Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Investigated
2.2. Data
2.3. Methods
2.3.1. Measuring Emergy for Input Items
2.3.2. Measuring Regional Disparity
2.3.3. Econometric Model
3. Results and Discussion
3.1. Change in Emergy Intensity of Arable Land-Use at the Country Level
Item | Flow | Flow units | UEV | UEV units | Emergy | Emergy units | |
---|---|---|---|---|---|---|---|
Renewable environmental flows: | |||||||
1 | Sun | 3.56 × 1022 | J | 1.00 | sej/J | 3.56 × 1022 | sej |
2 | Rain | 19.12 × 1018 | J | 1.82 × 104 | sej/J | 3.48 × 1022 | sej |
3 | Wind | 22.84 × 1018 | J | 1.58 × 103 | sej/J | 3.61 × 1022 | sej |
Non-renewable environmental flows: | |||||||
4 | Soil | 1.68 × 1018 | J | 1.70 × 105 | sej/J | 28.63 × 1022 | sej |
Non-renewable industrial flows: | |||||||
5 | N fertilizer | 2180.90 × 1010 | g | 3.80 × 109 | sej/g | 8.29 × 1022 | sej |
6 | P fertilizer | 697.80 × 1010 | g | 3.90 × 109 | sej/g | 2.72 × 1022 | sej |
7 | K fertilizer | 365.60 × 1010 | g | 1.10 × 109 | sej/g | 0.40 × 1022 | sej |
8 | Chemical manure | 880.00 × 1018 | g | 2.80 × 109 | sej/g | 2.46 × 1022 | sej |
9 | Pesticides | 132.16 × 1010 | g | 1.62 × 109 | sej/g | 0.21 × 1022 | sej |
10 | Plastic sheeting | 125.87 × 1010 | g | 3.80 × 108 | sej/g | 0.05 × 1022 | sej |
11 | Agricultural diesel oil | 1354.30 × 1010 | g | 6.60 × 104 | sej/J | 3.87 × 1022 | sej |
Renewable organic flows: | |||||||
12 | Organic manure | 192.98 × 1013 | g | 4.54 × 106 | sej/g | 0.88 × 1022 | sej |
13 | Seed | 133.93 × 1016 | g | 3.36 × 106 | sej/J | 4.50 × 1022 | sej |
Other flows: | |||||||
14 | Labor | 3.58 × 108 | J | 3.80 × 105 | sej/J | 5.51 × 1022 | sej |
Total * | 47.23 × 1022 | sej |
Input items | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Renewable environmental resources | 2.69 | 2.65 | 2.70 | 2.68 | 2.50 | 2.63 | 2.64 | 2.75 | 2.99 | 2.99 | |
Non-renewable environmental resources | 22.16 | 22.13 | 22.14 | 22.14 | 22.13 | 22.16 | 22.12 | 22.12 | 22.13 | 22.13 | |
Industrial Goods | Chemical manure | 10.74 | 10.83 | 11.10 | 11.40 | 11.79 | 12.41 | 12.75 | 13.17 | 13.59 | 13.88 |
Pesticides | 0.17 | 0.18 | 0.16 | 0.17 | 0.17 | 0.24 | 0.27 | 0.20 | 0.22 | 0.22 | |
Plastic sheeting | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | |
Agricultural diesel oil | 3.00 | 3.13 | 3.33 | 3.42 | 3.65 | 4.25 | 4.45 | 4.51 | 4.74 | 4.43 | |
Organic materials | Organic manure | 0.68 | 0.69 | 0.63 | 0.64 | 0.65 | 0.65 | 0.66 | 0.63 | 0.63 | 0.63 |
Seed | 3.48 | 3.49 | 3.49 | 3.49 | 3.48 | 3.48 | 3.48 | 3.49 | 3.48 | 3.48 | |
Others | Labor | 4.26 | 4.16 | 4.05 | 4.02 | 3.92 | 3.41 | 3.16 | 2.74 | 2.48 | 2.27 |
Total * | 47.23 | 47.29 | 47.63 | 48.00 | 48.35 | 49.28 | 49.57 | 49.68 | 50.33 | 50.10 |
3.2. Change in Emergy Intensity of Arable Land-Use at the Regional Level
3.3. Change in Arable Land-Use Intensity at the Provincial Level
3.4. Regional Disparities in Arable Land-Use Intensity
3.5. Driving Forces of Arable Land-Use Intensity
Variable | Dependent Variable | |||||
---|---|---|---|---|---|---|
Intensity aggregate index | Chemical fertilizer | Agricultural diesel oil | Labor intensity | Agricultural plastic sheeting | Pesticide | |
c | 1.2768 *** (4.8714) | −1.1316 *** (−3.3932) | −5.8807 *** (−12.3908) | 7.2038 *** (23.2273) | −10.8734 *** (−8.8441) | −5.8275 *** (−6.1582) |
INC | 0.1541 *** (4.4650) | 0.2634 *** (6.0001) | −0.5758 *** (−14.0986) | 0.2734 * (1.6891) | 0.3024 ** (2.4267) | |
IND | 0.0054 * (2.5810) | 0.0191 *** (7.2676) | 0.0380 *** (10.1123) | −0.0169 *** (−6.8804) | 0.0536 *** (5.5068) | 0.0199 *** (2.6598) |
POP | 0.0036 * (2.2761) | −0.0098 *** (−5.2302) | 0.0349 *** (4.6873) | |||
POL | 0.0268 * (1.9964) | 0.0702 *** (4.1041) | 0.1265 *** (5.1994) | −0.1284 *** (−8.0744) | 0.1124 ** (2.3177) | |
R-squared | 0.9863 | 0.9822 | 0.9861 | 0.9857 | 0.9104 | 0.9521 |
Adjusted R-squared | 0.9845 | 0.9800 | 0.9843 | 0.9839 | 0.8992 | 0.9462 |
Prob(F-statistic) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Durbin-Watson stat | 0.7065 | 0.6765 | 0.9868 | 0.6624 | 0.8262 | 1.9278 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vitousek, P.M. Human domination of earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Xie, H.L.; Kung, C.C.; Zhang, Y.T.; Li, X.B. Simulation of Regionally Ecological Land Based on a Cellular Automation Model: A Case Study of Beijing, China. Int. J. Environ. Res. Public Health 2012, 9, 2986–3001. [Google Scholar] [CrossRef]
- Long, H.L.; Hellig, G.K.; Li, X.B.; Zhang, M. Socio-economic development and land-use change: Analysis of rural housing land transition in the Transect of the Yangtse River, China. Land Use Policy 2007, 24, 141–153. [Google Scholar]
- Xie, H.; Liu, Z.; Wang, P.; Liu, G.; Lu, F. Exploring the Mechanisms of Ecological Land Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake Eco-Economic Zone, China. Int. J. Environ. Res. Public Health 2013, 11, 583–599. [Google Scholar] [CrossRef]
- Xie, H.; Wang, P.; Huang, H. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China. Int. J. Environ. Res. Public Health 2013, 10, 328–346. [Google Scholar]
- Li, X.B.; Zhu, H.Y.; Tan, M.H. Measurement of land use intensity. Prog. Geog. 2008, 27, 12–17. [Google Scholar]
- Tampakis, S.; Karanikola, P.; Koutroumanidis, T.; Tsitouridou, C. Protecting the productivity of cultivated land. The viewpoints of farmers in northern evros. J. Environ. Prot. Ecol. 2010, 11, 601–613. [Google Scholar]
- Tan, M.H.; Li, X.B. The changing settlements in rural areas under urban pressure in China: Patterns, driving forces and policy implications. Landscape Urban Plan. 2013, 120, 170–177. [Google Scholar] [CrossRef]
- Su, W.Z.; Gu, C.L.; Yang, G.S. Assessing the Impact of Land Use/Land Cover on Urban Heat Island Pattern in Nanjing City, China. J. Urban Plan. Dev. 2010, 136, 365–372. [Google Scholar] [CrossRef]
- Zhou, D.; An, P.; Pan, Z.; Zhang, F. Arable land use intensity change in China from 1985 to 2005: Evidence from integrated cropping systems and agro economic analysis. J. Agric. Sci. 2012, 150, 179–190. [Google Scholar] [CrossRef]
- Xin, L.J.; Fan, Y.Z.; Tan, M.H.; Jiang, L.G. Review of Arable Land-use Problems in Present-day China. Ambio 2009, 38, 112–115. [Google Scholar] [CrossRef]
- Long, H.L.; Liu, Y.S.; Wu, X.Q.; Dong, G.H. Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: Implications for building a new countryside in coastal China. Land Use Policy 2009, 26, 322–333. [Google Scholar] [CrossRef]
- Dietrich, J.P.; Schmitz, C.; Muller, C.; Fader, M.; Lotze-Campen, H.; Popp, A. Measuring agricultural land-use intensity—A global analysis using a model-assisted approach. Ecol. Model. 2012, 232, 109–118. [Google Scholar] [CrossRef]
- Erb, K.H. How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol. Econ. 2012, 76, 8–14. [Google Scholar] [CrossRef]
- Long, H.L.; Tang, G.P.; Li, X.B.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef]
- Xie, Z.L.; Liu, J.Y.; Ma, Z.W.; Duan, X.F.; Cui, Y.P. Effect of surrounding land-use change on the wetland landscape pattern of a natural protected area in Tianjin, China. Int. J. Sustain. Dev. World Ecol. 2012, 19, 16–24. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Li, X.B.; Tian, Y.J. Structural change of agricultural land use intensity and its regional disparity in China. J. Geogr. Sci. 2009, 19, 545–556. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Pulselli, F.M.; Coscieme, L.; Bastianoni, S. Ecosystem services as a counterpart of emergy flows to ecosystems. Ecol. Model. 2011, 222, 2924–2928. [Google Scholar] [CrossRef]
- Li, Q.; Yan, J.M. Assessing the health of agricultural land with emergy analysis and fuzzy logic in the major grain-producing region. Catena 2012, 99, 9–17. [Google Scholar]
- Wang, Q.; Jin, X.B.; Zhou, Y.K. Spatial differences and its driving factors of emergy indices on cultivated land eco-economic system in Hebei Provence. Acta Ecol. Sin. 2011, 31, 247–256. [Google Scholar]
- Xie, H.L.; Zou, J.L. Spatial-temporal difference analysis of cultivated land use intensity based on emergy in Poyang Lake Eco-economics Zone. J. Geogr. Sci. 2012, 67, 889–902. [Google Scholar]
- Rydberg, T.; Haden, A.C. Emergy evaluations of Denmark and Danish agriculture: Assessing the influence of changing resource availability on the organization of agriculture and society. Agr. Ecosyst. Environ. 2006, 117, 145–158. [Google Scholar] [CrossRef]
- Zhu, Y. Research on the Sustainable Development of Agricultural Eco-economic System Based on Emergy; Intellectual Property Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Brandt-Williams, S. Handbook of Emergy Evaluation Folio 4: Emergy of Florida Agriculture. In Proceedings of the 2rd Biennial Emergy Conference, Gainesville, FL, USA, 20–22 September 2001; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2001. [Google Scholar]
- Brown, M.T.; Bardi, E.; Campbell, D.E.; Comar, V.; Huang, S.; Rydberg, T.; Tilley, D.; Ulgiati, S. (Eds.) Emergy Synthesis 3: Theory and Applications of the Emergy Methodology. In Proceedings of the 3rd Biennial Emergy Conference, Gainesville, FL, USA, 29–31 January 2004; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2004.
- Lan, S.F.; Qin, P.; Lu, H.F. Emergy Analysis of Ecological-Economic System; Chemical Industry Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Yang, H.S. Agricultural Ecology; Agriculture Press: Beijing, China, 1992. (In Chinese) [Google Scholar]
- Theil, H. Economics and Information Theory; Rand McNally and Company: Chicago, IL, USA, 1967. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xie, H.; Zou, J.; Jiang, H.; Zhang, N.; Choi, Y. Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis. Sustainability 2014, 6, 3504-3520. https://doi.org/10.3390/su6063504
Xie H, Zou J, Jiang H, Zhang N, Choi Y. Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis. Sustainability. 2014; 6(6):3504-3520. https://doi.org/10.3390/su6063504
Chicago/Turabian StyleXie, Hualin, Jinlang Zou, Hailing Jiang, Ning Zhang, and Yongrok Choi. 2014. "Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis" Sustainability 6, no. 6: 3504-3520. https://doi.org/10.3390/su6063504
APA StyleXie, H., Zou, J., Jiang, H., Zhang, N., & Choi, Y. (2014). Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis. Sustainability, 6(6), 3504-3520. https://doi.org/10.3390/su6063504