The Possibilities of Orthophotos Application for Calculation of Ecological Stability Coefficient Purposes
Abstract
:1. Introduction
2. Literature and Review
- (a)
- Very low ecological stability,
- (b)
- Low ecological stability,
- (c)
- Medium ecological stability,
- (d)
- High ecological stability,
- (e)
- Very high ecological stability.
The CES Calculation Analysis in Accordance with the Chosen Authors
- (a)
- Arable land,
- (b)
- Hops,
- (c)
- Vineyard,
- (d)
- Gardens,
- (e)
- Fruit orchards,
- (f)
- Permanent grasslands,
- (g)
- Forest land,
- (h)
- Water surfaces,
- (i)
- Built-up areas and courtyards,
- (j)
- Other lands.
3. Materials and Methods
3.1. Locality
3.2. Aerial Photogrammetry by UAV
- Sensor: 1/2.3” (CMOS), Effective pixels: 12.35 M (Total pixels:12.71 M),
- Lens: FOV 78.8° 26 mm (35 mm format equivalent) f/2.2, distortion < 1.5% Focus from 0.5 m to ∞,
- ISO Range: video: 100–3200, photo: 100–1600,
- Image Size: 4000 × 3000.
3.3. Postprocessing
4. Results Interpretation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reháčková, T.; Pauditšová, E. Metodický postup stanovenia koeficientu ekologickej stability krajiny. Acta Environ. Univ. Comen. (Bratisl.) 2007, 15, 26–38. [Google Scholar]
- Lauko, P.; Korec, P. Všeobecné Zásady Funkčného Usporiadania Územia v Obvode Projektu Pozemkových Úprav; Geometra Levice: Nitra, Slovakia, 2009; p. 79. [Google Scholar]
- Muchová, Z.; Vanek, J. Metodické Štandardy Projektovania Pozemkových Úprav, 1st ed.; SPU v Nitre v Spolupráci s MP SR: Nitra, Slovakia, 2009. [Google Scholar]
- Ivan, P.; Vojtková, J.; Kráľová, J.; Klinčoková, K. Analýza Metodických Postupov Výpočtu Ekologickej Stability, Aktuálne Problémy Krajinnej Architektúry a Krajinného Plánovania; STU: Bratislava, Slovakia, 2013. [Google Scholar]
- Löw, J. Rukověť Projektanta Místního Územního Systému Ekologické Stability; Doplňek: Brno, Czechia, 1995; p. 122. [Google Scholar]
- Izakovičová, Z.; Miklós, L.; Drdoš, J. Krajinnoekologické Podmienky Trvalo Udržateľného Rozvoja; VEDA: Bratislava, Slovakia, 1997; p. 186. [Google Scholar]
- Míchal, I. Ekologická Stabilita; Veronica: Brno, Czechia, 1992; p. 244. [Google Scholar]
- László, M. Stabilita Krajiny v Ekologickom Genereli SSR; Životné Prostredie; ÚKE SAV: Bratislava, Slovakia, 1986; Volume 20, pp. 87–93. [Google Scholar]
- Mu, B.; Liu, C.; Tian, G.; Xu, Y.; Zhang, Y.; Mayer, A.L.; Lv, R.; He, R.; Kim, G. Conceptual Planning of Urban–Rural Green Space from a Multidimensional Perspective: A Case Study of Zhengzhou, China. Sustainability 2020, 12, 2863. [Google Scholar] [CrossRef] [Green Version]
- Parlavecchia, M.; Pascuzzi, S.; Anifantis, A.S.; Santoro, F.; Ruggiero, G. Use of GIS to Evaluate Minor Rural Buildings Distribution Compared to the Communication Routes in a Part of the Apulian Territory (Southern Italy). Sustainability 2019, 11, 4700. [Google Scholar] [CrossRef] [Green Version]
- Flowers, B.; Huang, K.-T.; Aldana, G.O. Analysis of the Habitat Fragmentation of Ecosystems in Belize Using Landscape Metrics. Sustainability 2020, 12, 3024. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zheng, B.; Hu, Y. Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China. Sustainability 2020, 12, 2974. [Google Scholar] [CrossRef] [Green Version]
- Zaki, S.A.; Othman, N.E.; Syahidah, S.W.; Yakub, F.; Muhammad-Sukki, F.; Ardila-Rey, J.A.; Shahidan, M.F.; Mohd Saudi, A.S. Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus. Sustainability 2020, 12, 2962. [Google Scholar] [CrossRef] [Green Version]
- Couto, E.V.; Oliveira, P.B.; Vieira, L.M.; Schmitz, M.H.; Ferreira, J.H.D. Integrating Environmental, Geographical and Social Data to Assess Sustainability in Hydrographic Basins: The ESI Approach. Sustainability 2020, 12, 3057. [Google Scholar] [CrossRef] [Green Version]
- Rüdisser, J.; Leitinger, G.; Schirpke, U. Application of the Ecosystem Service Concept in Social–Ecological Systems—From Theory to Practice. Sustainability 2020, 12, 2960. [Google Scholar] [CrossRef] [Green Version]
- Peano, C.; Massaglia, S.; Ghisalberti, C.; Sottile, F. Pathways for the Amplification of Agroecology in African Sustainable Urban Agriculture. Sustainability 2020, 12, 2718. [Google Scholar] [CrossRef] [Green Version]
- Aktsoglou, D.; Gaidajis, G. Environmental Sustainability Assessment of Spatial Entities with Anthropogenic Activities-Evaluation of Existing Methods. Sustainability 2020, 12, 2680. [Google Scholar] [CrossRef] [Green Version]
- Persson, J.; Blennow, K.; Gonçalves, L.; Borys, A.; Dutcă, I.; Hynynen, J.; Janeczko, E.; Lyubenova, M.; Martel, S.; Merganic, J.; et al. No polarization–Expected Values of Climate Change Impacts among European Forest Professionals and Scientists. Sustainability 2020, 12, 2659. [Google Scholar] [CrossRef] [Green Version]
- Dumieński, G.; Mruklik, A.; Tiukało, A.; Bedryj, M. The Comparative Analysis of the Adaptability Level of Municipalities in the Nysa Kłodzka Sub-Basin to Flood Hazard. Sustainability 2020, 12, 3003. [Google Scholar] [CrossRef] [Green Version]
- Pecho, P.; Skvarekova, I.; Azaltovic, V.; Bugaj, M. UAV usage in the process of creating 3D maps by RGB spectrum. Transp. Res. Procedia 2019, 43, 328–333. [Google Scholar] [CrossRef]
- Novak, A.; Skultety, F.; Kandera, B.; Łusiak, T. Measuring and Testing Area Navigation Procedures with GNSS. MATEC Web Conf. 2018, 236, 01004. [Google Scholar] [CrossRef]
- Skultety, F.; Badánik, B.; Bartoš, M.; Kandera, B. Design of controllable unmanned rescue parachute wing. Transp. Res. Procedia 2018, 35, 220–229. [Google Scholar] [CrossRef]
- Tu, Y.-H.; Phinn, S.; Johansen, K.; Robson, A.; Wu, D. Optimising Drone Flight Planning for Measuring Horticultural Tree Crop Structure. ISPRS J. Photogramm. Remote Sens. 2020, 160, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, I.A.; Musk, R.A.; Osborn, J.; Stone, C.; Lucieer, A. A Comparison of Area-Based Forest Attributes Derived from Airborne Laser Scanner, Small-Format and Medium-Format Digital Aerial Photography. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 231–241. [Google Scholar] [CrossRef]
- Taszarek, M.; Kendzierski, S.; Pilguj, N. Hazardous Weather Affecting European Airports: Climatological Estimates of Situations with Limited Visibility, Thunderstorm, Low-Level Wind Shear and Snowfall from ERA5. Weather Clim. Extrem. 2020, 28, 100243. [Google Scholar] [CrossRef]
- Cortesi, I.; Ferretti, L.V.; Morgia, F. Soil and Water as Resources: How Landscape Architecture Reclaims Hydric Contaminated Soil for Public Uses in Urban Settlements. Sustainability 2020, 12, 8840. [Google Scholar] [CrossRef]
- Cardeal, G.; Höse, K.; Ribeiro, I.; Götze, U. Sustainable Business Models–Canvas for Sustainability, Evaluation Method, and Their Application to Additive Manufacturing in Aircraft Maintenance. Sustainability 2020, 12, 9130. [Google Scholar] [CrossRef]
- Serrano Giné, D.; Pérez Albert, M.Y.; Àvila Callau, A.; Jurado Rota, J. Dataset on Georeferenced and Tagged Photographs for Ecosystem Services Assessment, Ebro Delta, N-E Spain. Data Brief 2020, 29, 105178. [Google Scholar] [CrossRef]
- Yu, M.; Huang, Y.; Cheng, X.; Tian, J. An ArcMap Plug-in for Calculating Landscape Metrics of Vector Data. Ecol. Inform. 2019, 50, 207–219. [Google Scholar] [CrossRef]
- Chen, J.; Liu, D.; Li, S.; Hu, D. Registering Georeferenced Photos to a Building Information Model to Extract Structures of Interest. Adv. Eng. Inform. 2019, 42, 100937. [Google Scholar] [CrossRef]
- Arcmap Online. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/iso-cluster-unsupervised-classification.htm (accessed on 20 December 2020).
- Xu, Z.; Shen, X.; Cao, L.; Coops, N.C.; Goodbody, T.R.H.; Zhong, T.; Zhao, W.; Sun, Q.; Ba, S.; Zhang, Z.; et al. Tree Species Classification Using UAS-Based Digital Aerial Photogrammetry Point Clouds and Multispectral Imageries in Subtropical Natural Forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102173. [Google Scholar] [CrossRef]
- Ren, Z.; Zhan, W.; Yue, Q.; He, J. Prioritizing Agricultural Patches for Reforestation to Improve Connectivity of Habitat Conservation Areas: A Guide to Grain-to-Green Project. Sustainability 2020, 12, 9128. [Google Scholar] [CrossRef]
- Hong, C.; Jin, X.; Ren, J.; Gu, Z.; Zhou, Y. Satellite Data Indicates Multidimensional Variation of Agricultural Production in Land Consolidation Area. Sci. Total Environ. 2019, 653, 735–747. [Google Scholar] [CrossRef]
- Pinto, L.F.R.; Venturini, G.d.F.P.; Digiesi, S.; Facchini, F.; Oliveira Neto, G.C.d. Sustainability Assessment in Manufacturing under a Strong Sustainability Perspective—An Ecological Neutrality Initiative. Sustainability 2020, 12, 9232. [Google Scholar] [CrossRef]
CES1 Value | Interpretation |
---|---|
<0.10 | maximum natural structure disruption, the basic ecological functions have to be intensively and permanently replaced using technical interventions |
0.10–0.30 | above the average used territory with the obvious natural structures disruption |
0.30–1.00 | territory intensively used for mainly large-scale agricultural production, weaken auto-regulatory processes cause a certain ecological lability |
>1.00 | almost balanced landscape where the technical objects are relatively in accordance with the preserved natural structures |
CES2 Value | Interpretation |
---|---|
<0.1 | degraded landscape |
<1 | disrupted landscape |
1 | balanced landscape |
1–10 | landscape with the dominant natural features |
>10 | natural landscape, respectively landscape close to nature |
Landscape Feature pi | The Landscape-Ecological Magnitude Coefficient Value kpi |
---|---|
built-up and traffic areas | 0.00 |
arable land, hops | 0.14 |
vineyards | 0.29 |
spruce monocultures | 0.38 |
fruit orchard, agate forests | 0.43 |
gardens | 0.50 |
meadows | 0.62 |
beech and fir forests | 0.63 |
pastures | 0.68 |
ponds and water surface | 0.79 |
riparian woodland, spruce forest | 1.00 |
CES3 Value | Interpretation |
---|---|
<0.33 | unstable landscape |
0.34–0.50 | low stable landscape |
0.51–0.66 | medium stable landscape |
>0.67 | the most stable landscape |
Ecological Stability Level | Rating Current Landscape Structure Features Importance from the Ecological Stability Point of View |
---|---|
0 | no importance (built-up, traffic and agronomical areas) |
1 | very low importance (large arable land) |
2 | low importance (small arable land, intensive orchards, vineyards, intensified meadows, cemeteries) |
3 | medium importance (extensively used meadows, linear non-forest woody vegetation) |
4 | high importance (meadows and forests with naturally growing species predominance, natural succession communities) |
5 | rare very high importance (natural forests, grasslands, wetlands, peat bogs, unregulated watercourses, etc.) |
Ecological Stability Level | Ecological Stability Landscape Type | CES4 |
---|---|---|
1 | very low ecological stability | <0.50 |
2 | low ecological stability | 0.51–1.50 |
3 | medium ecological stability | 1.51–3.00 |
4 | high ecological stability | 3.01–4.50 |
5 | very high ecological stability | >4.50 |
Segment | Land Type | Description | Area (%) |
---|---|---|---|
A | settlement, high built-up area | housing and civic amenities | 24.6 |
B | forest park | recreation, microclimate regulation, cultural and ecological purposes | 14.2 |
C | meadows | agricultural utilization, partial recreation purposes | 3.8 |
D | suburbs | low built housing construction, civic amenities | 4.1 |
E | gardening area | recreation, agrotourism | 2.2 |
F | agricultural segment | arable land and permanent grassland for the agricultural purposes | 51.1 |
Segments | ||||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | Whole Examined Area | ||
CES value | CES1 | 0.51 | 35.03 | 121.90 | 2.98 | 6.15 | 1.05 | 1.38 |
CES2 | 0.40 | 45.12 | 90.82 | 2.60 | 5.85 | 3.06 | 2.30 | |
CES3 | 0.18 | 0.61 | 0.62 | 0.39 | 0.46 | 0.32 | 0.35 | |
CES4 | 1.06 | 3.43 | 3.07 | 2.39 | 2.81 | 2.31 | 2.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chromčák, J.; Bačová, D.; Pecho, P.; Seidlová, A. The Possibilities of Orthophotos Application for Calculation of Ecological Stability Coefficient Purposes. Sustainability 2021, 13, 3017. https://doi.org/10.3390/su13063017
Chromčák J, Bačová D, Pecho P, Seidlová A. The Possibilities of Orthophotos Application for Calculation of Ecological Stability Coefficient Purposes. Sustainability. 2021; 13(6):3017. https://doi.org/10.3390/su13063017
Chicago/Turabian StyleChromčák, Jakub, Daša Bačová, Pavol Pecho, and Anna Seidlová. 2021. "The Possibilities of Orthophotos Application for Calculation of Ecological Stability Coefficient Purposes" Sustainability 13, no. 6: 3017. https://doi.org/10.3390/su13063017