The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model
Abstract
:1. Introduction
2. Methodology
2.1. Area of Interest
2.2. Model Setup
2.3. Scenarios
3. Results and Discussion
3.1. Model Validation
3.2. UHI Characterization
3.3. UHI Mitigation
3.3.1. Base Scenario and ALB Scenario
3.3.2. Base Scenario and ALB-IND Scenario
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Land Use Category | Land Use Description |
---|---|
1 | Urban and Built-up Land |
2 | Dryland Cropland and Pasture |
3 | Irrigated Cropland and Pasture |
4 | Mixed Dryland/Irrigated Cropland and Pasture |
5 | Cropland/Grassland Mosaic |
6 | Cropland/Woodland Mosaic |
7 | Grassland |
8 | Shrubland |
9 | Mixed Shrubland/Grassland |
10 | Savanna |
11 | Deciduous Broadleaf Forest |
12 | Deciduous Needleleaf Forest |
13 | Evergreen Broadleaf |
14 | Evergreen Needleleaf |
15 | Mixed Forest |
16 | Water Bodies |
17 | Herbaceous Wetland |
18 | Wooden Wetland |
19 | Barren or Sparsely Vegetated |
20 | Herbaceous Tundra |
21 | Wooded Tundra |
22 | Mixed Tundra |
23 | Bare Ground Tundra |
24 | Snow or Ice |
References
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1967, 7, 769–779. [Google Scholar] [CrossRef]
- Phelan, P.E.; Kaloush, K.; Miner, M.; Golden, J.; Phelan, B.; Silva, H.; Taylor, R.A. Urban Heat Island: Mechanisms, Implications, and Possible Remedies. Ann. Rev. Environ. Resour. 2015, 40, 285–307. [Google Scholar] [CrossRef]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques—The state of the art. J. Civil Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Castellani, B.; Morini, E.; Filipponi, M.; Nicolini, A.; Palombo, M.; Cotana, F.; Rossi, F. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds. Sustainability 2014, 6, 6815–6829. [Google Scholar] [CrossRef]
- Nastasi, B. Renewable Hydrogen Potential for Low-carbon Retrofit of the Building Stocks. Energy Procedia 2015, 82, 944–949. [Google Scholar] [CrossRef]
- Nastasi, B.; Di Matteo, U. Innovative use of Hydrogen in energy retrofitting of listed buildings. Energy Procedia 2016, in press. [Google Scholar]
- Nastasi, B.; Lo Basso, G. Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems. Energy 2016. [Google Scholar] [CrossRef]
- Magli, S.; Lodi, C.; Lombroso, L.; Muscio, A.; Teggi, S. Analysis of the urban heat island effects on building energy consumption. Int. J. Energy Environ. Eng. 2015, 6, 91–99. [Google Scholar] [CrossRef]
- Doddaballapur, S. Analysis of the impact of urban heat island on building energy consumption. In Proceedings of the 2012 ACES Solar Conference, World Renewable Energy Forum (WREF), Denver, CO, USA, 13–17 May 2012.
- Golden, J.S.; Brazel, A.; Salmond, J.; Laws, D. Energy and water sustainability the role of urban climate change from metropolitan infrastructure. J. Green Build. 2006, 1, 124–138. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 2012, 47, 302–311. [Google Scholar] [CrossRef]
- Rossi, F.; Bonamente, E.; Nicolini, A.; Anderini, E.; Cotana, F. A carbon footprint and energy consumption assessment methodology for UHI-affected lighting systems in built areas. Energy Build. 2015, 114, 96–103. [Google Scholar] [CrossRef]
- Heaviside, C.; Tsangari, H.; Paschalidou, A.; Vardoulakis, S.; Kassomenos, P.; Georgiou, K.E.; Yamasaki, E.N. Heat-related mortality in Cyprus for current and future climate scenarios. Sci. Total Environ. 2016, 569–570, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Teisberg, T.J.; Kalkstein, L.S.; Robinson, L.; Weiher, L.H. Heat watch/warning systems save lives: Estimated costs and benefits for Philadelphia 1995–1998. Bull. Am. Meteorol. Soc. 2004, 85, 1067–1074. [Google Scholar] [CrossRef]
- Greene, J.S.; Kalkstein, L.S.; Kim, K.R.; Choi, Y.-J.; Lee, D.-G. The application of the European heat wave of 2003 to Korean cities to analyze impacts on heat-related mortality. Int. J. Biometeorol. 2016, 60, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Baldinelli, G.; Bonafoni, S.; Anniballe, R.; Presciutti, A.; Gioli, B.; Magliulo, V. Spaceborne detection of roof and impervious surface albedo: Potentialities and comparison with airborne thermography measurements. Sol. Energy 2015, 113, 281–294. [Google Scholar] [CrossRef]
- Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of urban heat islands: Materials, utility programs, updates. Energy Build. 1995, 22, 255–265. [Google Scholar] [CrossRef]
- Doulos, L.; Santamouris, M.; Livada, I. Passive cooling of outdoor urban spaces. The role of materials. Sol. Energy 2004, 77, 231–249. [Google Scholar] [CrossRef]
- Hooshangi, H.R.; Akbari, H.; Touchaei, A.G. Measuring solar reflectance of variegated flat roofing materials using quasi-Monte Carlo method. Energy Build. 2015, in press. [Google Scholar]
- Rossi, F.; Morini, E.; Castellani, B.; Nicolini, A.; Bonamente, E.; Anderini, E.; Cotana, F. Beneficial effects of retroreflective materials in urban canyons: Results from seasonal monitoring campaign. In Proceedings of the 33rd UIT (Italian Union of Thermo-fluid dynamics) Heat Transfer Conference, L’Aquila, Italy, 22–24 June 2015.
- Rossi, F.; Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Santamouris, M. Retroreflective façades for urban heat island mitigation: Experimental investigation and energy evaluations. Appl. Energy 2015, 145, 8–20. [Google Scholar] [CrossRef]
- Rossi, F.; Pisello, A.L.; Nicolini, A.; Filipponi, M.; Palombo, M. Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model. Appl. Energy 2014, 114, 621–631. [Google Scholar] [CrossRef]
- Rossi, F.; Castellani, B.; Presciutti, A.; Morini, E.; Anderini, E.; Filipponi, M.; Nicolini, A. Experimental evaluation of urban heat island mitigation potential of retro-reflective pavement in urban canyons. Energy Build. 2016, 126, 340–352. [Google Scholar] [CrossRef]
- Touchaei, A.G.; Hosseini, M.; Akbari, H. Energy savings potentials of commercial buildings by urban heat island reduction strategies in Montreal (Canada). Energy Build. 2016, 110, 41–48. [Google Scholar] [CrossRef]
- Touchaei, A.G.; Akbari, H. Evaluation of the seasonal effect of increasing the albedo on urban climate and energy consumption of buildings in Montreal. Urban Clim. 2015, in press. [Google Scholar] [CrossRef]
- Touchaei, A.G.; Wang, Y. Characterizing urban heat island in Montreal (Canada)—Effect of urban morphology. Sustain. Cities Soc. 2015, 19, 395–402. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A.; Tewari, M.; Chen, F. A Study of the Urban Boundary Layer Using Different Urban Parameterizations and High-Resolution Urban Canopy Parameters with WRF. J. Appl. Meteorol. Climatol. 2011, 50, 1107–1128. [Google Scholar] [CrossRef]
- Kusaka, H.; Chen, F.; Tewari, M.; Dudhia, J.; Gill, D.O.; Duda, M.G.; Wang, W. Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model. J. Meteorol. Soc. Jpn. 2012, 90, 33–45. [Google Scholar] [CrossRef]
- Fallmann, J.; Emeis, S.; Suppan, P. Mitigation of urban heat stress—A modelling case study for the area of Stuttgart. ERDE 2013, 144, 202–216. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Feliciani, J. Numeri meteo dell’estate 2012. Available online: http://www.notitiae.info/2012/09/15/numeri-meteo-dellestate-2012/ (accessed on 3 October 2015).
- WRF User Guide. Chapter 3: WRF Preprocessing System (WPS). Land Use and Soil Categories in the Static Data. Available online: http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm (accessed on 1 March 2014).
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One– and Two–Moment Schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Janjic, Z.I. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. 2002. Available online: http://www2.mmm.ucar.edu/wrf/users/phys_refs/SURFACE_LAYER/eta_part4.pdf (accessed on 29 September 2016).
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004 ; pp. 11–15.
- Janjic, Z.I. The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol. 2010, 99, 345–356. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.L.; Dee, D.P.; Dutra, E.; Pappenberger, F.; De Rosnay, P.; et al. ERA-Interim/Land: A Global Land-Surface Reanalysis Based on ERA-Interim Meteorological Forcing; ECMWF: Reading, UK, 2012. [Google Scholar]
- U.S. Geological Survey. USGS for a changing world. Available online: https://www.usgs.gov/ (accessed on 1 March 2014).
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Methuen: London, UK; New York, NY, USA, 1987; p. 452. [Google Scholar]
- Zhang, H.; Zhaoxia, P. Examination of Errors in Near-Surface Temperature and Wind from WRF Numerical Simulations in Regions of Complex Terrain. Am. Meteorol. Soc. 2013, 28, 893–914. [Google Scholar] [CrossRef]
- Urban Heat Islands (UHIs). Available online: http://www.urbanheatislands.com/ (accessed on 1 July 2016).
Input | Settings |
---|---|
Number of domains | 4 |
Dx of coarser domain | 11,250 m |
Dy of coarser domain | 11,250 m |
Parent grid ratio | 1, 5, 3, 3 |
West-East number of grids | 58, 101, 103, 100 |
South-North number of grids | 45, 76, 103, 70 |
Data resolution | 10 min, 2 min, 30 s, 30 s |
Physics Scheme | Selected Option |
---|---|
Microphysics | Morrison double-moment scheme [35] |
Longwave Radiation | RRTM scheme [36] |
Shortwave Radiation | Dudhia scheme [37] |
Surface Layer | Eta similarity [38] |
Land Surface | Noah Land Surface Model [39] |
Urban Surface | BEM Building Energy Model [28] |
Planetary Boundary layer | Mellor-Yamada-Janjic scheme [40] |
Cumulus Parameterization | Kain-Fritsch scheme [41] |
MAE | MBE | |||
---|---|---|---|---|
°C | m/s | °C | m/s | |
Weather Station A | 1.9 | 1.6 | 1.2 | 1.1 |
Weather Station B | 2.4 | 1.8 | 1.1 | 1.5 |
Weather Station C | 2.1 | 2.1 | 1.1 | 2.1 |
Weather Station D | 1.5 | 2.6 | 1.3 | 2.6 |
Options | Values | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grid Point | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
Land Use | 1 | 9 | 9 | 2 | 1 | 1 | 10 | 1 | 1 | 2 | 2 | 10 | 15 | 10 |
T1 | T5 | T6 | T8 | |
---|---|---|---|---|
Peak Day T | 0.6 | 0.7 | 0.4 | 0.6 |
Peak Night T | 0.6 | 1 | 1.8 | 0.8 |
Peak Evening T | 0.1 | 0.3 | 0.5 | 0.3 |
T1 | T5 | T6 | T8 | |
---|---|---|---|---|
Peak Day T | 0.8 | 0.2 | 0.0 | 0 |
Peak Night T | 0.2 | −0.1 | −0.1 | −0.3 |
Peak Evening T | 1.6 | 0.2 | 0.3 | 0.4 |
T1 [°C] | T2 [°C] | T3 [°C] | T4 [°C] | T5 [°C] | T6 [°C] | T7 [°C] | T8 [°C] | T9 [°C] | T10 [°C] | T11 [°C] | T12 [°C] | T13 [°C] | T14 [°C] | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALB | Max | 2.0 | 1.2 | 1.0 | 0.90 | 2.5 | 2.5 | 1.0 | 2.0 | 2.5 | 2.7 | 0.7 | 1.1 | 0.8 | 0.8 |
Ave | 0.9 | 0.05 | 0.1 | −0.01 | 0.5 | 0.9 | 0.1 | 1 | 0.1 | 0 | 0 | 0 | 0 | −0 | |
ALB-IND | Max | 2.1 | 1.3 | 0.6 | 0.9 | 2.5 | 1.4 | 0.8 | 1.3 | 0.9 | 1.5 | 0.8 | 1.1 | 0.6 | 0.5 |
Ave | 1.4 | −0.2 | −0.1 | 0 | 0.5 | 0.6 | −0.1 | 0.5 | 0.2 | 0 | 0 | 0 | 0 | −0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morini, E.; Touchaei, A.G.; Castellani, B.; Rossi, F.; Cotana, F. The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model. Sustainability 2016, 8, 999. https://doi.org/10.3390/su8100999
Morini E, Touchaei AG, Castellani B, Rossi F, Cotana F. The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model. Sustainability. 2016; 8(10):999. https://doi.org/10.3390/su8100999
Chicago/Turabian StyleMorini, Elena, Ali G. Touchaei, Beatrice Castellani, Federico Rossi, and Franco Cotana. 2016. "The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model" Sustainability 8, no. 10: 999. https://doi.org/10.3390/su8100999
APA StyleMorini, E., Touchaei, A. G., Castellani, B., Rossi, F., & Cotana, F. (2016). The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model. Sustainability, 8(10), 999. https://doi.org/10.3390/su8100999