The Influence of Cropping Systems and Tillage Intensity on Soil CO2 Exchange Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Characterization
2.2. Treatments and Management Techniques
2.3. Meteorological Conditions
2.4. Soil Analysis and Soil Net Carbon Dioxide (CO2) Exchange Rate Sampling
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Tillage and Cropping Systems on Soil Chemical Properties
3.2. The Dynamic of Soil Net CO2 Exchange Rate (NCER) under Different Tillage and Cropping Systems
3.3. Influence of Different Tillage and Cropping Systems on Soil Surface Moisture Content and Temperature
3.4. The Effect of Environmental Variables on Soil Net Carbon Dioxide (CO2) Exchange Rate
4. Conclusions
- The dependence of NCER was determined on tillage and cropping systems but did not observe a significant effect applying a combination of tillage and cropping systems. A significantly higher (by 28%) NCER was determined under NT. Crop rotation also regulated soil NCER and the highest NCER was observed in WW-CC + SW+ WW-CC rotation, especially in NT.
- Cropping systems improved the content of soil nutrients, but no significant effect was registered on pH and organic carbon changes. However, these changes were not reflected in tillage. The highest amount of nutrients was determined under the WW-CC + SW + WW-CC cropping system. WW-SW-WW cropping system was located in the opposite position of availability of nutrients, indicating the ability of this kind of monoculture to impoverish the soil. This informs on the necessity of crop rotation under moderate climatic conditions.
- Comparatively higher soil moisture content was observed in NT and in these rotations where CCs were included (by 1–3%). Tillage and cropping systems had no significant impact on soil surface temperature, but a trend of higher soil surface temperatures in CT was found, which could be decisive due to increased air circulation.
- Increased NCER positively correlated with the increase in surface soil temperature (r = 0.44; p < 0.05), but negatively depended on soil surface moisture content (r = −0.73; p < 0.05).
- The results of this experiment should improve our understanding of how agricultural practices affect NCER, so it can serve as a foundation for future research concepts. However, additional research is required on soil microbiological activity to obtain the knowledge of soil respiration in relation to soil microbes–plant roots relationship within topsoil layers of contrasting tillage systems application under moderate climatic conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Feizienė, D.; Feiza, V.; Karklins, A.; Veršulienė, A.; Janušauskaitė, D.; Antanaitis, Š. After-effects of long-term tillage and residue management on topsoil state in Boreal conditions. Eur. J. Agron. 2018, 94, 12–24. [Google Scholar] [CrossRef]
- Hossain, M.E.; Islam, M.S.; Sujan, M.H.K.; Tuhin, M.M.U.J.; Bekun, F.V. Towards a clean production by exploring the nexus between agricultural ecosystem and environmental degradation using novel dynamic ARDL simulations approach. Environ. Sci. Pollut. Res. 2022, 29, 53768–53784. [Google Scholar] [CrossRef]
- Mohammed, S.; Mirzaei, M.; Pappné Törő, Á.; Gorji Anari, M.; Moghiseh, E.; Asadi, H.; Szabó, S.; Kakuszi-Széles, A.; Harsányi, E. Soil carbon dioxide emissions from maize (Zea mays L.) fields as influenced by tillage management and climate. Irrig. and Drain. 2022, 71, 228–240. [Google Scholar] [CrossRef]
- Chen, Z.; An, C.; Fang, H.; Zhang, Y.; Zhou, Z.; Zhou, Y.; Zhao, S. Assessment of regional greenhouse gas emission from beef cattle production: A case study of Saskatchewan in Canada. J. Environ. Manag. 2020, 264, 110443. [Google Scholar] [CrossRef] [PubMed]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Chem. Erde-Geochem. 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Pries, C.E.H.; Castanha, C.; Porras, R.C.; Torn, M.S. The whole-soil carbon flux in response to warming. Science 2017, 355, 1420–1423. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Katterer, T.; Lugato, E.; Thomsen, I.K.; Jorgensen, H.B.; Isberg, P.E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 5, 30. [Google Scholar] [CrossRef]
- Silva, W.M.d.; Bianchini, A.; Amorim, R.S.S.; Couto, E.G.; Weber, O.L.d.S.; Hoshide, A.K.; Pereira, P.S.X.; Cremon, C.; Abreu, D.C.d. Soil Efflux of Carbon Dioxide in Brazilian Cerrado Wheat (Triticum aestivum L.) under Variable Soil Preparation and Irrigation. Agriculture 2022, 12, 163. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, S.; Rajbanshi, J. Responses of soil organic carbon to conservation practices including climate-smart agriculture in tropical and subtropical regions: A meta-analysis. Sci. Total Environ. 2022, 805, 150428. [Google Scholar] [CrossRef] [PubMed]
- Buragiene, S.; Sarauskis, E.; Romaneckas, K.; Adamaviciene, A.; Kriauciuniene, Z.; Avizienyte, D.; Marozas, V.; Naujokienė, V. Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. Total Environ. 2019, 662, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Egan, G.; Crawley, M.J.; Fornara, D.A. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions. Sci. Total Environ. 2018, 613–614, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Li, F.; Qiao, Y.; Leng, P.; Li, Z.; Ge, J. Influence of no-tillage and precipitation pulse on continuous soil respiration of summer maize affected by soil water in the North China Plain. Sci. Total Environ. 2021, 766, 144384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xin, X.; Yang, W.; Ding, S.; Ren, G.; Li, M. Soil respiration and net carbon flux response to long-term reduced/no-tillage with and without residues in a wheat-maize cropping system. Soil Tillage Res. 2021, 214, 105182. [Google Scholar] [CrossRef]
- Nyambo, P.; Cornelius, C.; Araya, T. Carbon dioxide fluxes and carbon stocks under conservation agricultural practices in South Africa. Agriculture 2020, 10, 374. [Google Scholar] [CrossRef]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. Influence of tillage practices and crop type on soil CO2 emissions. Sustainability 2016, 8, 90. [Google Scholar] [CrossRef]
- Cooper, H.V.; Sjogersten, S.; Lark, R.M.; Mooney, S.J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 2021, 16, 9326. [Google Scholar] [CrossRef]
- Chahal, I.; Hooker, D.C.; Deen, B.; Janovicek, K.; Van Eerd, L.L. Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate. Soil Tillage Res. 2021, 213, 105121. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.; Almendros, P.; Vallejo, A. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 2014, 466, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Skinner, C.; Gattinger, A.; Krauss, M.; Krause, H.M.; Mayer, J.; van der Heijden, M.G.; Mader, P. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 2019, 9, 1702. [Google Scholar] [CrossRef] [PubMed]
- Youngerman, C.Z.; DiTommaso, A.; Curran, W.S.; Mirsky, S.B.; Ryan, M.R. Corn density effect on interseeded cover crops, weeds, and grain yield. Org. Agric. Agroecol. 2018, 110, 2478–2487. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Staugaitis, G.; Masevičienė, A.; Žičkienė, L. Dirvožemio Organinės Anglies (Humuso) Tyrimai Žemės ūkio Naudmenose. Rekomendacijos; Lietuvos Agrarinių ir Miškų Mokslų Centras: Kaunas, Lithuania, 2022; 32p, ISBN 978-609-451-006-9. [Google Scholar]
- Malobane, M.E.; Nciizah, A.D.; Mudau, F.N.; Wakindiki, I.I.C. Tillage, crop rotation and crop residue management effects on nutrient availability in a sweet sorghum-based cropping system in marginal soils of south Africa. Agronomy 2020, 10, 776. [Google Scholar] [CrossRef]
- Desoky, E.S.M.; Mansour, E.; El-Sobky, E.S.E.A.; Abdul-Hamid, M.I.; Taha, T.F.; Elakkad, H.A.; Arnaout, S.M.A.I.; Eid, R.S.M.; El-Tarabily, K.A.; Yasin, M.A.T. Physio-biochemical and agronomic responses of faba beans to exogenously applied nano-silicon under drought stress conditions. Front. Plant Sci. 2021, 12, 637783. [Google Scholar] [CrossRef] [PubMed]
- Tesfahunegn, G.B.; Gebru, T.A. Variation in soil properties under different cropping and other land-use systems in dura catchment, northern Ethiopia. PLoS ONE 2020, 15, 0222476. [Google Scholar] [CrossRef] [PubMed]
- Desoky, E.S.M.; Mansour, E.; Yasin, M.A.T.; El-Sobky, E.S.E.A.; Rady, M.M. Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span. J. Agric. Res. 2020, 18, 0802. [Google Scholar] [CrossRef]
- Salahin, N.; Alam, M.K.; Shil, N.C.; Mondol, A.T.M.A.I.; Alam, M.J.; Kobeasy, M.I.; Ahmed, S. Interactive effects of tillage systems and nitrogen fertilizer rates on the performance of mustard-Boroaman rice cropping systems under conservation agriculture practices. Agronomy 2022, 12, 1671. [Google Scholar] [CrossRef]
- Alam, M.K.; Bell, R.W.; Hasanuzzaman, M.; Salahin, N.; Rashid, M.H.; Akter, N.; Khatun, M.F. Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy 2020, 10, 888. [Google Scholar] [CrossRef]
- Mrabet, R. No-Tillage farming: Renewing harmony between soils and crops in semiarid Morocco. In Proceedings of the Third International Conference on Land Degradation (ICLD3) and Meeting of the IUSS Subcommission C–Soil and Water Conservation, Rio de Janeiro, Brazil, 17–21 September 2001; pp. 17–21. [Google Scholar]
- Amsili, J.P.; Kaye, J.P. Root traits of cover crops and carbon inputs in an organic grain rotation. Renew. Agric. Food Syst. 2021, 36, 182–191. [Google Scholar] [CrossRef]
- Mäkelä, P.S.A.; Tuulos, A.; Turakainen, M.; Santanen, A.; Stoddard, F.L. Revitalizing the winter turnip rape crop in the northern latitudes. Acta Agric. Scand. B Soil Plant Sci. 2011, 61, 195–201. [Google Scholar] [CrossRef]
- Koga, N.; Tsuji, H. Effects of reduced tillage, crop residue management and manure application practices on crop yields and soil carbon sequestration on an Andisol in northern Japan. Soil Sci. Plant Nutr. 2009, 55, 546–557. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; Gomez-Munoz, B.; Hinojosa-Centeno, M.B.; Smith, P.; GarciaRuiz, R. Carbon saturation and assessment of soil organic carbon fractions in Mediterranean rainfed olive orchards under plant cover management. Agric. Ecosyst. Environ. 2017, 245, 135–146. [Google Scholar] [CrossRef]
- Tiemann, L.; Grandy, A.; Atkinson, E.; Marin-Spiotta, E.; McDaniel, M. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.A. Sustainability using cover crops in Mediterranean tree crops, olives, and vines—Challenges and current knowledge. Hung. Geogr. Bull. 2017, 66, 13–28. [Google Scholar] [CrossRef]
- Jian, J.; Du, X.; Reiter, M.S.; Stewart, R.D. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol. Biochem. 2020, 143, 107735. [Google Scholar] [CrossRef]
- Ball, B.C. Soil structure and greenhouse gas emissions: A synthesis of 20 years of experimentation. Eur. J. Soil Sci. 2013, 64, 357–373. [Google Scholar] [CrossRef]
- Morell, F.J.; Cantero-Martínez, C.; Lampurlanés, J.; Plaza-Bonilla, D.; Alvaro-Fuentes, J. Soil Carbon Dioxide Flux and Organic Carbon Content: Effects of Tillage and Nitrogen Fertilization. Soil Sci. Soc. Am. J. 2011, 75, 1874–1884. [Google Scholar] [CrossRef]
- Chavez, L.F.; Amado, T.J.C.; Bayer, C.; La Scala, N.; Escobar, L.F.; Fiorin, J.E.; Campos, B.H.C.D. Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil. Rev. Bras. Ciênc. Solo 2009, 33, 325–334. [Google Scholar] [CrossRef]
- Panosso, A.R.; Marques Júnior, J.; Pereira, G.T.; La Scala, N. Spatial and temporal variability of soil CO2 emission in a sugarcane area under green and slash-and-burn managements. Soil Tillage Res. 2009, 105, 275–282. [Google Scholar] [CrossRef]
- Koncz, P.; Balogh, J.; Papp, M.; Hidy, D.; Pintér, K.; Fóti, S.; Klumpp, K.; Nagy, Z. Higher soil respiration under mowing than under grazing explained by biomass differences. Nutr. Cycl. Agroecosyst. 2015, 103, 201–215. [Google Scholar] [CrossRef]
- Rigon, J.P.G.; Calonego, J.C.; Rosolem, C.A.; La Scala, N., Jr. Cover crop rotations in no-till system: Short-term CO2 emissions and soybean yield. Sci. Agric. 2018, 77, 18–26. [Google Scholar] [CrossRef]
- Blazewicz, S.J.; Schwartz, E.; Firestone, M.K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 2014, 95, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Mosier, A.R.; Halvorson, A.D.; Zhang, F.S. The Impact of Nitrogen Placement and Tillage on NO, N2O, CH4 and CO2 Fluxes from a Clay Loam Soil. Plant Soil 2006, 280, 177–188. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Cantero-Martínez, C.; Bareche, J.; Arrúe, J.L.; Alvaro-Fuentes, J. Soil carbon dioxide and methane fluxes as affected by tillage and N fertilization in dryland conditions. Plant Soil 2014, 381, 111–130. [Google Scholar] [CrossRef]
- Sheehy, J.; Nuutinen, V.; Six, J.; Palojearvi, A.; Knuutila, O.; Kaseva, J.; Regina, K. Earthworm Lumbricus terrestris mediated redistribution of C and N into large macroaggregate-occluded soil fractions in fine-textured no-till soils. Appl. Soil Ecol. 2019, 140, 26e34. [Google Scholar] [CrossRef]
- Adjuik, T.A.; Davis, S.C. Machine Learning Approach to Simulate Soil CO2 Fluxes under Cropping Systems. Agronomy 2022, 12, 197. [Google Scholar] [CrossRef]
- Vinten, A.J.A.; Ball, B.C.; O’sullivan, M.F.; Henshall, J.K. The effects of cultivation method, fertilizer input and previous sward type on organic C and N storage and gaseous losses under spring and winter barley following long-term leys. J. Agric. Sci. 2002, 139, 231–243. [Google Scholar] [CrossRef]
- Chirinda, N.; Olesen, J.E.; Porter, J.R.; Schjønning, P. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agric. Ecosyst. Environ. 2010, 139, 584–594. [Google Scholar] [CrossRef]
- Ferrara, R.M.; Campi, P.; Muschitiello, C.; Leogrande, R.; Vittorio Vonella, A.; Ventrella, D.; Rana, G. Soil respiration during three cropping cycles of durum wheat under different tillage conditions in a Mediterranean environment. Soil Use Manag. 2022, 38, 1547–1563. [Google Scholar] [CrossRef]
- Finney, D.M.; Murrell, E.G.; White, C.M.; Baraibar, B.; Barbercheck, M.E.; Bradley, B.A. Ecosystem services and disservices are bundled in simple and diverse cover cropping systems. Agric. Environ. Lett. 2017, 2, 170033. [Google Scholar] [CrossRef]
- Wortman, S.E.; Francis, C.A.; Bernards, M.L.; Drijber, R.A.; Lindquist, J.L. Optimizing cover crop benefits with diverse mixtures and an alternative termination method. Agron. J. 2012, 104, 1425–1435. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Jacobs, A.A.; Evans, R.S.; Allison, J.K.; Garner, E.R.; Kingery, W.L.; McCulley, R.L. Cover crops and no-tillage reduce crop production costs and soil loss, compensating for lack of short-term soil quality improvement in a maize and soybean production system. Soil. Tillage Res. 2022, 218, 105310. [Google Scholar] [CrossRef]
- Feiza, V.; Feizienė, D.; Sinkevičienė, A.; Bogužas, V.; Putramentaitė, A.; Lazauskas, S.; Deveikytė, I.; Seibutis, V.; Steponavičienė, V.; Pranaitienė, S. Soil water capacity, pore-size distribution and CO2 e-flux in different soils after long-term no-till management. Zemdirbyste 2015, 102, 3–14. [Google Scholar] [CrossRef]
- Feizienė, D.; Kadžienė, G. The influence of soil organic carbon, moisture and temperature on soil surface CO2 emission in the 10th year of different tillage-fertilization management. Zemdirbyste 2008, 95, 29–45. [Google Scholar]
- Sithole, N.J.; Magwaza, L.S.; Thibaud, G.R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration, and distribution of C in different size fractions. Soil Tillage Res. 2019, 190, 147–156. [Google Scholar] [CrossRef]
- Joyce, B.A.; Wallender, W.W.; Mitchell, J.P.; Huyck, L.M.; Temple, S.R.; Brostrom, P.N.; Hsiao, T.C. Infiltration and soil water storage under winter cover cropping in California’s Sacramento Valley. Trans. ASABE 2002, 45, 315–326. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- De Oliveira Silva, B.; Moitinho, M.R.; de Araujo Santos, G.A.; Teixeira, D.D.B.; Fernandes, C.; La Scala, N., Jr. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil Tillage Res. 2019, 186, 224–232. [Google Scholar] [CrossRef]
- Van Wie, J.B.; Adam, J.C.; Ullman, J.L. Conservation tillage in dryland agriculture impacts watershed hydrology. J. Hydrol. 2013, 483, 26–38. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, N.; Zhang, X.; Xu, M.; Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.E.; Burke, I.C. Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems 2013, 16, 20–33. [Google Scholar] [CrossRef]
- Hou, H.; Han, Z.; Yang, Y.; Abudu, S.; Cai, H.; Li, Z. Soil CO2 emissions from summer maize fields under deficit irrigation. Environ. Sci. Pollut. Res. 2020, 27, 4442–4449. [Google Scholar] [CrossRef] [PubMed]
- Akbolat, D.; Barut, Z.; Turgut, M.M.; Celik, I. Soil CO2 emissions under conventional and conservational tillage methods in soybean cultivation in Cukurova Plain of Turkey. Agron. Ser. 2016, 59, 15–20. [Google Scholar]
- Sainju, U.M.; Jabro, J.D.; Stevens, W.B. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Rey, A.; Pegoraro, E.; Oyonarte, C.; Were, A.; Escribano, P.; Raimundo, J. Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. Soil Biol. Biochem. 2011, 43, 393–403. [Google Scholar] [CrossRef]
- Nosalewicz, M.; Stepniewska, Z.; Nosalewicz, A. Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater. Int. Agrophysics 2013, 27, 299–304. [Google Scholar] [CrossRef]
- Chen, H.; Hou, H.; Wang, X.; Zhu, Y.; Saddique, Q.; Wang, Y.; Cai, H. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in a greenhouse tomato production system. J. Integr. Agric. 2018, 17, 449–460. [Google Scholar] [CrossRef]
- Du, Y.; Gu, X.; Wang, J.; Niu, W. Yield and gas exchange of greenhouse tomato at different nitrogen levels under aerated irrigation. Sci. Total Environ. 2019, 668, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Pumpanen, J.; Kang, S. Spatio-temporal variability and controls of soil respiration in a furrow-irrigated vineyard. Soil Tillage Res. 2020, 196, 104424. [Google Scholar] [CrossRef]
- Yerli, C.; Sahin, U. An assessment of the urban water footprint and blue water scarcity: A case study for Van (Turkey). Braz. J. Biol. 2022, 82, 249745. [Google Scholar] [CrossRef] [PubMed]
- Mariko, S.; Urano, T.; Asanuma, J. Effects of irrigation on CO2 and CH4 fluxes from Mongolian steppe soil. J. Hydrol. 2007, 333, 118–123. [Google Scholar] [CrossRef]
- Gonzalez-Mendez, B.; Webster, R.; Fiedler, S.; Loza-Reyes, E.; Hernandez, J.M.; Ruiz-Suarez, L.G.; Siebe, C. Short-term emissions of CO2 and N2O in response to periodic flood irrigation with wastewater in the Mezquital Valley of Mexico. Atmos. Environ. 2015, 101, 116–124. [Google Scholar] [CrossRef]
- Morugan-Coronado, A.; García-Orenes, F.; Mataix-Solera, J.; Arcenegui, V.; Mataix- Beneyto, J. Short-term effects of treated wastewater irrigation on Mediterranean calcareous soil. Soil Tillage Res. 2011, 112, 18–26. [Google Scholar] [CrossRef]
- Shi, A.D.; Marschner, P. Drying and rewetting frequency influences cumulative respiration and its distribution over time in two soils with contrasting management. Soil Biol. Biochem. 2014, 72, 172–179. [Google Scholar] [CrossRef]
- Lamparter, A.; Bachmann, J.; Goebel, M.O.; Woche, S.K. Carbon mineralization soil: Impact of wetting-drying, aggregation and water repellency. Geoderma 2009, 150, 324–333. [Google Scholar] [CrossRef]
Factor | pHKCl | P2O5, mg kg −1 | K2O, mg kg−1 | Corg, g kg−1 |
---|---|---|---|---|
Tillage system (Factor A) | ||||
Conventional tillage (CT) | 6.47 | 194 | 146 | 1.76 |
No tillage (NT) | 6.50 | 196 | 183 | 1.85 |
Cropping systems (Factor B) | ||||
WW + SW + WW | 6.39 | 153 a | 129 a | 1.62 |
WW-CC + SW + WW-CC | 6.77 | 256 c | 185 bc | 1.69 |
SW-CC + P + SW | 6.48 | 174 ab | 146 a | 1.76 |
SW-CC + P-CC + WR | 6.44 | 175 ab | 144 a | 1.71 |
WR-CC + SW-CC + P-CC | 6.35 | 217 bc | 218 b | 1.74 |
Actions and interactions | ||||
Factor A | n.s. | n.s. | n.s. | n.s. |
Factor B | n.s. | ** | * | n.s. |
Factor A × Factor B | n.s. | n.s. | n.s. | n.s. |
Tillage (Factor A) | Cropping Systems (Factor B) | NCER (µmol m−2 s−1) |
---|---|---|
CT | 1.71 a | |
NT | 2.19 b | |
WW + SW + WW | 1.68 ab | |
WW-CC + SW + WW-CC | 2.33 bc | |
SW-CC + P + WR | 1.82 ab | |
SW-CC + P-CC + WR | 1.72 ab | |
WR-CC + SW-CC + P-CC | 2.07 abc | |
Actions and interactions | ||
Factor A | ** | |
Factor B | ** | |
Factor A × Factor B | n.s. |
Tillage (Factor A) | Cropping Systems (Factor B) | Soil Moisture Content (%) | Soil Surface Temperature, °C |
---|---|---|---|
CT | 7.1 a | 23.3 | |
NT | 8.9 b | 23.8 | |
WW + SW + WW | 6.8 | 23.9 | |
WW-CC + SW + WW-CC | 6.9 | 23.4 | |
SW-CC + P + WR | 8.3 | 23.6 | |
SW-CC + P-CC + WR | 8.7 | 23.4 | |
WR-CC + SW-CC + P-CC | 8.9 | 23.3 | |
Actions and interactions | |||
Factor A | ** | n.s. | |
Factor B | n.s. | n.s. | |
Factor A × Factor B | n.s. | n.s. |
NCER | SMC | Tsoil | pH | P2O5 | K2O | Corg | |
---|---|---|---|---|---|---|---|
NCER | 1 | −0.73 * | 0.44 * | −0.42 | −0.23 * | 0.21 | −0.28 |
SMC | 1 | −0.72 * | 0.52 * | 0.53 | 0.05 | 0.50 * | |
Tsoil | 1 | −0.55 | −0.36 * | 0.15 | −0.69 * | ||
pH | 1 | 0.31 | −0.23 | 0.49 | |||
P2O5 | 1 | 0.53 | −0.23 | ||||
K2O | 1 | −0.11 | |||||
Corg | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buivydienė, A.; Deveikytė, I.; Veršulienė, A.; Feiza, V. The Influence of Cropping Systems and Tillage Intensity on Soil CO2 Exchange Rate. Sustainability 2024, 16, 3591. https://doi.org/10.3390/su16093591
Buivydienė A, Deveikytė I, Veršulienė A, Feiza V. The Influence of Cropping Systems and Tillage Intensity on Soil CO2 Exchange Rate. Sustainability. 2024; 16(9):3591. https://doi.org/10.3390/su16093591
Chicago/Turabian StyleBuivydienė, Agnė, Irena Deveikytė, Agnė Veršulienė, and Virginijus Feiza. 2024. "The Influence of Cropping Systems and Tillage Intensity on Soil CO2 Exchange Rate" Sustainability 16, no. 9: 3591. https://doi.org/10.3390/su16093591