Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province
Abstract
:1. Introduction
2. Methodology
2.1. Analysis along Kaya Factors
2.2. Decomposition of Carbon Emissions
2.3. Decomposition of Energy Intensity
3. Data Management
Energy sources | Conversion factors a | LCV (MJ/t or MJ/Mm3) b | Carbon emission factors (t C/TJ) c | Oxidation rate c |
---|---|---|---|---|
Raw coal | 0.7143 tce/t | 20.908 | 25.80 | 0.918 |
Cleaned coal | 0.9000 tce/t | 26.344 | 27.68 | 0.918 |
Coke | 0.9714 tce/t | 28.435 | 29.41 | 0.928 |
Crude oil | 1.4286 tce/t | 41.816 | 20.08 | 0.979 |
Gasoline | 1.4714 tce/t | 43.070 | 18.90 | 0.986 |
Kerosene | 1.4714 tce/t | 43.070 | 19.60 | 0.980 |
Diesel oil | 1.4571 tce/t | 42.652 | 20.17 | 0.982 |
Nature gas | 1.33tce/103m3 | 38.931 | 17.20 | 0.990 |
Refinery gas | 1.5714 tce/t | 46.055 | 18.20 | 0.989 |
LPG | 1.7143 tce/t | 50.179 | 17.20 | 0.989 |
4. Case Analysis in Shandong Province
4.1. Economic Development and Industrial Structure Change
4.2. Energy Consumption and Carbon Emissions
4.3. Carbon Emissions per Capita and Carbon Emissions Intensity
5. Results and Discussion
5.1. Decomposition of Carbon Emissions
p-effect | g-effect | e-effect | f-effect | △C | |
---|---|---|---|---|---|
1995–1996 | 0.26 | 5.31 | −4.34 | 0.11 | 1.35 |
1996–1997 | 0.38 | 5.07 | −5.37 | −0.07 | 0.01 |
1997–1998 | 0.42 | 4.97 | −6.08 | 0.15 | −0.54 |
1998–1999 | 0.35 | 4.66 | −4.49 | −0.20 | 0.32 |
1999–2000 | 0.91 | 6.56 | −4.64 | 0.28 | 3.10 |
2000–2001 | 0.37 | 5.75 | 1.74 | −0.41 | 7.46 |
2001–2002 | 0.39 | 9.77 | 0.06 | 1.00 | 11.22 |
2002–2003 | 0.48 | 14.72 | 4.66 | −0.53 | 19.32 |
2003–2004 | 0.74 | 21.69 | 2.70 | −0.85 | 24.27 |
2004–2005 | 1.15 | 27.56 | 13.43 | 1.43 | 43.57 |
2005–2006 | 1.24 | 30.15 | −9.86 | −0.38 | 21.16 |
2006–2007 | 1.29 | 23.67 | −8.22 | 0.31 | 17.05 |
2007–2008 | 1.17 | 27.52 | −22.30 | −1.33 | 5.05 |
2008–2009 | 1.29 | 19.75 | −4.33 | −0.46 | 16.25 |
2009–2010 | 2.79 | 25.50 | −16.13 | −0.58 | 11.58 |
2010–2011 | 1.55 | 23.65 | −10.00 | 0.10 | 15.30 |
1995–2011 | 14.79 | 254.23 | −72.03 | −0.50 | 196.49 |
5.2. Decomposition of Carbon Emissions Intensity
ECI1 | ECI2 | ECI3 | ECI4 | SCE1 | SCE2 | SCE3 | SCE4 | △e | |
---|---|---|---|---|---|---|---|---|---|
2005–2006 | −0.0011 | −0.1418 | −0.0063 | −0.0568 | −0.0030 | 0.0294 | −0.0029 | 0.0083 | −0.1742 |
2006–2007 | −0.0008 | −0.0569 | −0.0029 | −0.0269 | −0.0001 | −0.0176 | −0.0014 | 0.0085 | −0.0981 |
2007–2008 | −0.0018 | −0.1819 | −0.0035 | −0.0268 | −0.0001 | −0.0058 | 0.0010 | 0.0006 | −0.2184 |
2008–2009 | −0.0008 | −0.0275 | −0.0004 | −0.0167 | −0.0005 | −0.0572 | 0.0037 | 0.0149 | −0.0845 |
2009–2010 | −0.0011 | −0.0474 | −0.0022 | −0.0327 | −0.0010 | −0.0616 | 0.0011 | 0.0217 | −0.1233 |
2010–2011 | −0.0007 | −0.0519 | −0.0007 | −0.0244 | −0.0011 | −0.0442 | −0.0002 | 0.0178 | −0.1054 |
2005–2011 | −0.0064 | −0.4907 | −0.0169 | −0.1897 | −0.0057 | −0.1737 | 0.0022 | 0.0770 | −0.8038 |
6. Conclusions and Discussions
7. Policy Implications
- (1)
- Economic policy: It is necessary to maintain steady economic growth and increase investment in renewable energy and energy technology. All efforts should be made to improve macroeconomic control abilities and implement carbon emissions mitigation, realizing coordinated development between economy and environment.
- (2)
- Population policy: Shandong province should continue to control population growth and improve population quality in the future. Population quality improvement emerged in people’s “low-carbon and environmental protection” concepts and is becoming popular. Government should lead low carbon consumption activities, especially choosing public transportation.
- (3)
- Energy policy: The share of coal in the primary energy consumption and its dominant energy carrier position can’t change in the near future. But a number of energy policies should be implemented to increase energy efficiency and optimize energy structure. Renewable low-carbon energy resources, such as solar energy, ocean energy, and wind energy, etc. should be paid more attention, and especially nuclear energy. Energy prices should be reasonable, in order to protect energy supply and demands from enterprise and individual consumers. Energy security is emphasized for nuclear energy [5], especially the Shidaowan HTGR nuclear power demonstration project with the world's first IV-Generation technology. Efficiency and safety must be given priority to the implement of energy policies. All these energy policies are aiming at continuous energy structure optimization.
- (4)
- Industrial policy: In the future, Shandong province should continue to ensure industrial development and try to change the heavy industrialization trend effectively. Government should pay attention to nurture the emerging low-carbon industries, especially focus on the renewable energy industry, new material industry, energy saving and environmental protection industry, etc., in order to highlight the inhibitory effect of industrial structure optimization on carbon emissions growth.
- (5)
- Technology policy: The effects of industrial energy intensity all played an important role in decreasing the total energy intensity after 2005. That is because Shandong province made the energy consumption per unit of GDP an assessment indicator in the each industrial sector and the various enterprises after the «11th Five-year Plan» in Shandong province (2006–2010) and supervised the implementation of related policies strictly, namely the “Target Responsibility Mechanism”. Shandong province should take all kinds of technical measures to improve energy efficiency, such as exploiting new energy-saving products, using new technology, adopting low-carbon building, and developing low-carbon transport system, etc.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Le Quere, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; Friedlingstein, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef]
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Li, L.; Zhang, X. Wake-up Call for China to Re-Evaluate Its Shale-Gas Ambition. Environ. Sci. Technol. 2013, 47, 11920–11921. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Wang, Q.; Yang, D.; Li, L.; Zhang, X. Preparing for Myanmar’s environment-friendly reform. Environ. Sci. Policy 2013, 25, 229–233. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Wang, F. Is Vietnam Ready for Nuclear Power? Environ. Sci. Technol. 2012, 46, 5269–5270. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.; Crawford-Brown, D.; Zhang, Q.; He, K.; Liu, J. Energy policy: A low-carbon road map for China. Nature 2013, 500, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Liu, Z.; Geng, Y.; Lindner, S.; Hubacek, K. The gigatonne gap in China’s carbon dioxide inventories. Nat. Clim. Chang. 2012, 2, 672–675. [Google Scholar]
- Wang, C.; Wang, F.; Du, H.; Zhang, X. Is China really ready for shale gas revolution—Re-evaluating shale gas challenges. Environ. Sci. Policy 2014, 39, 49–55. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Zou, J. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 2005, 30, 73–83. [Google Scholar] [CrossRef]
- Wu, L.; Kaneko, S.; Matsuoka, S. Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: The relative importance of structural change, intensity change and scale change. Energy Policy 2005, 33, 319–335. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.; Ning, Y.; Song, Y. Decomposition of energy-related CO2 emission over 1991–2006 in China. Ecol. Econ. 2009, 68, 2122–2128. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.; Ning, Y. Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy 2009, 37, 767–773. [Google Scholar] [CrossRef]
- Liao, H.; Fan, Y.; Wei, Y.-M. What induced China’s energy intensity to fluctuate: 1997–2006? Energy Policy 2007, 35, 4640–4649. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, C.; Hong, D. Why did China’s energy intensity increase during 1998–2006: Decomposition and policy analysis. Energy Policy 2010, 38, 1379–1388. [Google Scholar] [CrossRef]
- Guan, D.; Hubacek, K.; Weber, C.L.; Peters, G.P.; Reiner, D.M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Chang. 2008, 18, 626–634. [Google Scholar] [CrossRef]
- Guan, D.; Peters, G.P.; Weber, C.L.; Hubacek, K. Journey to world top emitter: An analysis of the driving forces of China’s recent CO2 emissions surge. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Ma, C.; Stern, D.I. Biomass and China’s carbon emissions: A missing piece of carbon decomposition. Energy Policy 2008, 36, 2517–2526. [Google Scholar] [CrossRef]
- Zhao, M.; Tan, L.; Zhang, W.; Ji, M.; Liu, Y.; Yu, L. Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy 2010, 35, 2505–2510. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, C.; Xia, Q.; Guan, D. Preliminary exploration on low-carbon technology roadmap of China’s power sector. Energy 2011, 36, 1500–1512. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, Y.; Lindner, S.; Guan, D. Uncovering China’s greenhouse gas emission from regional and sectoral perspectives. Energy 2012, 45, 1059–1068. [Google Scholar] [CrossRef]
- Feng, K.; Davis, S.J.; Sun, L.; Li, X.; Guan, D.; Liu, W.; Liu, Z.; Hubacek, K. Outsourcing CO2 within China. Proc. Natl. Acad. Sci. USA 2013, 110, 11654–11659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raupach, M.R.; Marland, G.; Ciais, P.; Le Quéré, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Steckel, J.C.; Jakob, M.; Marschinski, R.; Luderer, G. From carbonization to decarbonization?—Past trends and future scenarios for China’s CO2 emissions. Energy Policy 2011, 39, 3443–3455. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Wang, F.; Lei, J.; Zhang, L. Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations. Front. Earth Sci. 2014. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2012, 34, 177–188. [Google Scholar] [CrossRef]
- Rose, A.; Casler, S. Input–Output Structural Decomposition Analysis: A Critical Appraisal. Econ. Syst. Res. 1996, 8, 33–62. [Google Scholar] [CrossRef]
- Casler, S.; Rose, A. Carbon Dioxide Emissions in the U.S. Economy: A Structural Decomposition Analysis. Environ. Resour. Econ. 1998, 11, 349–363. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q.; Choi, K.-H. Factorizing changes in energy and environmental indicators through decomposition. Energy 1998, 23, 489–495. [Google Scholar] [CrossRef]
- Lee, C.F.; Lin, S.J. Structural decomposition of CO2 emissions from Taiwan’s petrochemical industries. Energy Policy 2001, 29, 237–244. [Google Scholar] [CrossRef]
- Hoekstra, R.; van den Bergh, J.C.J.M. Comparing structural decomposition analysis and index. Energy Econ. 2003, 25, 39–64. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, N. Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy 2007, 35, 238–246. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, N. Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy 2007, 35, 739–742. [Google Scholar] [CrossRef]
- Ang, B.W.; Choi, K.-H. Decomposition of aggregate energy and gas emission intensities for industry: A refined Divisia index method. Energy J. 1997, 18, 59–73. [Google Scholar] [CrossRef]
- Choi, K.-H.; Ang, B.W. Attribution of changes in Divisia real energy intensity index—An extension to index decomposition analysis. Energy Econ. 2012, 34, 171–176. [Google Scholar] [CrossRef]
- Choi, K.-H.; Oh, W. Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry. Energy Policy 2014, 65, 275–283. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, T. What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy 2011, 39, 7078–7083. [Google Scholar] [CrossRef]
- Xi, F.; Geng, Y.; Chen, X.; Zhang, Y.; Wang, X.; Xue, B.; Dong, H.; Liu, Z.; Ren, W.; Fujita, T.; et al. Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China. Energy Policy 2011, 39, 5999–6010. [Google Scholar] [CrossRef]
- Geng, Y.; Zhao, H.; Liu, Z.; Xue, B.; Fujita, T.; Xi, F. Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning. Energy Policy 2013, 60, 820–826. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, F.; Zhang, H.; Ye, Y.; Wu, Q.; Su, Y. Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province. Sustainability 2014, 6, 8164-8179. https://doi.org/10.3390/su6118164
Wang C, Wang F, Zhang H, Ye Y, Wu Q, Su Y. Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province. Sustainability. 2014; 6(11):8164-8179. https://doi.org/10.3390/su6118164
Chicago/Turabian StyleWang, Changjian, Fei Wang, Hongou Zhang, Yuyao Ye, Qitao Wu, and Yongxian Su. 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province" Sustainability 6, no. 11: 8164-8179. https://doi.org/10.3390/su6118164
APA StyleWang, C., Wang, F., Zhang, H., Ye, Y., Wu, Q., & Su, Y. (2014). Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province. Sustainability, 6(11), 8164-8179. https://doi.org/10.3390/su6118164