Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review and Background
1.3. Aim and Contributions
- (1)
- SSA is applied for de-noising daily average wind power;
- (2)
- The neighborhood radius of the subtractive clustering algorithm is optimized by the firefly algorithm;
- (3)
- Based on the optimal neighborhood radius, SSA and ANFIS, we develop a hybrid interval forecasting method, IFASF, for daily average wind power;
- (4)
- An extensive comparison of the Autoregressive Integrated Moving Average Model (ARIMA), Back Propagation Neural Network (BPNN), Extreme Learning Machine (ELM), ANFIS, ARIMA-SSA, BPNN-SSA, ELM-SSA, ANFIS-SSA and IFASF lays a strong foundation for future research regarding interval forecasts of average wind power;
- (5)
- IFASF outperforms other benchmarks when forecasting 70% and 80% intervals of the mean wind power.
2. Methodology
Method | Symbol | Description |
---|---|---|
Confidence level | ||
SSA | A real number determined by actual situation | |
Time lag | ||
Embedding dimension | ||
Assumed upper limit of the noisy part | ||
ANFIS | Premise parameters | |
Consequent parameters | ||
Subtractive clustering | Neighborhood radius | |
a constant larger than 1 | ||
FA | distance between fireflies | |
light absorption coefficient | ||
light intensity | ||
randomization parameter |
2.1. Interval Forecasts
2.2. Singular Spectrum Analysis
2.3. Adaptive-Network-Based Fuzzy Inference System with Subtractive Clustering
2.3.1. Adaptive-Network-Based Fuzzy Inference System
2.3.2. Subtractive Clustering Algorithm
2.4. Firefly Algorithm
Algorithm 1. Firefly Algorithm. |
Input: , Objective function: |
Generate initial population of fireflies |
3. Introduction to the Proposed Model
4. Numerical Results and Analysis
4.1. Data Collections, Forecasting Principles and Parameter Settings
- Two previous wind power points of the forecasting point were used to construct input spaces of a basic ANFIS.
- Training samples of the IFASF were constructed for the week to be validated using the previous 60 days of wind power data.
- The proposed model was re-trained after it had provided seven days of forecasting results.
4.2. Interval Forecasting Results
4.2.1. Experiment I
Weeks | ANFIS | ANFIS-SSA | IFASF | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IFCP (%) | IFNAW (%) | IFCP (%) | IFNAW (%) | IFCP (%) | IFNAW (%) | |||||||||||||
90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | |
1 | 42.86 | 85.71 | 85.71 | 105.07 | 275.77 | 393.68 | 71.43 | 57.14 | 85.71 | 109.43 | 147.66 | 335.51 | 85.71 | 85.71 | 71.43 | 191.02 | 287.31 | 386.50 |
2 | 0.00 | 14.29 | 42.86 | 15.81 | 31.36 | 43.50 | 0.00 | 57.14 | 71.43 | 12.48 | 35.00 | 51.61 | 0.00 | 42.86 | 71.43 | 25.42 | 43.16 | 58.68 |
3 | 57.14 | 85.71 | 85.71 | 267.57 | 465.26 | 619.34 | 57.14 | 85.71 | 85.71 | 155.64 | 411.33 | 514.84 | 71.43 | 85.71 | 85.71 | 252.09 | 465.03 | 509.18 |
4 | 14.29 | 14.29 | 14.29 | 26.83 | 46.57 | 67.54 | 42.86 | 42.86 | 28.57 | 16.32 | 38.33 | 64.97 | 14.29 | 57.14 | 28.57 | 23.86 | 70.06 | 75.06 |
5 | 28.57 | 57.14 | 57.14 | 31.22 | 64.51 | 92.32 | 28.57 | 57.14 | 85.71 | 34.81 | 77.42 | 119.98 | 71.43 | 71.43 | 85.71 | 39.74 | 71.52 | 97.17 |
6 | 42.86 | 57.14 | 57.14 | 53.53 | 92.26 | 134.44 | 28.57 | 57.14 | 85.71 | 51.26 | 114.86 | 178.47 | 57.14 | 71.43 | 85.71 | 60.74 | 107.38 | 150.58 |
7 | 0.00 | 42.86 | 57.14 | 24.30 | 40.76 | 56.62 | 14.29 | 42.86 | 42.86 | 13.86 | 51.19 | 78.55 | 0.00 | 0.00 | 57.14 | 22.36 | 42.35 | 62.99 |
8 | 14.29 | 71.43 | 85.71 | 61.09 | 116.99 | 168.30 | 14.29 | 14.29 | 71.43 | 61.03 | 92.08 | 137.46 | 28.57 | 71.43 | 85.71 | 71.34 | 130.05 | 160.08 |
9 | 42.86 | 42.86 | 57.14 | 29.50 | 58.16 | 94.26 | 57.14 | 57.14 | 71.43 | 65.33 | 81.89 | 111.91 | 28.57 | 42.86 | 100.00 | 39.50 | 76.20 | 108.21 |
10 | 14.29 | 28.57 | 85.71 | 30.89 | 56.08 | 90.33 | 28.57 | 28.57 | 71.43 | 41.52 | 97.75 | 138.11 | 28.57 | 28.57 | 42.86 | 25.73 | 47.66 | 75.27 |
11 | 57.14 | 42.86 | 100.00 | 41.80 | 78.32 | 122.65 | 57.14 | 42.86 | 85.71 | 29.16 | 79.54 | 137.64 | 28.57 | 85.71 | 100.00 | 60.37 | 111.30 | 149.23 |
12 | 14.29 | 28.57 | 57.14 | 13.77 | 30.60 | 50.11 | 57.14 | 57.14 | 57.14 | 27.29 | 49.66 | 64.96 | 14.29 | 42.86 | 42.86 | 14.25 | 28.58 | 43.02 |
13 | 42.86 | 71.43 | 85.71 | 88.70 | 104.78 | 184.63 | 42.86 | 85.71 | 100.00 | 76.56 | 139.94 | 191.12 | 57.14 | 100.00 | 100.00 | 64.04 | 116.80 | 161.46 |
14 | 57.14 | 57.14 | 57.14 | 16.77 | 42.92 | 54.18 | 14.29 | 71.43 | 85.71 | 34.46 | 61.51 | 87.81 | 71.43 | 85.71 | 85.71 | 31.25 | 72.51 | 94.26 |
15 | 28.57 | 57.14 | 57.14 | 35.02 | 64.42 | 95.95 | 42.86 | 42.86 | 57.14 | 43.36 | 76.63 | 102.96 | 42.86 | 57.14 | 71.43 | 34.60 | 73.86 | 107.23 |
16 | 14.29 | 57.14 | 57.14 | 40.11 | 65.05 | 89.27 | 28.57 | 57.14 | 71.43 | 47.49 | 87.24 | 118.71 | 28.57 | 71.43 | 71.43 | 38.69 | 80.90 | 107.83 |
17 | 28.57 | 71.43 | 57.14 | 123.65 | 123.65 | 123.65 | 57.14 | 85.71 | 100.00 | 95.70 | 216.81 | 213.21 | 0.00 | 57.14 | 100.00 | 76.35 | 138.55 | 197.47 |
18 | 57.14 | 42.86 | 71.43 | 36.76 | 61.57 | 88.82 | 14.29 | 42.86 | 28.57 | 32.42 | 57.29 | 82.20 | 14.29 | 42.86 | 71.43 | 38.42 | 58.40 | 115.12 |
19 | 28.57 | 71.43 | 85.71 | 42.39 | 79.05 | 111.73 | 28.57 | 28.57 | 42.86 | 35.56 | 70.96 | 98.38 | 57.14 | 57.14 | 71.43 | 52.12 | 75.97 | 108.20 |
20 | 28.57 | 28.57 | 57.14 | 23.50 | 46.81 | 76.41 | 28.57 | 57.14 | 71.43 | 46.04 | 70.74 | 94.32 | 57.14 | 71.43 | 71.43 | 28.20 | 55.17 | 86.45 |
21 | 14.29 | 42.86 | 42.86 | 23.05 | 44.76 | 63.10 | 42.86 | 57.14 | 71.43 | 23.66 | 46.45 | 66.92 | 28.57 | 42.86 | 57.14 | 23.31 | 47.81 | 79.55 |
22 | 28.57 | 57.14 | 57.14 | 71.18 | 107.62 | 140.72 | 28.57 | 57.14 | 71.43 | 37.50 | 73.17 | 102.43 | 42.86 | 57.14 | 85.71 | 42.04 | 80.83 | 123.22 |
23 | 14.29 | 42.86 | 57.14 | 59.15 | 84.89 | 109.01 | 28.57 | 57.14 | 57.14 | 30.59 | 57.02 | 83.23 | 28.57 | 57.14 | 57.14 | 32.27 | 68.70 | 77.87 |
24 | 57.14 | 71.43 | 85.71 | 246.94 | 279.60 | 309.60 | 71.43 | 71.43 | 100.00 | 51.82 | 80.93 | 123.90 | 71.43 | 71.43 | 100.00 | 51.34 | 90.52 | 122.65 |
25 | 28.57 | 57.14 | 71.43 | 40.44 | 97.40 | 188.15 | 42.86 | 100.00 | 100.00 | 75.54 | 154.32 | 209.33 | 71.43 | 100.00 | 100.00 | 88.92 | 162.63 | 219.78 |
Std. | 18.13 | 19.73 | 18.93 | 64.95 | 98.42 | 127.65 | 18.90 | 19.55 | 20.82 | 32.69 | 77.29 | 99.79 | 25.75 | 22.92 | 20.08 | 53.66 | 91.66 | 103.63 |
Average | 30.29 | 52.00 | 65.14 | 61.96 | 102.37 | 142.73 | 37.14 | 56.57 | 72.00 | 49.95 | 98.79 | 140.34 | 40.00 | 62.29 | 76.00 | 57.12 | 104.13 | 139.08 |
4.2.2. Experiment II
Model | Criteria | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean IFCP (%) | Mean IFNAW (%) | Mean CWC (%) | |||||||
90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | |
ARIMA | 30.29 | 52.00 | 60.57 | 47.21 | 101.74 | 143.35 | 806.61 | 1443.84 | 1922.82 |
BPNN | 29.71 | 53.71 | 57.14 | 53.58 | 102.82 | 142.30 | 569.97 | 659.20 | 597.81 |
ELM | 29.14 | 49.71 | 62.86 | 53.90 | 99.08 | 138.60 | 590.70 | 464.48 | 410.68 |
ANFIS | 30.29 | 52.00 | 65.14 | 61.96 | 102.37 | 142.73 | 648.38 | 372.92 | 358.90 |
ARIMA-SSA | 27.43 | 50.29 | 61.14 | 47.09 | 87.33 | 124.99 | 918.05 | 860.18 | 1402.35 |
BPNN-SSA | 36.57 | 50.29 | 71.43 | 54.57 | 93.93 | 133.92 | 447.79 | 430.42 | 309.64 |
ELM-SSA | 36.00 | 54.29 | 71.43 | 52.46 | 93.62 | 132.74 | 431.81 | 380.32 | 483.80 |
ANFIS-SSA | 37.14 | 56.57 | 72.00 | 49.95 | 98.79 | 140.34 | 415.39 | 384.66 | 293.10 |
IFASF | 40.00 | 62.29 | 76.00 | 57.12 | 104.13 | 139.08 | 508.16 | 321.53 | 261.04 |
4.2.3. Experiment III
Weeks | ANFIS | ANFIS-SSA | IFASF | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IFCP (%) | IFNAW (%) | IFCP (%) | IFNAW (%) | IFCP (%) | IFNAW (%) | |||||||||||||
90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | |
1 | 57.14 | 57.14 | 71.43 | 43.83 | 56.29 | 64.59 | 28.57 | 85.71 | 100.00 | 14.08 | 31.78 | 57.12 | 57.14 | 85.71 | 85.71 | 20.10 | 34.06 | 45.32 |
2 | 42.86 | 42.86 | 57.14 | 35.49 | 62.19 | 90.90 | 57.14 | 71.43 | 85.71 | 47.05 | 91.81 | 123.56 | 28.57 | 71.43 | 85.71 | 31.51 | 72.06 | 103.27 |
3 | 14.29 | 14.29 | 28.57 | 39.49 | 59.53 | 78.22 | 42.86 | 71.43 | 71.43 | 38.64 | 71.33 | 95.76 | 42.86 | 57.14 | 71.43 | 40.38 | 66.44 | 93.14 |
4 | 42.86 | 28.57 | 42.86 | 23.02 | 67.96 | 88.71 | 14.29 | 57.14 | 57.14 | 25.99 | 56.37 | 80.66 | 0.00 | 28.57 | 42.86 | 27.61 | 55.74 | 82.59 |
5 | 85.71 | 85.71 | 85.71 | 156.67 | 220.48 | 273.45 | 57.14 | 71.43 | 100.00 | 109.29 | 177.42 | 268.99 | 42.86 | 71.43 | 100.00 | 102.78 | 197.45 | 272.76 |
6 | 14.29 | 14.29 | 28.57 | 36.93 | 62.89 | 91.70 | 42.86 | 57.14 | 85.71 | 38.02 | 78.87 | 105.31 | 42.86 | 57.14 | 57.14 | 35.79 | 69.86 | 100.61 |
7 | 28.57 | 57.14 | 57.14 | 278.88 | 419.54 | 602.12 | 14.29 | 28.57 | 28.57 | 86.73 | 724.62 | 836.04 | 14.29 | 85.71 | 100.00 | 281.37 | 699.91 | 876.46 |
8 | 71.43 | 71.43 | 71.43 | 297.03 | 389.28 | 464.36 | 71.43 | 100.00 | 100.00 | 95.67 | 195.27 | 282.68 | 85.71 | 100.00 | 100.00 | 111.40 | 199.71 | 290.05 |
9 | 14.29 | 14.29 | 100.00 | 85.34 | 210.61 | 403.18 | 85.71 | 100.00 | 100.00 | 239.88 | 415.43 | 583.66 | 71.43 | 85.71 | 85.71 | 216.87 | 405.76 | 590.33 |
10 | 28.57 | 71.43 | 100.00 | 73.76 | 127.67 | 181.33 | 0.00 | 57.14 | 85.71 | 51.67 | 137.92 | 203.00 | 14.29 | 57.14 | 100.00 | 70.58 | 144.73 | 211.78 |
11 | 14.29 | 42.86 | 85.71 | 34.72 | 63.79 | 91.07 | 71.43 | 71.43 | 85.71 | 59.70 | 94.84 | 100.96 | 42.86 | 71.43 | 85.71 | 34.54 | 68.53 | 93.55 |
12 | 28.57 | 42.86 | 71.43 | 30.33 | 59.78 | 84.48 | 57.14 | 71.43 | 85.71 | 33.69 | 72.19 | 91.77 | 57.14 | 28.57 | 57.14 | 52.62 | 64.50 | 88.37 |
13 | 0.00 | 42.86 | 57.14 | 19.66 | 43.06 | 61.76 | 0.00 | 28.57 | 57.14 | 25.98 | 51.90 | 80.44 | 0.00 | 14.29 | 71.43 | 24.26 | 44.96 | 67.65 |
14 | 28.57 | 71.43 | 71.43 | 18.54 | 42.64 | 60.73 | 14.29 | 42.86 | 71.43 | 15.43 | 28.90 | 62.52 | 14.29 | 57.14 | 71.43 | 32.30 | 42.11 | 69.09 |
15 | 57.14 | 71.43 | 71.43 | 79.38 | 116.36 | 129.32 | 57.14 | 71.43 | 85.71 | 34.51 | 71.71 | 100.25 | 71.43 | 85.71 | 85.71 | 53.33 | 88.09 | 115.00 |
16 | 71.43 | 71.43 | 57.14 | 33.87 | 43.97 | 64.35 | 71.43 | 85.71 | 85.71 | 10.25 | 57.19 | 79.85 | 57.14 | 71.43 | 85.71 | 30.31 | 55.19 | 79.39 |
17 | 28.57 | 57.14 | 100.00 | 137.92 | 254.52 | 392.23 | 28.57 | 57.14 | 71.43 | 41.32 | 268.11 | 299.24 | 71.43 | 85.71 | 85.71 | 165.05 | 290.83 | 402.10 |
18 | 28.57 | 42.86 | 42.86 | 16.89 | 42.13 | 56.56 | 42.86 | 42.86 | 85.71 | 22.94 | 39.08 | 61.26 | 28.57 | 42.86 | 57.14 | 21.26 | 45.11 | 67.49 |
19 | 0.00 | 57.14 | 14.29 | 725.70 | 1327.80 | 1624.52 | 85.71 | 14.29 | 14.29 | 231.58 | 687.59 | 1269.39 | 57.14 | 85.71 | 28.57 | 676.17 | 632.02 | 900.32 |
20 | 28.57 | 42.86 | 57.14 | 22.69 | 60.95 | 93.88 | 28.57 | 42.86 | 85.71 | 41.38 | 80.82 | 112.60 | 28.57 | 42.86 | 71.43 | 42.29 | 76.77 | 111.66 |
21 | 28.57 | 28.57 | 28.57 | 17.50 | 44.11 | 54.16 | 28.57 | 71.43 | 85.71 | 28.42 | 50.68 | 70.35 | 14.29 | 57.14 | 85.71 | 29.39 | 52.22 | 71.86 |
22 | 0.00 | 57.14 | 71.43 | 26.25 | 64.58 | 88.88 | 57.14 | 57.14 | 14.29 | 20.35 | 50.36 | 78.29 | 57.14 | 71.43 | 71.43 | 28.14 | 54.38 | 82.10 |
23 | 14.29 | 14.29 | 42.86 | 47.84 | 67.05 | 89.84 | 28.57 | 71.43 | 85.71 | 33.05 | 73.89 | 96.56 | 28.57 | 57.14 | 71.43 | 46.15 | 59.22 | 86.32 |
24 | 42.86 | 85.71 | 100.00 | 92.56 | 150.75 | 204.38 | 28.57 | 71.43 | 100.00 | 71.11 | 126.95 | 192.58 | 42.86 | 85.71 | 100.00 | 74.98 | 137.58 | 189.84 |
25 | 14.29 | 42.86 | 71.43 | 41.90 | 65.75 | 103.01 | 57.14 | 71.43 | 71.43 | 38.07 | 62.45 | 87.93 | 57.14 | 71.43 | 71.43 | 39.78 | 72.48 | 92.92 |
Std. | 22.96 | 21.85 | 24.43 | 150.94 | 264.07 | 327.65 | 24.74 | 21.03 | 24.65 | 58.99 | 187.40 | 283.65 | 23.44 | 21.46 | 18.44 | 137.94 | 178.59 | 239.98 |
Average | 31.43 | 49.14 | 63.43 | 96.65 | 164.95 | 221.51 | 42.86 | 62.86 | 76.00 | 58.19 | 151.90 | 216.83 | 41.14 | 65.14 | 77.14 | 91.56 | 149.19 | 207.36 |
Model | Criteria | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean IFCP (%) | Mean IFNAW (%) | Mean CWC (%) | |||||||
90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | |
ARIMA | 32.57 | 60.00 | 72.57 | 71.00 | 145.45 | 180.91 | 1334.75 | 701.52 | 960.76 |
BPNN | 30.29 | 46.29 | 58.29 | 72.09 | 135.75 | 184.44 | 915.82 | 1382.57 | 2488.25 |
ELM | 22.29 | 45.71 | 65.71 | 73.37 | 130.93 | 195.32 | 1886.28 | 1980.08 | 1099.05 |
ANFIS | 31.43 | 49.14 | 63.43 | 96.65 | 164.95 | 221.51 | 1948.50 | 864.88 | 1849.18 |
ARIMA-SSA | 33.14 | 61.14 | 72.57 | 58.21 | 118.49 | 172.55 | 958.31 | 664.39 | 811.31 |
BPNN-SSA | 32.00 | 54.86 | 72.00 | 60.44 | 124.56 | 220.45 | 1391.35 | 1031.07 | 1609.85 |
ELM-SSA | 31.43 | 50.29 | 72.00 | 74.16 | 142.98 | 208.57 | 1332.14 | 2509.92 | 1045.54 |
ANFIS-SSA | 42.86 | 62.86 | 76.00 | 58.19 | 151.90 | 216.83 | 445.89 | 1171.13 | 1721.56 |
IFASF | 41.14 | 65.14 | 77.14 | 91.56 | 149.19 | 207.36 | 742.88 | 327.28 | 644.70 |
4.2.4. Experiment IV
Weeks | ANFIS | ANFIS-SSA | IFASF | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IFCP (%) | IFNAW (%) | IFCP (%) | IFNAW (%) | IFCP (%) | IFNAW (%) | |||||||||||||
90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | |
1 | 42.86 | 71.43 | 71.43 | 28.82 | 49.93 | 68.96 | 42.86 | 71.43 | 85.71 | 25.24 | 47.04 | 68.13 | 42.86 | 71.43 | 85.71 | 27.04 | 47.81 | 68.44 |
2 | 42.86 | 57.14 | 57.14 | 43.07 | 117.98 | 166.96 | 57.14 | 71.43 | 100.00 | 84.22 | 150.44 | 208.02 | 42.86 | 71.43 | 100.00 | 70.16 | 132.64 | 188.77 |
3 | 42.86 | 42.86 | 57.14 | 24.62 | 40.36 | 66.97 | 28.57 | 14.29 | 28.57 | 8.99 | 36.07 | 77.19 | 28.57 | 28.57 | 28.57 | 35.62 | 51.67 | 76.54 |
4 | 28.57 | 28.57 | 14.29 | 26.12 | 46.82 | 61.99 | 28.57 | 71.43 | 85.71 | 5.49 | 63.09 | 93.86 | 14.29 | 42.86 | 85.71 | 28.49 | 51.97 | 76.27 |
5 | 57.14 | 85.71 | 71.43 | 71.03 | 111.75 | 88.75 | 42.86 | 57.14 | 71.43 | 33.24 | 95.48 | 167.80 | 71.43 | 71.43 | 71.43 | 62.05 | 96.46 | 133.03 |
6 | 42.86 | 28.57 | 28.57 | 224.02 | 398.30 | 543.54 | 71.43 | 14.29 | 14.29 | 515.93 | 89.52 | 138.06 | 42.86 | 71.43 | 71.43 | 73.86 | 326.57 | 493.48 |
7 | 71.43 | 71.43 | 85.71 | 268.52 | 263.36 | 388.73 | 71.43 | 100.00 | 100.00 | 144.50 | 235.77 | 332.51 | 57.14 | 100.00 | 100.00 | 125.58 | 239.55 | 332.19 |
8 | 57.14 | 71.43 | 71.43 | 112.06 | 180.12 | 231.92 | 28.57 | 57.14 | 85.71 | 76.97 | 176.41 | 263.09 | 42.86 | 71.43 | 100.00 | 117.15 | 181.48 | 254.13 |
9 | 28.57 | 57.14 | 85.71 | 44.58 | 72.33 | 101.24 | 42.86 | 57.14 | 100.00 | 47.65 | 81.81 | 116.76 | 42.86 | 42.86 | 100.00 | 42.60 | 81.00 | 116.97 |
10 | 57.14 | 85.71 | 85.71 | 125.02 | 214.97 | 302.33 | 71.43 | 100.00 | 100.00 | 113.43 | 198.82 | 277.79 | 71.43 | 100.00 | 100.00 | 99.18 | 194.24 | 276.53 |
11 | 57.14 | 100.00 | 100.00 | 211.39 | 369.57 | 519.13 | 85.71 | 85.71 | 100.00 | 200.31 | 356.51 | 525.20 | 85.71 | 100.00 | 100.00 | 177.27 | 362.61 | 506.80 |
12 | 28.57 | 71.43 | 100.00 | 66.76 | 119.23 | 167.82 | 0.00 | 28.57 | 100.00 | 49.83 | 112.32 | 204.12 | 0.00 | 42.86 | 100.00 | 72.06 | 117.04 | 203.84 |
13 | 57.14 | 57.14 | 85.71 | 39.77 | 67.50 | 94.22 | 57.14 | 85.71 | 85.71 | 36.41 | 59.52 | 92.11 | 57.14 | 71.43 | 85.71 | 45.92 | 59.65 | 95.26 |
14 | 28.57 | 42.86 | 71.43 | 42.44 | 76.38 | 106.24 | 57.14 | 71.43 | 71.43 | 37.49 | 74.94 | 111.06 | 71.43 | 85.71 | 57.14 | 37.46 | 75.61 | 103.43 |
15 | 14.29 | 28.57 | 42.86 | 10.12 | 32.07 | 46.31 | 0.00 | 14.29 | 57.14 | 19.46 | 37.67 | 54.41 | 0.00 | 14.29 | 71.43 | 16.81 | 36.65 | 46.37 |
16 | 14.29 | 85.71 | 71.43 | 14.93 | 41.67 | 60.03 | 28.57 | 28.57 | 42.86 | 14.40 | 33.26 | 48.72 | 14.29 | 42.86 | 71.43 | 18.63 | 36.94 | 56.87 |
17 | 28.57 | 57.14 | 71.43 | 81.34 | 101.97 | 155.20 | 57.14 | 71.43 | 100.00 | 55.24 | 93.76 | 160.18 | 57.14 | 71.43 | 100.00 | 58.73 | 103.58 | 141.15 |
18 | 42.86 | 71.43 | 71.43 | 70.80 | 130.53 | 157.59 | 42.86 | 71.43 | 85.71 | 59.85 | 95.46 | 115.55 | 42.86 | 71.43 | 100.00 | 52.73 | 93.67 | 128.05 |
19 | 42.86 | 57.14 | 57.14 | 64.84 | 203.08 | 310.47 | 71.43 | 71.43 | 100.00 | 302.35 | 421.78 | 587.16 | 100.00 | 100.00 | 100.00 | 244.05 | 386.23 | 533.63 |
20 | 42.86 | 71.43 | 85.71 | 34.96 | 47.16 | 63.78 | 14.29 | 71.43 | 85.71 | 24.26 | 41.16 | 64.07 | 28.57 | 85.71 | 85.71 | 26.44 | 47.86 | 68.36 |
21 | 28.57 | 57.14 | 100.00 | 12.86 | 90.24 | 108.98 | 42.86 | 57.14 | 42.86 | 21.75 | 33.45 | 60.34 | 28.57 | 42.86 | 57.14 | 23.33 | 41.60 | 58.35 |
22 | 28.57 | 28.57 | 42.86 | 47.19 | 86.03 | 120.46 | 57.14 | 71.43 | 28.57 | 22.84 | 75.75 | 113.24 | 57.14 | 71.43 | 71.43 | 51.11 | 96.14 | 130.95 |
23 | 42.86 | 57.14 | 71.43 | 46.51 | 69.13 | 93.71 | 14.29 | 42.86 | 85.71 | 36.06 | 72.25 | 105.74 | 14.29 | 28.57 | 85.71 | 37.78 | 57.58 | 107.11 |
24 | 42.86 | 85.71 | 85.71 | 89.84 | 153.37 | 215.94 | 42.86 | 100.00 | 100.00 | 90.88 | 167.52 | 226.72 | 42.86 | 100.00 | 100.00 | 90.97 | 162.37 | 219.25 |
25 | 57.14 | 57.14 | 100.00 | 53.84 | 93.58 | 129.33 | 57.14 | 71.43 | 100.00 | 67.09 | 101.36 | 134.12 | 57.14 | 71.43 | 100.00 | 51.15 | 95.29 | 124.91 |
Std. | 14.47 | 20.00 | 22.21 | 67.45 | 97.52 | 138.17 | 22.71 | 25.71 | 26.76 | 112.05 | 98.13 | 137.47 | 25.19 | 24.99 | 18.66 | 52.91 | 102.09 | 144.13 |
Average | 41.14 | 61.14 | 71.43 | 74.22 | 127.10 | 174.82 | 44.57 | 62.29 | 78.29 | 83.76 | 118.05 | 173.84 | 44.57 | 66.86 | 85.14 | 67.45 | 127.05 | 181.63 |
Model | Criteria | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean IFCP (%) | Mean IFNAW (%) | Mean CWC (%) | |||||||
90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | |
ARIMA | 36.57 | 62.86 | 72.57 | 60.03 | 125.84 | 172.12 | 731.61 | 782.03 | 1495.36 |
BPNN | 38.29 | 55.43 | 66.29 | 70.45 | 130.18 | 147.11 | 465.93 | 725.17 | 1191.36 |
ELM | 28.57 | 57.14 | 70.86 | 67.60 | 124.19 | 175.83 | 866.92 | 725.21 | 728.27 |
ANFIS | 41.14 | 61.14 | 71.43 | 74.22 | 127.10 | 174.82 | 423.99 | 497.45 | 580.47 |
ARIMA-SSA | 47.43 | 69.14 | 84.00 | 69.62 | 126.78 | 177.31 | 699.51 | 482.95 | 379.94 |
BPNN-SSA | 39.43 | 59.43 | 77.14 | 70.80 | 129.26 | 180.24 | 704.34 | 424.26 | 324.41 |
ELM-SSA | 34.29 | 62.29 | 81.71 | 70.61 | 127.82 | 181.16 | 719.75 | 366.71 | 277.05 |
ANFIS-SSA | 44.57 | 62.29 | 78.29 | 83.76 | 118.05 | 173.84 | 431.65 | 421.26 | 406.83 |
IFASF | 44.57 | 66.86 | 85.14 | 67.45 | 127.05 | 181.63 | 460.78 | 326.63 | 269.79 |
Weeks | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
ARIMA | BPNN | ELM | ANFIS | ARIMA-SSA | BPNN-SSA | ELM-SSA | ANFIS-SSA | IFASF | |
1 | 90.63 | 209.70 | 157.66 | 151.41 | 108.98 | 76.60 | 63.34 | 68.13 | 68.44 |
2 | 190.64 | 169.56 | 184.16 | 574.70 | 203.94 | 513.50 | 198.22 | 208.02 | 188.77 |
3 | 234.14 | 2480.27 | 483.51 | 230.52 | 245.94 | 344.01 | 486.97 | 863.73 | 856.51 |
4 | 274.81 | 836.33 | 421.82 | 1352.39 | 115.66 | 74.01 | 197.16 | 93.86 | 76.27 |
5 | 973.54 | 380.51 | 390.58 | 194.85 | 79.53 | 232.88 | 116.30 | 368.41 | 292.08 |
6 | 9741.61 | 4747.14 | 9690.88 | 6082.28 | 1264.97 | 1197.97 | 1121.23 | 3011.94 | 1083.44 |
7 | 256.68 | 269.19 | 279.63 | 388.73 | 273.30 | 312.02 | 307.72 | 332.51 | 332.19 |
8 | 172.96 | 516.14 | 730.95 | 509.18 | 179.50 | 225.05 | 206.94 | 263.09 | 254.13 |
9 | 210.76 | 216.13 | 211.24 | 101.24 | 92.34 | 109.03 | 116.12 | 116.76 | 116.97 |
10 | 254.69 | 633.15 | 286.85 | 302.33 | 261.47 | 261.24 | 285.40 | 277.79 | 276.53 |
11 | 504.27 | 15334.56 | 1152.26 | 519.13 | 423.16 | 507.54 | 503.94 | 525.20 | 506.80 |
12 | 157.48 | 165.68 | 176.88 | 167.82 | 132.58 | 183.80 | 387.01 | 204.12 | 203.84 |
13 | 112.30 | 86.54 | 95.33 | 94.22 | 104.53 | 197.16 | 91.34 | 92.11 | 95.26 |
14 | 123.86 | 298.76 | 213.59 | 233.25 | 123.06 | 133.23 | 500.34 | 243.84 | 356.00 |
15 | 117.37 | 81.57 | 118.86 | 277.33 | 98.49 | 135.08 | 211.25 | 187.30 | 101.80 |
16 | 132.38 | 53.68 | 61.41 | 131.80 | 71.17 | 247.46 | 166.31 | 291.77 | 124.86 |
17 | 184.70 | 149.20 | 307.81 | 340.75 | 189.81 | 146.35 | 327.42 | 160.18 | 141.15 |
18 | 148.57 | 130.90 | 277.36 | 345.99 | 112.57 | 134.35 | 130.50 | 115.55 | 128.05 |
19 | 18990.21 | 618.60 | 590.81 | 1068.67 | 487.85 | 603.13 | 776.15 | 587.16 | 533.63 |
20 | 620.36 | 96.80 | 133.63 | 63.78 | 59.85 | 158.47 | 62.84 | 64.07 | 68.36 |
21 | 121.53 | 163.35 | 397.71 | 108.98 | 148.17 | 127.08 | 67.88 | 361.33 | 200.86 |
22 | 3159.35 | 1653.66 | 1408.36 | 721.38 | 4034.42 | 1270.82 | 154.83 | 1267.22 | 287.51 |
23 | 161.75 | 167.99 | 89.09 | 205.74 | 219.26 | 301.58 | 106.71 | 105.74 | 107.11 |
24 | 301.40 | 203.71 | 220.01 | 215.94 | 318.38 | 190.71 | 210.63 | 226.72 | 219.25 |
25 | 147.99 | 120.79 | 126.45 | 129.33 | 149.52 | 427.25 | 129.78 | 134.12 | 124.91 |
Mean | 1495.36 | 1191.36 | 728.27 | 580.47 | 379.94 | 324.41 | 277.05 | 406.83 | 269.79 |
Weeks | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
ARIMA | BPNN | ELM | ANFIS | ARIMA-SSA | BPNN-SSA | ELM-SSA | ANFIS-SSA | IFASF | |
1 | 69.59 | 100.19 | 111.81 | 109.62 | 180.62 | 95.49 | 45.38 | 103.27 | 104.97 |
2 | 997.32 | 511.75 | 125.22 | 406.08 | 162.48 | 385.94 | 443.37 | 330.29 | 291.21 |
3 | 108.92 | 677.80 | 653.63 | 241.69 | 276.44 | 618.79 | 1177.15 | 786.93 | 578.20 |
4 | 168.28 | 1217.38 | 570.98 | 523.87 | 74.62 | 495.75 | 370.74 | 138.51 | 311.22 |
5 | 1033.46 | 456.96 | 917.12 | 111.75 | 179.07 | 479.68 | 484.38 | 328.64 | 211.77 |
6 | 7312.76 | 6626.16 | 6791.56 | 4457.09 | 2687.22 | 2272.72 | 1265.31 | 1953.03 | 716.99 |
7 | 214.60 | 229.63 | 202.65 | 578.21 | 201.95 | 225.25 | 229.35 | 235.77 | 239.55 |
8 | 284.89 | 1003.30 | 895.77 | 395.46 | 125.07 | 482.17 | 346.37 | 607.21 | 398.44 |
9 | 153.23 | 380.90 | 757.76 | 248.98 | 154.32 | 389.81 | 437.54 | 281.61 | 485.06 |
10 | 736.62 | 215.79 | 200.31 | 214.97 | 176.52 | 184.69 | 204.38 | 198.82 | 194.24 |
11 | 354.86 | 383.25 | 1252.93 | 369.57 | 302.06 | 788.67 | 350.94 | 356.51 | 362.61 |
12 | 113.09 | 117.27 | 268.01 | 261.78 | 91.03 | 648.67 | 470.72 | 1256.88 | 700.92 |
13 | 88.25 | 185.26 | 146.29 | 232.33 | 83.42 | 261.87 | 145.29 | 59.52 | 130.97 |
14 | 210.38 | 1772.65 | 413.64 | 457.38 | 209.92 | 374.83 | 402.55 | 164.52 | 75.61 |
15 | 134.26 | 717.79 | 264.59 | 358.83 | 97.99 | 418.43 | 441.00 | 821.77 | 799.49 |
16 | 65.17 | 350.80 | 44.89 | 41.67 | 51.62 | 166.67 | 144.72 | 372.22 | 221.23 |
17 | 827.65 | 233.74 | 226.75 | 350.98 | 650.05 | 189.15 | 232.91 | 205.85 | 227.42 |
18 | 121.38 | 498.14 | 199.93 | 286.57 | 198.87 | 180.46 | 549.18 | 209.59 | 205.65 |
19 | 1342.65 | 1035.12 | 1432.69 | 699.04 | 344.05 | 438.17 | 418.68 | 926.02 | 386.23 |
20 | 99.49 | 128.81 | 97.35 | 103.53 | 44.94 | 112.06 | 52.82 | 90.36 | 47.86 |
21 | 92.03 | 129.45 | 288.26 | 310.63 | 114.21 | 298.78 | 169.21 | 115.13 | 249.12 |
22 | 2445.81 | 511.83 | 1689.43 | 962.72 | 2625.09 | 108.80 | 161.15 | 166.32 | 211.08 |
23 | 293.01 | 291.88 | 139.37 | 237.95 | 409.28 | 404.46 | 271.39 | 432.68 | 644.37 |
24 | 2158.51 | 143.50 | 346.10 | 153.37 | 2399.31 | 292.04 | 139.99 | 167.52 | 162.37 |
25 | 124.53 | 209.92 | 93.20 | 322.11 | 233.49 | 293.10 | 213.28 | 222.53 | 209.22 |
Mean | 782.03 | 725.17 | 725.21 | 497.45 | 482.95 | 424.26 | 366.71 | 421.26 | 326.63 |
4.2.5. Experiment V
Model | Wind Farms | ||||||||
---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | |||||||
90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | 90.00% | 80.00% | 70.00% | |
ARIMA | 514.59 | 434.21 | 488.56 | 726.49 | 828.66 | 927.34 | 485.97 | 368.13 | 529.38 |
BPNN | 386.11 | 391.48 | 300.62 | 440.77 | 621.50 | 833.45 | 349.64 | 355.16 | 354.12 |
ELM | 396.46 | 368.53 | 366.36 | 526.16 | 698.31 | 762.18 | 311.84 | 346.90 | 363.31 |
ANFIS | 214.63 | 214.10 | 212.80 | 378.72 | 409.17 | 497.20 | 194.30 | 393.42 | 342.02 |
ARIMA-SSA | 404.59 | 261.47 | 231.92 | 571.40 | 687.42 | 650.38 | 431.23 | 481.04 | 580.91 |
BPNN-SSA | 189.57 | 214.58 | 222.81 | 197.44 | 189.36 | 212.37 | 200.85 | 216.30 | 224.94 |
ELM-SSA | 205.91 | 185.60 | 175.48 | 190.72 | 219.87 | 247.88 | 204.53 | 171.13 | 181.34 |
ANFIS-SSA | 206.43 | 197.97 | 200.39 | 206.43 | 197.97 | 200.39 | 195.02 | 204.60 | 200.68 |
IFASF | 165.08 | 158.65 | 154.01 | 185.57 | 187.15 | 189.63 | 168.76 | 170.16 | 173.39 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Acronyms
FA | Firefly Algorithm |
SSA | Singular Spectrum Analysis |
PCA | Principal Component Analysis |
NWP | Numeric Weather Prediction |
FIS | Fuzzy Inference System |
ELM | Extreme Learning Machine |
ANFIS | Adaptive-Network-Based Fuzzy Inference System |
IFNAW | Interval Forecast Normalized Average Width |
IFCP | Interval Forecast Coverage Probability |
CWC | Coverage Width-based Criteria |
BPNN | Back Propagation Neural Network |
ARIMA | Autoregressive Integrated Moving Average Model |
Appendix
References
- Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A.; Monteiro, C.; Sousa, J.; Bessa, R. Comparison of two new short-term wind-power forecasting systems. Renew. Energy 2009, 34, 1848–1854. [Google Scholar] [CrossRef]
- National Energy Administration 2014. Available online: http://www.nea.gov.cn/2015-02/12/c_133989991.htm (accessed on 25 January 2016).
- National Energy Administration 2015. Available online: http://www.nea.gov.cn/2015-06/08/c_134305870.htm (accessed on 25 January 2016).
- Sideratos, G.; Hatziargyriou, N.D. Wind Power Forecasting Focused on Extreme Power System Events. IEEE Trans. Sustain. Energy 2012, 3, 445–454. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, J.; Xia, J.; Dai, Y.; Sheng, Y.; Yue, J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renew. Energy 2012, 43, 234–241. [Google Scholar] [CrossRef]
- Bhaskar, K.; Singh, S.N. AWNN-Assisted Wind Power Forecasting Using Feed-Forward Neural Network. IEEE Trans. Sustain. Energy 2012, 3, 306–315. [Google Scholar] [CrossRef]
- Han, L.; Romero, C.E.; Yao, Z. Wind power forecasting based on principle component phase space reconstruction. Renew. Energy 2015, 81, 737–744. [Google Scholar] [CrossRef]
- Traiteur, J.J.; Callicutt, D.J.; Smith, M.; Roy, S.B. A short-term ensemble wind speed forecasting system for wind power applications. J. Appl. Meteorol. Climatol. 2012, 51, 1763–1774. [Google Scholar] [CrossRef]
- Silva, L. A feature engineering approach to wind power forecasting. Int. J. Forecast. 2014, 30, 395–401. [Google Scholar] [CrossRef]
- Mahoney, W.P.; Parks, K.; Wiener, G.; Liu, Y.; Myers, W.L.; Sun, J.; Delle Monache, L.; Hopson, T.; Johnson, D.; Haupt, S.E. A Wind Power Forecasting System to Optimize Grid Integration. IEEE Trans. Sustain. Energy 2012, 3, 670–682. [Google Scholar] [CrossRef]
- Croonenbroeck, C.; Dahl, C.M. Accurate medium-term wind power forecasting in a censored classification framework. Energy 2014, 73, 221–232. [Google Scholar] [CrossRef]
- Karayiannis, N.B.; Member, S.; Randolph-gips, M.M. Probabilistic Wind Power Forecasting Using Radial Basis Function Neural Networks. Power Syst. IEEE Trans. 2003, 14, 835–846. [Google Scholar]
- Kou, P.; Gao, F.; Guan, X. Sparse online warped Gaussian process for wind power probabilistic forecasting. Appl. Energy 2013, 108, 410–428. [Google Scholar] [CrossRef]
- Bessa, R.J.; Miranda, V.; Botterud, A.; Wang, J. Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting. IEEE Trans. Sustain. Energy 2012, 3, 660–669. [Google Scholar] [CrossRef]
- Carpinone, A.; Giorgio, M.; Langella, R.; Testa, A. Markov chain modeling for very-short-term wind power forecasting. Electr. Power Syst. Res. 2015, 122, 152–158. [Google Scholar] [CrossRef]
- Pinson, P. Very-short-term probabilistic forecasting of wind power with generalized logit—Normal distributions. J. R. Stat. Soc. Ser.C Appl. Stat. 2012, 555–576. [Google Scholar] [CrossRef]
- Bessa, R.J.; Miranda, V.; Botterud, A.; Zhou, Z.; Wang, J. Time-adaptive quantile-copula for wind power probabilistic forecasting. Renew. Energy 2012, 40, 29–39. [Google Scholar] [CrossRef]
- Pinson, P.; Nielsen, H.A.; Madsen, H.; Kariniotakis, G. Skill forecasting from ensemble predictions of wind power. Appl. Energy 2009, 86, 1326–1334. [Google Scholar] [CrossRef] [Green Version]
- Pinson, P.; Madsen, H.; Papaefthymiou, G. From Probabilistic Forecasts to Wind Power Production. Production 2009, 12, 51–62. [Google Scholar]
- Qin, S.; Liu, F.; Wang, J.; Song, Y. Interval forecasts of a novelty hybrid model for wind speeds. Energy Rep. 2015, 1, 8–16. [Google Scholar] [CrossRef]
- Jursa, R.; Rohrig, K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int. J. Forecast. 2008, 24, 694–709. [Google Scholar] [CrossRef]
- Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G. Wind Power Forecasting: State-of-the-Art 2009 Decision and Information Sciences Division; Argonne National Laboratory: Lemont, IL, USA, 2009; pp. 1–216. [Google Scholar]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sideratos, G.; Hatziargyriou, N.D. An Advanced Statistical Method for Wind Power Forecasting. IEEE Trans. Power Syst. 2007, 22, 258–265. [Google Scholar] [CrossRef]
- Shi, J.; Ding, Z.; Member, S.; Lee, W.; Yang, Y.; Liu, Y.; Analysis, A.G.R. Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features. IEEE Trans. Smart Grid 2014, 5, 521–526. [Google Scholar] [CrossRef]
- Croonenbroeck, C.; Stadtmann, G. Minimizing asymmetric loss in medium-term wind power forecasting. Renew. Energy 2015, 81, 197–208. [Google Scholar] [CrossRef]
- Broomhead, D.S.; King, G.P. Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 1986, 20, 217–236. [Google Scholar] [CrossRef]
- Jang, J.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Yang, X. Firefly algorithms for multimodal optimization, in Stochastic Algorithms: Foundations and Applications (SAGA 2009). Stoch. Algorithms Found. Appl. 2009, 5792, 169–178. [Google Scholar]
- Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Kondrashov, D.; Shprits, Y.; Ghil, M. Gap filling of solar wind data by singular spectrum analysis. Geophys. Res. Lett. 2010, 37, 1–6. [Google Scholar] [CrossRef]
- Hsieh, W.W.; Hamilton, K. Nonlinear singular spectrum analysis of the tropical stratospheric wind. Q. J. R. Meteorol. Soc. 2003, 129, 2367–2382. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. Dyn. Syst. Turbul. Warwick 1980 1981, 898, 366–381. [Google Scholar]
- Liu, Y.-F.; Zhao, M. De-Noising of Chaotic Time Series Based on Singular Spectrum Analysis. J. Shanghai Jiaotong Univ. 2003, 37, 778–780. [Google Scholar]
- Mohandes, M.; Rehman, S.; Rahman, S.M. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl. Energy 2011, 88, 4024–4032. [Google Scholar] [CrossRef]
- Pousinho, H.M.I.; Mendes, V.M.F.; Catalão, J.P.S. A hybrid pso-anfis approach for short-term wind power prediction in Portugal. Energy Convers. Manag. 2011, 52, 397–402. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 116–132. [Google Scholar] [CrossRef]
- Hiremath, S.M.; Patra, S.K.; Mishra, A.K. Extended date rate prediction for cognitive radio using ANFIS with Subtractive Clustering. In Proceedings of the 2012 5th International Conference on Computers and Devices for Communication (CODEC), Kolkata, Calcutta, 17–19 December 2012.
- Chiu, S.L. Fuzzy Model Identification Based on Cluster Estimation. J. Intell. Fuzzy Syst. 1994, 2, 267–278. [Google Scholar]
- Chen, M.Y. A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering. Inf. Sci. 2013, 220, 180–195. [Google Scholar] [CrossRef]
- Yu, J.; Chen, K.; Mori, J.; Rashid, M.M. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction. Energy 2013, 61, 673–686. [Google Scholar] [CrossRef]
- Wan, C.; Xu, Z.; Pinson, P. Direct interval forecasting of wind power. IEEE Trans. Power Syst. 2013, 28, 4877–4878. [Google Scholar] [CrossRef]
- Geng, J.; Huang, M.; Li, M.; Hong, W. Neurocomputing Hybridization of seasonal chaotic cloud simulated annealing algorithm in a SVR-based load forecasting model. Neurocomputing 2015, 151, 1362–1373. [Google Scholar] [CrossRef]
- Quan, H.; Srinivasan, D.; Khosravi, A. Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, A.; Nahavandi, S.; Creighton, D. Prediction intervals for short-term wind farm power generation forecasts. IEEE Trans. Sustain. Energy 2013, 4, 602–610. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Song, Y.; Liu, F.; Liu, J. Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis. Sustainability 2016, 8, 125. https://doi.org/10.3390/su8020125
Zhang Z, Song Y, Liu F, Liu J. Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis. Sustainability. 2016; 8(2):125. https://doi.org/10.3390/su8020125
Chicago/Turabian StyleZhang, Zhongrong, Yiliao Song, Feng Liu, and Jinpeng Liu. 2016. "Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis" Sustainability 8, no. 2: 125. https://doi.org/10.3390/su8020125
APA StyleZhang, Z., Song, Y., Liu, F., & Liu, J. (2016). Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis. Sustainability, 8(2), 125. https://doi.org/10.3390/su8020125