The Water Footprint of Food Aid
Abstract
:1. Introduction
2. Methods
2.1. Food Aid Data
Type | Description |
---|---|
Program | Donated food or purchased at a reduced price for sale in the marketplace |
Project | Zero cost food distributed by WFP or NGOs for development promotion |
Emergency | Food distributed in response to a crisis |
2.2. Virtual Water Content of Products
2.3. Water Footprint of Food Aid
2.4. Water Savings Resulting from Food Aid
2.5. Regression Variables and Methods
3. Results and Discussion
3.1. The Water Footprint of Food Aid
3.2. Key Nations
Donors | Recipients | |||||
---|---|---|---|---|---|---|
Rank | Country | Volume (km3 · Year−1) | Percent (%) | Country | Volume (km3 · Year−1) | Percent (%) |
1 | USA | 8.5295 | 8.18 | Ethiopia | 1.996 | 19.2 |
2 | China | 0.6602 | 6.33 | Sudan | 1.405 | 13.5 |
3 | South Korea | 0.3988 | 3.83 | North Korea | 1.147 | 11.0 |
4 | Canada | 0.3979 | 3.82 | Bangladesh | 0.448 | 4.30 |
5 | Australia | 0.1380 | 1.32 | Afghanistan | 0.408 | 3.91 |
6 | Japan | 0.1323 | 1.27 | Eritrea | 0.375 | 3.59 |
7 | Italy | 0.0348 | 0.33 | Uganda | 0.300 | 2.87 |
8 | EU | 0.0328 | 0.31 | Haiti | 0.295 | 2.83 |
9 | Egypt | 0.0289 | 0.28 | Kenya | 0.241 | 2.31 |
10 | Algeria | 0.0206 | 0.20 | Honduras | 0.205 | 1.97 |
11 | Denmark | 0.0173 | 0.17 | India | 0.197 | 1.89 |
12 | India | 0.0124 | 0.12 | Philippines | 0.196 | 1.88 |
13 | Luxembourg | 0.0050 | 0.05 | Peru | 0.178 | 1.71 |
14 | Spain | 0.0029 | 0.03 | Mozambique | 0.142 | 1.36 |
15 | Syria | 0.0025 | 0.02 | Zambia | 0.139 | 1.33 |
16 | Libya | 0.0023 | 0.02 | Guatemala | 0.130 | 1.25 |
17 | Saudi Arabia | 0.0013 | 0.01 | Bolivia | 0.129 | 1.24 |
18 | France | 0.0011 | 0.01 | El Salvador | 0.124 | 1.19 |
19 | Belgium | 0.0010 | 0.01 | Tajikistan | 0.119 | 1.14 |
20 | Switzerland | 0.0009 | 0.01 | Mauritania | 0.116 | 1.11 |
- | Rest of the World | 0.0023 | 0.02 | Rest of the World | 2.136 | 20.5 |
Food Aid | Land Grabbing | |||
---|---|---|---|---|
Rank | Donor | Recipient | Investor | Target |
1 | USA | Ethiopia | China | Cambodia |
2 | China | Sudan | India | Ethiopia |
3 | South Korea | North Korea | Peru | Indonesia |
4 | Canada | Bangladesh | Malaysia | Laos |
5 | Australia | Afghanistan | USA | Peru |
6 | Japan | Eritrea | Ethiopia | Mozambique |
7 | Italy | Uganda | Cambodia | India |
8 | EU | Haiti | UK | China |
9 | Egypt | Kenya | Indonesia | Guinea |
10 | Algeria | Honduras | Canada | Zambia |
11 | Denmark | India | Japan | Ghana |
12 | India | Philippines | France | Philippines |
13 | Luxembourg | Peru | Mozambique | Kenya |
14 | Spain | Mozambique | Netherlands | Senegal |
15 | Syria | Zambia | Denmark | Malaysia |
16 | Libya | Guatemala | Luxembourg | Tanzania |
17 | Saudi Arabia | Bolivia | Belgium | Guatemala |
18 | France | El Salvador | Spain | Madagascar |
19 | Belgium | Tajikistan | Laos | Uganda |
20 | Switzerland | Mauritania | Saudi Arabia | Congo |
3.3. Water Savings
3.4. Multivariate Regression Analysis
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hoekstra, A.Y. The global dimensions of water governance: Why the river basin approach is no longer sufficient and why cooperative action at global level is needed. Water 2011, 3, 21–46. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA. 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Dalin, C.; Konar, M.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. USA 2012, 109, 5989–5994. [Google Scholar] [CrossRef] [PubMed]
- Rulli, M.C.; D’Odorico, P. The water footprint of land grabbing. Geophys. Res. Lett. 2013, 40, 6130–6135. [Google Scholar] [CrossRef]
- Rulli, M.C.; Saviori, A.; D’Odorico, P. Global land and water grabbing. Proc. Natl. Acad. Sci. USA 2013, 110, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Oxfam. Food Aid: A Critical Program Ripe for Reform. Available online: http://www.oxfamamerica.org/take-action/campaign/food-farming-and-hunger/food-aid/ (accessed on 1 February 2015).
- Crost, B.; Felter, J.; Johnston, P. Aid Under Fire: Development Projects and Civil Conflict. Am. Econ. Rev. 2014, 104, 1833–1856. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. U.S. Food Aid and Civil Conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- U.S. Agency for International Development. Food Aid Reform. Available online: http://www.usaid.gov/foodaidreform (accessed on 1 February 2015).
- Shaw, D.J. The UN World Food Programme And The Development Of Food Aid; Palgrave: New York, NY, USA, 2001. [Google Scholar]
- Hoekstra, A.Y. (Ed.) Virtual water trade. In Proceedings to the International Expert Meeting on Virtual After Trade, Delft, The Netherlands, 12–13 December 2002.
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; Blackwell: Oxford, UK, 2008. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Globalisation of water resources: International virtual water flows in relation to crop trade. Glob. Environ. Chang. 2005, 15, 45–56. [Google Scholar] [CrossRef]
- Hanasaki, N.; Inuzuka, T.; Kanae, S.; Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 2010, 384, 232–244. [Google Scholar] [CrossRef]
- Konar, M.; Dalin, C.; Suweis, S.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Water for food: The global virtual water trade network. Water Resour. Res. 2011. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Sustainable, efficient and equitable water use: The three pillars under wise freshwater allocation. WIREs Water 2014, 1, 31–40. [Google Scholar] [CrossRef]
- Rogers, P.; de Silva, R.; Bhatia, R. Water is an economic good: How to use prices to promote equity, efficiency, and sustainability. Water Policy 2002, 4, 1–17. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 2006, 10, 455–468. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Allan, J.A.; Hoekstra, A.Y. Strategic importance of green water in international crop trade. Ecol. Econ. 2010, 69, 887–894. [Google Scholar] [CrossRef]
- Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Temporal dynamics of blue and green virtual water trade networks. Water Resour. Res. 2012. [Google Scholar] [CrossRef]
- Allan, T. Fortunately there are substitutes for water: Otherwise our hydropolitical futures would be impossible. In Proceedings of the Conference on Priorities for Water Resources Allocation and Management, Southampton, UK, July 1993; Volume 2, pp. 13–26.
- Tamea, S.; Carr, J.; Laio, F.; Ridolfi, L. Drivers of the virtual water trade. Water Resour. Res. 2014, 50, 17–28. [Google Scholar] [CrossRef]
- Food Aid Information System Online Database. Available online: http://www.wfp.org/fais/ (accessed on 5 January 2015).
- World Food Programme. World Food Programme Quantity Reporting. Available online: http://www.wfp.org/fais/reports/quantities-delivered-two-dimensional-report (accessed on 5 January 2015).
- World Food Programme. Food Information System: Aggregations and Groupings; World Food Programme: Rome, Italy, 2015. [Google Scholar]
- Lowder, S.; Raney, T. Food Aid: A Primer ESA Working Paper No. 05-05. In Technical report, Agricultural and Development Economics Division The Food and Agriculture Organization of the United Nations; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. (Eds.) The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011.
- Yang, H.; Wang, L.; Abbaspour, K.; Zehnder, A. Virtual water trade: An assessment of water use efficiency in the international food trade. Hydrol. Earth Syst. Sci. 2006, 10, 443–454. [Google Scholar] [CrossRef]
- Konar, M.; Hussein, Z.; Hanasaki, N.; Mauzerall, D.L.; Rodriguez-Iturbe, I. Virtual water trade flows and savings under climate change. Hydrol. Earth Syst. Sci. 2013, 17, 3219–3234. [Google Scholar] [CrossRef]
- Wichelns, D. The role of ‘virtual water’ in efforts to achieve food security and other national goals, with an example from Egypt. Agric. Water Manag. 2001, 49, 131–151. [Google Scholar] [CrossRef]
- Krugman, P.; Obstfeld, M. International Economics: Theory and Policy, 8th ed.; Addison-Wesley: Upper Saddle River, NJ, USA, 2009; p. 687. [Google Scholar]
- Gassert, F.; Reig, P.; Luo, T.; Maddocks, A. Working Paper: Aqueduct Country and River Basin Ranking-A Weighted Aggregation of Spatially Distinct Hydrological Indicators; Technical Report; World Resources Institute: Washington, DC, USA, 2003. [Google Scholar]
- Reig, P.; Shiao, T.; Gassert, F. Working Paper: Aqueduct Water Risk Framework; Technical Report; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Gassert, F.; Reig, P.; Shiao, T.; Landis, M.; Luck, M. Working Paper: Aqueduct Global Maps 2.0; Technical Report; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- FAO. AQUASTAT Website. Available online: http://www.fao.org/nr/water/aquastat/main/index.stm (accessed on 15 January 2015).
- World Bank. Indicators Online Database. Available online: http://data.worldbank.org/data-catalog/world-development-indicators (accessed on 15 January 2015).
- Kaufmann, D.; Kraay, A.; Mastruzzi, M. The Worldwide Governance Indicators: Methodology and Analytical Issues; Technical Report, World Bank Policy Research Working Paper No. 5430; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- LMGO. The Land Matrix: Get the Detail. Available online: http://www.landmatrix.org/en/get- the-detail/ (accessed on 5 January 2015).
- Krzywinski, M.I.; Schein, J.E.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations Statistics Division. Trade-Crops and Livestock Products. Available online: http://faostat3.fao.org/download/T/TP/E (accessed on 7 February 2015).
- Konar, M.; Caylor, K. Virtual water trade and development in Africa. Hydrol. Earth Syst. Sci. 2013, 17, 3969–3982. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, F.; Fagiolo, G.; Sornette, D.; Vega-Redondo, F.; Vespignani, A.; White, D.R. Economic Networks: The New Challenges. Science 2009, 325, 422–425. [Google Scholar] [PubMed]
- Levin, S.; Sheshinski, E.; Barrett, S.; Aniyar, S.; Baumol, W.; Bliss, C. Resilience in natural and socioeconomic systems. Environ. Dev. Econ. 1998, 2, 221–262. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Vanlauwe, B.; Coyne, D.; Gockowski, J.; Hauser, S.; Huising, J.; Masso, C.; Nziguheba, G.; Schut, M.; Asten, P.V. Sustainable intensification and the African smallholder farmer. Curr. Opin. Environ. Sustain. 2014, 8, 15–22. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, P.A.; Denning, G.L.; Nziguheba, G. The African Green Revolution moves forward. Food Secur. 2009, 1, 37–44. [Google Scholar] [CrossRef]
- Rulli, M.C.; Saviori, A.; D’Odorico, P. Global land and water grabbing. Proc. Natl. Acad. Sci. USA 2013, 110, 892–897. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, N.; Konar, M.; Hoekstra, A.Y. The Water Footprint of Food Aid. Sustainability 2015, 7, 6435-6456. https://doi.org/10.3390/su7066435
Jackson N, Konar M, Hoekstra AY. The Water Footprint of Food Aid. Sustainability. 2015; 7(6):6435-6456. https://doi.org/10.3390/su7066435
Chicago/Turabian StyleJackson, Nicole, Megan Konar, and Arjen Y. Hoekstra. 2015. "The Water Footprint of Food Aid" Sustainability 7, no. 6: 6435-6456. https://doi.org/10.3390/su7066435
APA StyleJackson, N., Konar, M., & Hoekstra, A. Y. (2015). The Water Footprint of Food Aid. Sustainability, 7(6), 6435-6456. https://doi.org/10.3390/su7066435