Nutrient Management in Support of Environmental and Agricultural Sustainability
Abstract
:1. Introduction
2. Results and Discussion
2.1 Analysis of Nutrient Loss in Relation to Soil and Environmental Quality
Means | Effect on soil and/or Environmental Quality | Driver | Possible means to achieve this | |
---|---|---|---|---|
A | Increase nutrient capture | Pollution is reduced | Economics |
|
B | Reduce losses of N to the environment | Less pollution | Regulation |
|
C | Decrease area of farmed land directly | Better provision of Ecosystem Services other than food and fibre production | Pressure from other users of land |
|
D | Remove constraints on yield | Less land needed, less N needed | Economics, yield increases if constraints are removed |
|
E | Improve effectiveness of extension | Less waste, production can be optimised for both yield and environmental quality. | Economics/Regulation |
|
F | Increase ES or functionality of farmland | More services of better quality delivered per unit area of land | Pressure from other users of land |
|
2.2 Specific Means to Improve Soil and Environmental Quality
2.2.1. Increase Nutrient Capture (A)
2.2.2. Reduce Losses (B)
2.2.3. Decrease Area of Farmed Land Directly (C)
2.2.4. Remove Constraints (D)
2.2.5. Improve Effectiveness of Extension (E)
2.2.6. Increase ES and Functionality of Farmed Land (F)
3. Methodology
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Glendining, M.J.; Dailey, A.G.; van Evert, F.K.; Williams, A.G.; Goulding, K.W.T.; Whitmore, A.P. Is it possible to increase the sustainability of arable and ruminant agriculture by reducing inputs? Agr. Syst. 2009, 99, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Ehui, S.K.; Spenser, D.S.C. A General Approach for Evaluating the Economic Viability and Sustainability of Tropical Cropping Systems. In Issues in Agricultural Development; IAAE Occasional Paper No. 6; Bellamy, M., Greenshields, B., Eds.; CABI Publishing: Oxford, UK, 1992; pp. 110–119. [Google Scholar]
- Barnett, V.; Landau, S.; Welham, S.J. Measuring Sustainability. Environ. Ecol. Stat. 1994, 1, 21–36. [Google Scholar] [CrossRef]
- Green, R.E.; Cornell, S.J.; Scharlemann, J.P.W.; Balmford, A. Farming and the fate of wild nature. Science 2005, 307, 550–555. [Google Scholar]
- Bradley, R.I.; Milne, R.; Bell, J.; Lilly, A.; Jordan, C.; Higgins, A. A soil carbon and land use database for the United Kingdom. Soil Use Manage. 2005, 21, 363–369. [Google Scholar] [CrossRef]
- Sylvester-Bradley, R.; Stokes, D.T.; Scott, R.K. Dynamics of nitrogen capture without fertilizer: The baseline for fertilizing winter wheat in the UK. J. Agr. Sci. 2001, 136, 15–33. [Google Scholar] [CrossRef]
- de Klein, C.A.M.; Eckard, R.J. Targeted technologies for nitrous oxide abatement from animal agriculture. Aust. J. Exp. Agr. 2008, 48, 14–20. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. Soil Use Manage. 2002, 18, 395–403. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Mitigation of nitrous oxide emissions in spray-irrigated grazed grassland by treating the soil with dicyandiamide, a nitrification inhibitor. Soil Use Manage. 2003, 19, 284–290. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agr. Ecosyst. Environ. 2005, 109, 202–212. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Sources of nitrous oxide from N-15-labelled animal urine and urea fertiliser with and without a nitrification inhibitor, dicyandiamide (DCD). Aust. J. Soil Res. 2008, 46, 76–82. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C.; Sherlock, R.R. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use Manage. 2007, 23, 1–9. [Google Scholar]
- Dampney, P.; Richards, G.; Bhogal, A. Nitrogen Fertilising Materials; Report for Defra Project NT2601; Defra: London, UK, 2003. [Google Scholar]
- Pathak, H.; Nedwell, D.B. Nitrous oxide emission from soil with different fertilizers, water levels and nitrification inhibitors. Water Air Soil Poll. 2001, 129, 217–228. [Google Scholar] [CrossRef]
- Vinten, A.J.A.; Whitmore, A.P.; Bloem, J.; Howard, R.; Wright, F. Factors affecting N immobilisation/mineralisation kinetics for cellulose, glucose and straw amended sandy soils. Biol. Fert. Soils 2003, 36, 190–199. [Google Scholar]
- Whitmore, A.P.; Groot, J.J.R. The decomposition of sugar beet residues: Mineralization versus immobilization in contrasting soil types. Plant Soil 1997, 192, 237–247. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Prevost, D.; Angers, D.A.; Simard, R.R.; Chalifour, F.P. Nitrous oxide production in soils cropped to corn with varying N fertilization. Can. J. Soil Sci. 1998, 78, 589–596. [Google Scholar]
- McSwiney, C.P.; Robertson, G.P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob. Change Biol. 2005, 11, 1712–1719. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Rochette, P.; Burton, D.L. N2O emissions from spring barley production as influenced by fertilizer nitrogen rate. Can. J. Soil Sci. 2008, 88, 197–205. [Google Scholar]
- Dalal, R.C.; Wang, W.J.; Robertson, G.P.; Parton, W.J. Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Aust. J. Soil Res. 2003, 41, 165–195. [Google Scholar] [CrossRef]
- Bulson, B.A.J.; Snaydon, R.W.; Stopes, C.E. Effects of plant density on intercropped wheat and field beans in an organic farming system. J. Agr. Sci. 1997, 128, 59–71. [Google Scholar] [CrossRef]
- Berry, P.M.; Spink, J.H. “Canopy Management” and Late Nitrogen Applications to Improve Yield of Oilseed Rape; HGCA Report No 447; HGCA: Warwickshire, UK, 2009. [Google Scholar]
- Lynch, S.P. Roots of the second green revolution. Aust. J. Bot. 2007, 55, 493–512. [Google Scholar] [CrossRef]
- Ho, M.D.; Rosas, J.C.; Brown, K.M.; Lynch, J.P. Root architectural tradeoffs for water and phosphorus acquisition. Funct. Plant Biol. 2005, 32, 737–748. [Google Scholar] [CrossRef]
- Waines, J.G.; Ehdaie, B. Domestication and crop physiology: Roots of green revolution wheat. Ann. Bot. 2007, 100, 991–998. [Google Scholar] [CrossRef]
- Whitmore, A.P.; Whalley, W.R.; Bird, N.R.A.; Watts, C.W.; Gregory, A.S. Estimating soil strength in the rooting zone of wheat. Plant Soil 2012, 339, 363–375. [Google Scholar]
- Whitmore, A.P.; Whalley, W.R. Physical effects of soil drying on roots and crop growth. J. Exp. Bot. 2009, 60, 2845–2857. [Google Scholar] [CrossRef]
- Dailey, A.G.; Smith, J.U.; Whitmore, A.P. How far might medium-term weather forecasts improve nitrogen fertiliser advice and benefit arable farming in the UK? Agr. Ecosys. Environ. 2006, 117, 22–28. [Google Scholar] [CrossRef]
- Neeteson, J.J. Nitrogen and phosphorus management on Dutch dairy farms: Legislation and strategies employed to meet the regulations. Biol. Fert. Soils 2000, 30, 566–572. [Google Scholar] [CrossRef]
- Defra, Fertilizer Manual (RB209), 8th ed; TSO: Norwich, UK, 2012; p. 249.
- Goulding, K.W.T.; Jarvis, S.C.; Whitmore, A.P. Optimising nutrient management for farm systems. Philos. T. Roy. Soc. 2008, 363, 667–680. [Google Scholar] [CrossRef]
- Whitmore, A.P.; Van Noordwijk, M. Bridging the Gap between Environmentally Acceptable and Agronomically Desirable Nutrient Supply. In Ecology and Integrated Farming Systems: Proceedings of the 13th Long Ashton International Symposium, 1993; Glen, D.M., Greaves, M.P., Anderson, H.M., Eds.; John Wiley and Sons: Chichester, UK, 1995; pp. 271–288. [Google Scholar]
- Lark, R.M.; Wheeler, H.C. Experimental and Analytical Methods for Studying Within-Field Variation of Crop Responses to Inputs. In Proceedings of the 4th European Conference on Precision Agriculture; Stafford, J., Werner, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003; pp. 341–346. [Google Scholar]
- Desbourdes, C.; Blondlot, A.; Douche, H. Variable Nitrogen Application with Satellite View. In Proceedings of the 9th International Conference on Precision Agriculture, Denver, Colorado, USA, 20–23 July 2008.
- Robertson, M.J.; Lyle, G.; Bowden, J.W. Within-field variability of wheat yield and economic implications for spatially variable nutrient management. Field Crop. Res. 2008, 105, 211–220. [Google Scholar] [CrossRef]
- Whitmore, A.P.; Schröder, J.J. Intercropping reduces nitrate leaching from under field crops without loss of yield: A modelling study. Eur. J. Agron. 2007, 27, 81–88. [Google Scholar] [CrossRef]
- Whitmore, A.P.; Schröder, J.J. Modelling the change in soil organic C and N in response to applications of slurry manure. Plant Soil 1996, 184, 185–194. [Google Scholar] [CrossRef]
- Watts, C.W.; Clark, L.J.; Poulton, P.R.; Powlson, D.S.; Whitmore, A.P. The role of clay, organic carbon and cropping on plough draught measured on the Broadbalk Wheat Experiment at Rothamsted. Soil Use Manage. 2006, 22, 334–341. [Google Scholar] [CrossRef]
- Rouquette, J.R.; Posthumus, H.; Gowing, D.J.G.; Tucker, G.; Dawson, Q.L.; Hess, T.M.; Morris, J. Valuing nature-conservation interests on agricultural floodplains. J. Appl. Ecol. 2009, 46, 289–296. [Google Scholar] [CrossRef]
- Powlson, D.S.; Bhogal, A.; Chambers, B.J.; Macdonald, A.J.; Coleman, K.; Goulding, K.W.T.; Whitmore, A.P. The potential to increase soil carbon stocks through reduced tillage or organic additions—An England and Wales case study. Agr. Ecosys. Environ. 2012, 146, 23–33. [Google Scholar] [CrossRef]
- Nix, J. Farm Management Pocketbook, 35th ed; Wye College: London, UK, 2005. [Google Scholar]
- ABC, The Agricultural Budgeting and Costing Book No. 60; Agro Business Consultants Ltd.: Melton Mowbray, UK, 2005.
- Atkinson, G.; Baldock, D.; Bowyer, C.; Newcombe, J.; Ozdemiroglu, E.; Pearce, D.; Provins, A. Framework for Environmental Accounts for Agriculture; Final Report; Economics for the Environment Consultancy: London, UK, 2004; p. 105. [Google Scholar]
- Pretty, J.N.; Brett, C.; Gee, D.; Hine, R.E.; Mason, C.F.; Morison, J.I.L.; Raven, H.; Rayment, D.; van der Bijl, G. An assessment of the total external costs of UK agriculture. Agr. Sys. 2000, 65, 113–136. [Google Scholar] [CrossRef]
- Pretty, J.N.; Mason, C.F.; Nedwell, D.B.; Hine, R.E.; Leaf, S.; Dils, R. Environmental costs of freshwater eutrophication in England and Wales. Environ. Sci. Technol. 2003, 37, 201–208. [Google Scholar] [CrossRef]
- Hartridge, O.; Pearce, D. Is UK Agriculture Sustainable? Environmentally Adjusted Economic Accounts for UK Agriculture; CSERGE, University College: London, UK, 2001. [Google Scholar]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modeling. Int. J. Life Cycle Ass. 2010, 15, 855–868. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limbuirg, K.; Naeem, A.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar]
- Farber, S.C.; Costanza, R.; Wilson, M.A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 2002, 41, 375–392. [Google Scholar] [CrossRef]
- Lynam, J.K.; Herdt, R.W. Sense and sustainability: Sustainability as an objective in international agricultural research. Agr. Econ.1 1989, 3, 381–398. [Google Scholar]
Supplementary Material
References
- Whitmore, A.P.; Dailey, A.G.; Glendining, M.J.; Coleman, K.; Powlson, D.S.; Goulding, K.W.T. A Critical Review of Recent Policy-Relevant Research in Nitrogen Cycling; Final report for project IF0175; Defra: London, UK, 2010; p. 68. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Whitmore, A.P.; Goulding, K.W.T.; Glendining, M.J.; Dailey, A.G.; Coleman, K.; Powlson, D.S. Nutrient Management in Support of Environmental and Agricultural Sustainability. Sustainability 2012, 4, 2513-2524. https://doi.org/10.3390/su4102513
Whitmore AP, Goulding KWT, Glendining MJ, Dailey AG, Coleman K, Powlson DS. Nutrient Management in Support of Environmental and Agricultural Sustainability. Sustainability. 2012; 4(10):2513-2524. https://doi.org/10.3390/su4102513
Chicago/Turabian StyleWhitmore, Andrew P., Keith W. T. Goulding, Margaret J. Glendining, A. Gordon Dailey, Kevin Coleman, and David S. Powlson. 2012. "Nutrient Management in Support of Environmental and Agricultural Sustainability" Sustainability 4, no. 10: 2513-2524. https://doi.org/10.3390/su4102513
APA StyleWhitmore, A. P., Goulding, K. W. T., Glendining, M. J., Dailey, A. G., Coleman, K., & Powlson, D. S. (2012). Nutrient Management in Support of Environmental and Agricultural Sustainability. Sustainability, 4(10), 2513-2524. https://doi.org/10.3390/su4102513