection Models in Natural Disaster Shelters: A Review. Sustainability, 11(2), 399. https://doi.org/10.3390/su11020399