Learning Effects of Augmented Reality and Game-Based Learning for Science Teaching in Higher Education in the Context of Education for Sustainable Development
Abstract
:1. Introduction
1.1. Augmented Reality Combined with Gamification and Game-Based Learning
1.2. The Effects of Augmented Reality on the Leraner’s Motivation
1.3. Technology Acceptance When Using Augmented Reality
1.4. Augmented Reality and User Engagement
1.5. Augmented Reality’s Impact on the Learner’s Cognitive Load
1.6. The Learner’s Self-Efficacy When Using Augmented Reality
1.7. Sustainable Development Goals and Education for Sustainable Development
1.8. Research Focus on Selected Competencies
2. Materials and Methods
3. Results
3.1. Kruskal–Wallis for Identification of Group Differences
3.2. Analysis of Contrast Groups
- Significant effects of M results from differences between groups A and B and B and C;
- Significant effects of TA results from differences between groups A and B, A and D, B and C, and C and D;
- Significant effects of UE results from differences between groups A and B, A and D, B and C, and C and D;
- Significant effects of CL results from differences between groups A and C, A and D, B and C, and B and D;
- No groups significantly differ from one another in terms of CSE, K, ESDm, and ESDa.
A vs. B | A vs. C | A vs. D | B vs. C | B vs. D | C vs. D | ||
---|---|---|---|---|---|---|---|
M | p-value | 0.023 | 0.585 | 0.355 | 0.006 | 0.178 | 0.149 |
z-value | −2.269 | 0.547 | −0.925 | 2.752 | 1.346 | −1.445 | |
Effect size r | 0.23 | 0.28 | |||||
TA | p-value | 0.016 | 0.067 | 0.022 | <0.001 | 0.774 | <0.001 |
z-value | −2.416 | 1.831 | −2.283 | 4.252 | 0.287 | −4.244 | |
Effect size r | 0.26 | 0.23 | 0.44 | 0.41 | |||
UE | p-value | 0.002 | 0.211 | 0.025 | <0.001 | 0.322 | <0.001 |
z-value | −3.133 | 1.252 | −2.244 | 4.380 | 0.991 | −3.536 | |
Effect size r | 0.32 | 0.22 | 0.44 | 0.34 | |||
CL | p-value | 0.792 | <0.001 | <0.001 | <0.001 | <0.001 | 0.931 |
z-value | 0.264 | 3.948 | 4.111 | 3.611 | 3.743 | −0.087 | |
Effect size r | 0.42 | 0.42 | 0.40 | 0.39 |
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, K.-H.; Tsai, C.-C. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research. J. Sci. Educ. Technol. 2013, 22, 449–462. [Google Scholar] [CrossRef]
- Garzón, J.; Pavón, J.; Baldiris, S. Systematic review and meta-analysis of augmented reality in educational settings. Virtual Real. 2019, 23, 447–459. [Google Scholar] [CrossRef]
- Krug, M.; Czok, V.; Huwer, J.; Weitzel, H.; Müller, W. Challenges for the design of augmented reality applications for science teacher education. In INTED2021 Proceedings; Gómez Chova, L., López Martínez, A., Candel Torres, I., Eds.; IATED: Barcelona, Spain, 2021; pp. 2484–2491. [Google Scholar] [CrossRef]
- Xu, W.-W.; Su, C.-Y.; Hu, Y.; Chen, C.-H. Exploring the Effectiveness and Moderators of Augmented Reality on Science Learning: A Meta-analysis. J. Sci. Educ. Technol. 2022, 31, 621–637. [Google Scholar] [CrossRef]
- Bacca-Acosta, J.; Baldiris, S.; Fabregat, R.; Graf, S. Augmented Reality Trends in Education: A Systematic Review of Research and Applications. Educ. Technol. Soc. 2014, 17, 133–149. [Google Scholar]
- Huwer, J.; Barth, C.; Siol, A.; Eilks, I. Combining reflections on education for sustainability and digitalization—Learning with and about the sustainable use of tablets along an augmented reality learning environment. Chemkon 2021, 28, 235–240. [Google Scholar] [CrossRef]
- Huwer, J.; Barth, C.; Siol, A.; Eilks, I. Learning With Digital Media About the Chemistry Behind the Recycling of Digital Hardware. In Digital Learning and Teaching in Chemistry; Dori, Y., Ngai, C., Szteinberg, G., Eds.; The Royal Society of Chemistry: London, UK, 2023; pp. 81–92. [Google Scholar] [CrossRef]
- Krug, M.; Czok, V.; Müller, S.; Weitzel, H.; Huwer, J.; Kruse, S.; Müller, W. AR in science education—An AR based teaching-learning scenario in the field of teacher education. Chemkon 2022, 29, 312–318. [Google Scholar] [CrossRef]
- Czok, V.; Krug, M.; Müller, S.; Huwer, J.; Kruse, S.; Müller, W.; Weitzel, H. A Framework for Analysis and Development of Augmented Reality applications in Science Teaching. Educ. Sci. 2023, 13, 926. [Google Scholar] [CrossRef]
- Milgram, P.; Takemura, H.; Utsumi, A.; Kishino, F. Augmented reality: A class of displays on the reality-virtuality continuum. In Telemanipulator and Telepresence Technologies; Das, H., Ed.; SPIE: Bellingham, WA, USA, 1995; pp. 282–292. [Google Scholar] [CrossRef]
- Azuma, R.T. A Survey of Augmented Reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, J.; Yu, S.; Wang, Q.; Xu, S. Effects of an Augmented Reality-Based Chemistry Experiential Application on Student Knowledge Gains, Learning Motivation, and Technology Perception. J. Sci. Educ. Technol. 2022, 32, 153–167. [Google Scholar] [CrossRef]
- Garcia-Bonete, M.-J.; Jensen, M.; Katona, G. A practical guide to developing virtual and augmented reality exercises for teaching structural biology. Biochem. Mol. Biol. 2019, 47, 16–24. [Google Scholar] [CrossRef]
- Hoog, T.G.; Aufdembrink, L.M.; Gaut, N.J.; Sung, R.-J.; Adamala, K.P.; Engelhart, A.E. Rapid deployment of smartphone-based augmented reality tools for field and online education in structural biology. Biochem. Mol. Biol. Educ. 2020, 48, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Korenova, L.; Fuchsova, M. Visualisation in Basic Science and Engineering Education of Future Primary School Teachers in Human Biology Education Using Augmented Reality. Eur. J. Contemp. Educ. 2019, 8, 92–102. [Google Scholar] [CrossRef]
- KOFOĞLU, M.; DARGUT, C.; ARSLAN, R. Development of Augmented Reality Application for Biology Education. Tused 2020, 17, 62–72. [Google Scholar] [CrossRef]
- Celik, C.; Guven, G.; Cakir, N.K. Integration of mobile augmented reality (MAR) applications into biology laboratory: Anatomic structure of the heart. Res. Learn. Technol. 2020, 28, 1–11. [Google Scholar] [CrossRef]
- Peeters, H.; Habig, S.; Fechner, S. Does Augmented Reality Help to Understand Chemical Phenomena during Hands-On Experiments?–Implications for Cognitive Load and Learning. MTI 2023, 7, 9. [Google Scholar] [CrossRef]
- Domínguez Alfaro, J.L.; Gantois, S.; Blattgerste, J.; de Croon, R.; Verbert, K.; Pfeiffer, T.; van Puyvelde, P. Mobile Augmented Reality Laboratory for Learning Acid–Base Titration. J. Chem. Educ. 2022, 99, 531–537. [Google Scholar] [CrossRef]
- Krug, M.; Huwer, J. Safety in the Laboratory—An Exit Game Lab Rally in Chemistry Education. Computers 2023, 12, 67. [Google Scholar] [CrossRef]
- Eriksen, K.; Nielsen, B.E.; Pittelkow, M. Visualizing 3D Molecular Structures Using an Augmented Reality App. J. Chem. Educ. 2020, 97, 1487–1490. [Google Scholar] [CrossRef]
- Probst, C.; Fetzer, D.; Lukas, S.; Huwer, J. Effects of using augmented reality (AR) in visualizing a dynamic particle model. Chemkon 2022, 29, 164–170. [Google Scholar] [CrossRef]
- Syskowski, S.; Huwer, J. A Combination of Real-World Experiments and Augmented Reality When Learning about the States of Wax—An Eye-Tracking Study. Educ. Sci. 2023, 13, 177. [Google Scholar] [CrossRef]
- Tschiersch, A.; Krug, M.; Huwer, J.; Banerji, A. Augmented Reality in chemistry education—An overview. Chemkon 2021, 28, 241–244. [Google Scholar] [CrossRef]
- Tee, N.Y.K.; Gan, H.S.; Li, J.; Cheong, B.H.-P.; Tan, H.Y.; Liew, O.W.; Ng, T.W. Developing and Demonstrating an Augmented Reality Colorimetric Titration Tool. J. Chem. Educ. 2018, 95, 393–399. [Google Scholar] [CrossRef]
- Dinc, F.; De, A.; Goins, A.; Halic, T.; Massey, M.; Yarberry, F. ARChem: Augmented Reality Based Chemistry LAB Simulation for Teaching and Assessment. In Proceedings of the 2021 19th International Conference on Information Technology Based Higher Education and Training (ITHET), Sydney, Australia, 4–6 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Cai, S.; Chiang, F.-K.; Sun, Y.; Lin, C.; Lee, J.J. Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interact. Learn. Environ. 2017, 25, 778–791. [Google Scholar] [CrossRef]
- Martín-Gutiérrez, J.; Roca González, C.; García Domínguez, M. Training of Spatial Ability on Engineering Students Through a Remedial Course Based on Augmented Reality. In Volume 7: 9th International Conference on Design Education; 24th International Conference on Design Theory and Methodology; American Society of Mechanical Engineers: New York, NY, USA, 2012; pp. 219–225. [Google Scholar] [CrossRef]
- Sheharyar, A.; Srinivasa, A.; Masad, E. Enhancing 3-D Spatial Skills of Engineering Students Using Augmented Reality. In Proceedings of the 2020 ASEE Virtual Annual Conference Content Access Proceedings, Virtual, 22–26 June 2020. ASEE Conferences, 2020—2021. [Google Scholar] [CrossRef]
- Cazzolla, A.; Lanzilotti, R.; Roselli, T.; Rossano, V. Augmented Reality to support education in Industry 4.0. In Proceedings of the 2019 18th International Conference on Information Technology Based Higher Education and Training (ITHET), Magdeburg, Germany, 26–27 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Sahin, C.; Nguyen, D.; Begashaw, S.; Katz, B.; Chacko, J.; Henderson, L.; Stanford, J.; Dandekar, K.R. Wireless communications engineering education via Augmented Reality. In 2016 IEEE Frontiers in Education Conference (FIE); Sepulveda, A., Ed.; IEEE: Piscataway, NJ, USA, 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Martín-Gutiérrez, J.; Contero, M. Improving Academic Performance and Motivation in Engineering Education with Augmented Reality. In HCI International 2011—Posters’ Extended Abstracts; Stephanidis, C., Ed.; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 509–513. [Google Scholar] [CrossRef]
- Billinghurst, M.; Duenser, A. Augmented Reality in the Classroom. Computer 2012, 45, 56–63. [Google Scholar] [CrossRef]
- Wu, H.-K.; Lee, S.W.-Y.; Chang, H.-Y.; Liang, J.-C. Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 2013, 62, 41–49. [Google Scholar] [CrossRef]
- Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Cai, S.; Liu, C.; Wang, T.; Liu, E.; Liang, J.-C. Effects of learning physics using Augmented Reality on students’ self-efficacy and conceptions of learning. Br. J. Educ. Technol. 2021, 52, 235–251. [Google Scholar] [CrossRef]
- Altinpulluk, H. Determining the trends of using augmented reality in education between 2006–2016. Educ. Inf. Technol. 2019, 24, 1089–1114. [Google Scholar] [CrossRef]
- Küçük, S.; Kapakin, S.; Göktaş, Y. Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load. Anat. Sci. Educ. 2016, 9, 411–421. [Google Scholar] [CrossRef]
- Huang, T.-C.; Chen, C.-C.; Chou, Y.-W. Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Comput. Educ. 2016, 96, 72–82. [Google Scholar] [CrossRef]
- Deterding, S.; Dixon, D.; Khaled, R.; Nacke, L. From game design elements to gamefulness. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments; Lugmayr, A., Franssila, H., Safran, C., Hammouda, I., Eds.; ACM: New York, NY, USA, 2011; pp. 9–15. [Google Scholar] [CrossRef]
- Nah, F.F.-H.; Zeng, Q.; Telaprolu, V.R.; Ayyappa, A.P.; Eschenbrenner, B. Gamification of Education: A Review of Literature. In HCI in Business; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Kobsa, A., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., et al., Eds.; Lecture Notes in Computer Science; Springer International Publishing: New York, NY, USA, 2014; pp. 401–409. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Keramopoulos, E.; Diamantaras, K.; Evangelidis, G. Augmented Reality and Gamification in Education: A Systematic Literature Review of Research, Applications, and Empirical Studies. Appl. Sci. 2022, 12, 6809. [Google Scholar] [CrossRef]
- Su, C.-H. The effect of users’ behavioral intention on gamification augmented reality in stem (gar-stem) education. JBSE 2019, 18, 450–465. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Keramopoulos, E.; Diamantaras, K.; Evangelidis, G. Integrating Augmented Reality, Gamification, and Serious Games in Computer Science Education. Educ. Sci. 2023, 13, 618. [Google Scholar] [CrossRef]
- Ayyagari, R.; Grover, V.; Purvis, R. Technostress: Technological Antecedents and Implications. MIS Q. 2011, 35, 831. [Google Scholar] [CrossRef]
- Fajri, F.A.; Haribowo, P.R.K.; Amalia, N.; Natasari, D. Gamification in e-learning: The mitigation role in technostress. IJERE 2021, 10, 606. [Google Scholar] [CrossRef]
- Nguyen, D.; Meixner, G. Gamified Augmented Reality Training for An Assembly Task: A Study About User Engagement. In Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, Leipzig, Germany, 1–4 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 901–904. [Google Scholar] [CrossRef]
- Meekaew, N.; Ketpichainarong, W. An Augmented Reality to Support Mobile Game-Based Learning in Science Museum on Biodiversity. In Proceedings of the 2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI), Yonago, Japan, 8–13 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 250–255. [Google Scholar] [CrossRef]
- Chen, C.-H. Impacts of augmented reality and a digital game on students’ science learning with reflection prompts in multimedia learning. Educ. Tech. Res. Dev. 2020, 68, 3057–3076. [Google Scholar] [CrossRef]
- Schiefele, U.; Schaffner, E. Motivation. In Pädagogische Psychologie; Wild, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 153–175. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung für die Pädagogik. Z. Für Pädagogik 1993, 39, 223–238. [Google Scholar] [CrossRef]
- Yusof, C.S.; Amri, N.L.S.; Ismail, A.W. Bio-WTiP: Biology lesson in handheld augmented reality application using tangible interaction. IOP Conf. Ser. Mater. Sci. Eng. 2020, 979, 12002. [Google Scholar] [CrossRef]
- Chun Lam, M.; Kei Tee, H.; Muhammad Nizam, S.S.; Che Hashim, N.; Asylah Suwadi, N.; Yee Tan, S.; Aini Abd Majid, N.; Arshad, H.; Yee Liew, S. Interactive Augmented Reality with Natural Action for Chemistry Experiment Learning. Tem J. 2020, 9, 351–360. [Google Scholar]
- Singh, G.; Mantri, A.; Sharma, O.; Dutta, R.; Kaur, R. Evaluating the impact of the augmented reality learning environment on electronics laboratory skills of engineering students. Comput. Appl. Eng. Educ. 2019, 27, 1361–1375. [Google Scholar] [CrossRef]
- Majeed, Z.H.; Ali, H.A. A review of augmented reality in educational applications. IJATEE 2020, 7, 20–27. [Google Scholar] [CrossRef]
- Ferrer-Torregrosa, J.; Torralba, J.; Jimenez, M.A.; García, S.; Barcia, J.M. ARBOOK: Development and Assessment of a Tool Based on Augmented Reality for Anatomy. J. Sci. Educ. Technol. 2015, 24, 119–124. [Google Scholar] [CrossRef]
- Ibáñez, M.B.; Di Serio, Á.; Villarán, D.; Delgado Kloos, C. Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Comput. Educ. 2014, 71, 1–13. [Google Scholar] [CrossRef]
- Schütz-Pitan, J.; Weiß, T.; Hense, J. Jedes Medium ist anders: Akzeptanz unterschiedlicher digitaler Medien in der Hochschullehre. Die Hochschullehre 2018, 161–180. [Google Scholar]
- Granić, A.; Marangunić, N. Technology acceptance model in educational context: A systematic literature review. Br. J. Educ. Technol. 2019, 50, 2572–2593. [Google Scholar] [CrossRef]
- Tiede, J.; Grafe, S.; Mangina, E. Teachers’ Attitudes and Technology Acceptance Towards AR Apps for Teaching and Learning. In Proceedings of the 2022 8th International Conference of the Immersive Learning Research Network (iLRN), Vienna, Austria, 30 May–4 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Joo, Y.J.; Park, S.; Lim, E. Factors influencing preservice teachers’ intention to use technology: TPACK, teacher self-efficacy, and technology acceptance model. J. Educ. Technol. Soc. 2018, 21, 48–59. [Google Scholar]
- O’Brien, H.L.; Cairns, P.; Hall, M. A practical approach to measuring user engagement with the refined user engagement scale (UES) and new UES short form. Int. J. Hum. Comput. Stud. 2018, 112, 28–39. [Google Scholar] [CrossRef]
- Permadi, D.; Rafi, A. Developing a conceptual model of user engagement for mobile-based augmented reality games. J. Teknol. 2015, 77, 9–13. [Google Scholar] [CrossRef]
- Permadi, D.; Rafi, A. Empirical Analysis of Mobile Augmented Reality Games for Engaging Users’ Experience. In Intelligent and Evolutionary Systems; Lavangnananda, K., Phon-Amnuaisuk, S., Engchuan, W., Chan, J.H., Eds.; Proceedings in Adaptation, Learning and Optimization; Springer International Publishing: New York, NY, USA, 2016; pp. 343–355. [Google Scholar] [CrossRef]
- Cai, S.; Wang, X.; Chiang, F.-K. A case study of Augmented Reality simulation system application in a chemistry course. Comput. Hum. Behav. 2014, 37, 31–40. [Google Scholar] [CrossRef]
- Herpich, F.; Guarese, R.L.; Cassola, A.T.; Tarouco, L.M. Mobile Augmented Reality Impact in Student Engagement: An Analysis of the Focused Attention Dimension. In Proceedings of the 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 562–567. [Google Scholar] [CrossRef]
- Mayer, R.E. (Ed.) The Cambridge Handbook of Multimedia Learning; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- İbili, E. Effect of augmented reality environments on cognitive load: Pedagogical effect, instructional design, motivation and interaction interfaces. IJPE 2019, 15, 42–57. [Google Scholar] [CrossRef]
- Buchner, J.; Buntins, K.; Kerres, M. The impact of augmented reality on cognitive load and performance: A systematic review. J. Comput. Assist. Learn. 2022, 38, 285–303. [Google Scholar] [CrossRef]
- Keller, S.; Rumann, S.; Habig, S. Cognitive Load Implications for Augmented Reality Supported Chemistry Learning. Information 2021, 12, 96. [Google Scholar] [CrossRef]
- Thees, M.; Kapp, S.; Strzys, M.P.; Beil, F.; Lukowicz, P.; Kuhn, J. Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Comput. Hum. Behav. 2020, 108, 106316. [Google Scholar] [CrossRef]
- Altmeyer, K.; Kapp, S.; Thees, M.; Malone, S.; Kuhn, J.; Brünken, R. The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses—Theoretical background and empirical results. Br. J. Educ. Technol. 2020, 51, 611–628. [Google Scholar] [CrossRef]
- Chiang, T.; Yang, S.; Hwang, G.-J. An Augmented Reality-based Mobile Learning System to Improve Students’ Learning Achievements and Motivations in Natural Science Inquiry Activities. Educ. Technol. Soc. 2014, 17, 352–365. [Google Scholar]
- Schwarzer, R.; Jerusalem, M. Das Konzept der Selbstwirksamkeit. Selbstwirksamkeit und Motivationsprozesse in Bildungsinstitutionen. Z. Für Pädagogik Beih. 2002, 44, 28–53. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Holden, H.; Rada, R. Understanding the Influence of Perceived Usability and Technology Self-Efficacy on Teachers’ Technology Acceptance. J. Res. Technol. Educ. 2011, 43, 343–367. [Google Scholar] [CrossRef]
- Venkatesh, V. Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Inf. Syst. Res. 2000, 11, 342–365. [Google Scholar] [CrossRef]
- United Nations. Education for Sustainable Development Goals: Learning Objectives; UNESCO Publishing: Paris, France, 2017. [Google Scholar]
- Bundeministerium Für Bildung und Forschung—BMBF. Nationaler Aktionsplan Bildung Für Nachhaltige Entwicklung; Zarbock: Frankfurt, Germany, 2017. [Google Scholar]
- UNESCO. What You Need to Know about Education for Sustainable Development. Available online: https://www.unesco.org/en/education-sustainable-development/need-know (accessed on 4 September 2022).
- Gralton, A.; Sinclair, M.; Purnell, K. Changes in Attitudes, Beliefs and Behaviour: A Critical Review of Research into the Impacts of Environmental Education Initiatives. Aust. J. Environ. Educ. 2004, 20, 41–52. [Google Scholar] [CrossRef]
- Janakiraman, S.; Watson, S.L.; Watson, W.R. Using Game-based Learning to Facilitate Attitude Change for Environmental Sustainability. J. Educ. Sustain. Dev. 2018, 12, 176–185. [Google Scholar] [CrossRef]
- Wolf, T. Green gamification: How gamified information presentation affects pro-environmental behavior. In Proceedings of the GamiFIN Conference, Levi, Finland, 1–3 April 2020. [Google Scholar]
- Rodrigues, R.; Pombo, L.; Marques, M.; Ribeiro, S.; Ferreira-Santos, J.; Draghi, J. Value of a Mobile Game-Based App Towards Education for Sustainability; Lisbon, Portugal. 2023. Available online: https://www.esociety-conf.org/wp-content/uploads/2023/03/1_ML2023_F_029_Rodrigues.pdf (accessed on 22 October 2023).
- Wang, K.; Tekler, Z.D.; Cheah, L.; Herremans, D.; Blessing, L. Evaluating the Effectiveness of an Augmented Reality Game Promoting Environmental Action. Sustainability 2021, 13, 13912. [Google Scholar] [CrossRef]
- Porro, S.; Spadoni, E.; Bordegoni, M.; Carulli, M. Design of an Intrinsically Motivating AR Experience for Environmental Awareness. Proc. Des. Soc. 2022, 2, 1679–1688. [Google Scholar] [CrossRef]
- Hallinger, P.; Wang, R.; Chatpinyakoop, C.; Nguyen, V.-T.; Nguyen, U.-P. A bibliometric review of research on simulations and serious games used in educating for sustainability, 1997–2019. J. Clean. Prod. 2020, 256, 120358. [Google Scholar] [CrossRef]
- Hsiao, K.-F.; Chen, N.-S.; Huang, S.-Y. Learning while exercising for science education in augmented reality among adolescents. Interact. Learn. Environ. 2012, 20, 331–349. [Google Scholar] [CrossRef]
- Weng, C.; Otanga, S.; Christianto, S.M.; Chu, R.J.-C. Enhancing Students’ Biology Learning by Using Augmented Reality as a Learning Supplement. J. Educ. Comput. Res. 2020, 58, 747–770. [Google Scholar] [CrossRef]
- Tarng, W.; Yu, C.-S.; Liou, F.-L.; Liou, H.-H. Development of a virtual butterfly ecological system based on augmented reality and mobile learning technologies. In Proceedings of the 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 674–679. [Google Scholar] [CrossRef]
- Jamali, S.S.; Shiratuddin, M.F.; Wong, K.W.; Oskam, C.L. Utilising Mobile-Augmented Reality for Learning Human Anatomy. Procedia Soc. Behav. Sci. 2015, 197, 659–668. [Google Scholar] [CrossRef]
- von Kotzebue, L.; Meier, M.; Finger, A.; Kremser, E.; Huwer, J.; Thoms, L.-J.; Becker, S.; Bruckermann, T.; Thyssen, C. The Framework DiKoLAN (Digital Competencies for Teaching in Science Education) as Basis for the Self-Assessment Tool DiKoLAN-Grid. Educ. Sci. 2021, 11, 775. [Google Scholar] [CrossRef]
- Redecker, C. European Framework for the Digital Competence of Educators: DigCompEdu; Policy Commons: San Francisco, CA, USA, 2017. [Google Scholar] [CrossRef]
- Koehler, M.J.; Mishra, P.; Cain, W. What is Technological Pedagogical Content Knowledge (TPACK)? J. Educ. 2013, 193, 13–19. [Google Scholar] [CrossRef]
- Thyssen, C.; Huwer, J.; Irion, T.; Schaal, S. From TPACK to DPACK: The “Digitality-Related Pedagogical and Content Knowledge”-Model in STEM-Education. Educ. Sci. 2023, 13, 769. [Google Scholar] [CrossRef]
- Vogelsang, C.; Finger, A.; Laumann, D.; Thyssen, C. Vorerfahrungen, Einstellungen und motivationale Orientierungen als mögliche Einflussfaktoren auf den Einsatz digitaler Werkzeuge im naturwissenschaftlichen Unterricht. ZfDN 2019, 25, 115–129. [Google Scholar] [CrossRef]
- Müller, S.; Kruse, S.; Czok, V.; Krug, M.; Huwer, J.; Müller, W.; Weitzel, H. Augmented Reality im natur- und technikwissenschaftlichen Unterricht: Bewusstsein für die Allgegenwärtigkeit von Mikroplastik im Projekt ARtiste. MNU J. 2022, 328–332. [Google Scholar]
- Reiß, S.; Sarris, V. Experimentelle Psychologie: Von der Theorie zur Praxis; Always learning; Pearson: London, UK, 2012. [Google Scholar]
- Wilde, M.; Bätz, K.; Kovaleva, A.; Urhahne, D. Testing a short scale of intrinsic motivation. Z. Für Didakt. Der Naturwissenschaften 2009, 15, 31–45. [Google Scholar]
- Krell, M. Evaluating an Instrument to Measure Mental Load and Mental Effort Using Item Response Theory. 2015. Available online: https://edoc.hu-berlin.de/handle/18452/8864 (accessed on 4 September 2022).
- Günther, J.; Overbeck, A.K.; Muster, S.; Tempel, B.J.; Schaal, S.; Schaal, S.; Kühner, E.; Otto, S. Outcome indicator development: Defining education for sustainable development outcomes for the individual level and connecting them to the SDGs. Glob. Environ. Chang. 2022, 74, 102526. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Preece, J.; Rogers, Y.; Benyon, D.; Carey, T.; Holland, S.; Sharp, H. Human-Computer Interaction; [Nachdr.]; Addison-Wesley: New York, NY, USA, 2002. [Google Scholar]
- Dey, A.; Billinghurst, M.; Lindeman, R.W.; Swan, J.E. A Systematic Review of 10 Years of Augmented Reality Usability Studies: 2005 to 2014. Front. Robot. AI 2018, 5, 37. [Google Scholar] [CrossRef]
- Jacques, R.D. The Nature of Engagement and Its Role in Hypermedia Evaluation and Design. Ph.D. Thesis, South Bank University, London, UK, 1996. [Google Scholar]
- Webster, J.; Ho, H. Audience engagement in multimedia presentations. SIGMIS Database 1997, 28, 63–77. [Google Scholar] [CrossRef]
- Sweller, J. Cognitive Load During Problem Solving: Effects on Learning. Cogn. Sci. 1988, 12, 257–285. [Google Scholar] [CrossRef]
- Paas, F.G.W.C.; van Merriënboer, J.J.G. Instructional control of cognitive load in the training of complex cognitive tasks. Educ. Psychol. Rev. 1994, 6, 351–371. [Google Scholar] [CrossRef]
- Blanz, M. Forschungsmethoden und Statistik für die Soziale Arbeit: Grundlagen und Anwendungen, 2. Auflage; Verlag W. Kohlhammer: Stuttgart, Germany, 2021. [Google Scholar]
- Döring, N.; Bortz, J. Forschungsmethoden und Evaluation in Den Sozial-Und Humanwissenschaften; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Huber, M.Z.; Hilty, L.M. Gamification and sustainable consumption: Overcoming the limitations of persuasive technologies. In ICT Innovations for Sustainability; Springer International Publishing: New York, NY, USA, 2015; pp. 367–385. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Washington, DC, USA, 1988. [Google Scholar]
Setting A: with AR with game | Setting B: with AR/without game |
Setting C: without AR/with game | Setting D: without AR/without game |
Setting | Features | Similarities |
---|---|---|
A: with AR with game | Game board with dice and digital game manager, storyline with 6 chapters and according tasks; 3 subject-specific breakout rooms with AR | Content of the 6 tasks and 3 breakout rooms, duration, groups of 4–5 participants, equipment: 1 tablet |
B: with AR without game | Interactive presentation with 6 individual, unconnected, and non-chronological tasks; 3 subject-specific breakout rooms with AR | Content of the 6 tasks and 3 breakout rooms, duration, groups of 4–5 participants, equipment: 1 tablet |
C: without AR with game | Game board with dice and digital game manager, storyline with 6 chapters and according tasks; 3 analog stations with subject-specific tasks | Content of the 6 tasks and 3 breakout rooms, duration, groups of 4–5 participants, equipment: 1 tablet |
D: without AR without game | Interactive presentation with 6 individual, unconnected, and non-chronological tasks; 3 analog stations with subject-specific tasks | Content of the 6 tasks and 3 breakout rooms, duration, groups of 4–5 participants, equipment: 1 tablet |
Construct and Questionnaire | Items and Scale | Reference |
---|---|---|
Motivation (KIM) | 12 items, standard 5-point Likert scale | [99] |
Technology Acceptance (TAM2) | 19 items, standard 7-point Likert scale | [76] |
User Engagement (UES-SF) | 12 items, standard 5-point Likert scale | [62] |
Cognitive Load | 12 items, standard 7-point Likert scale | [100] |
Computer Self-Efficacy | 10 items, 10-point Guttman scale | [76] |
Knowledge | 13 items, single choice, 3 response options | Self-developed |
Education of Sustainable Development (OIT) | 15 min; items chosen from a pool of 400 items | [101] |
Descriptive Statistics: Variable’s Means | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable Scale | M 1–5 | TA 1–5 | UE 1–7 | CL 1–7 | CSE −10 to +10 | K −13 to +13 | ESDm −4 to +4 | ESDa −4 to +4 | |
Group A | Sample | 55 | 46 | 51 | 50 | 46 | 55 | 39 | 39 |
Mean | 3.1742 | 4.3822 | 3.4542 | 4.6650 | 0.4152 | 0.5273 | 0.1715 | 0.1678 | |
Group B | Sample | 46 | 43 | 46 | 45 | 45 | 48 | 27 | 27 |
Mean | 3.3551 | 4.5998 | 3.8297 | 4.5833 | 0.3044 | 0.4167 | 0.2074 | 0.1397 | |
Group C | Sample | 51 | 49 | 53 | 38 | 38 | 48 | 38 | 38 |
Mean | 3.1340 | 4.1332 | 3.3915 | 4.0066 | 0.2158 | −0.6250 | 0.3126 | 0.2202 | |
Group D | Sample | 51 | 56 | 54 | 48 | 48 | 50 | 46 | 46 |
Mean | 3.2206 | 4.5771 | 3.6698 | 3.9983 | 0.5250 | 0.8400 | 0.3534 | 0.31376 | |
Total | Sample | 203 | 194 | 204 | 181 | 177 | 201 | 150 | 150 |
Mean | 3.2167 | 4.4238 | 3.5797 | 4.3297 | 0.3740 | 0.3035 | 0.2695 | 0.2208 |
Reliability: Cronbach’s Alpha | ||||||||
---|---|---|---|---|---|---|---|---|
Construct | M | TA | UE | CL | CSE | K | ESDm | ESDa |
Number of Items | 12 | 19 | 12 | 12 | 10 | 13 | Varies (15 min.) | Varies (15 min.) |
Cronbach’s Alpha | 0.753 | 0.747 | 0.822 | 0.816 | Pre 0.911 | Pre 0.473 | x | x |
Post 0.924 | Post 0.791 |
Normal Distribution: Shapiro–Wilk | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | M | TA | UE | CL | CSE | K | ESDm | ESDa |
p-Value | Sig. | Sig. | Sig. | Sig. | Sig. | Sig. | Sig. | Sig. |
Group A | 0.086 | 0.077 | 0.343 | 0.916 | <0.001 | <0.001 | 0.709 | 0.687 |
Group B | 0.003 | 0.003 | 0.680 | 0.161 | 0.193 | 0.003 | 0.393 | 0.127 |
Group C | 0.074 | 0.374 | 0.484 | 0.116 | 0.644 | <0.001 | 0.927 | 0.446 |
Group D | 0.405 | 0.646 | 0.003 | 0.827 | 0.008 | <0.001 | 0.465 | 0.092 |
Total | <0.001 | 0.054 | 0.151 | 0.214 | <0.001 | <0.001 | 0.625 | 0.38 |
Variance Homogeneity: Levene Test | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | M | TA | UE | CL | CSE | K | ESDm | ESDa |
p-Value | Sig. | Sig. | Sig. | Sig. | Sig. | Sig. | Sig. | Sig. |
Total | 0.442 | 0.405 | 0.043 | 0.289 | 0.877 | <0.001 | 0.386 | 0.452 |
Kruskal–Wallis | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | M | TA | UE | CL | CSE | K | ESDm | ESDa |
df | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Test statistics | 8.69 | 25.42 | 24.40 | 29.95 | 4.12 | 1.50 | 4.25 | 1.31 |
p-value | 0.034 | <0.001 | <0.001 | <0.001 | 0.682 | 0.249 | 0.235 | 0.726 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czok, V.; Krug, M.; Müller, S.; Huwer, J.; Weitzel, H. Learning Effects of Augmented Reality and Game-Based Learning for Science Teaching in Higher Education in the Context of Education for Sustainable Development. Sustainability 2023, 15, 15313. https://doi.org/10.3390/su152115313
Czok V, Krug M, Müller S, Huwer J, Weitzel H. Learning Effects of Augmented Reality and Game-Based Learning for Science Teaching in Higher Education in the Context of Education for Sustainable Development. Sustainability. 2023; 15(21):15313. https://doi.org/10.3390/su152115313
Chicago/Turabian StyleCzok, Valerie, Manuel Krug, Sascha Müller, Johannes Huwer, and Holger Weitzel. 2023. "Learning Effects of Augmented Reality and Game-Based Learning for Science Teaching in Higher Education in the Context of Education for Sustainable Development" Sustainability 15, no. 21: 15313. https://doi.org/10.3390/su152115313