Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China
Abstract
:1. Introduction
2. Methodologies and Data
2.1. Net CO2 Emissions
2.2. CO2 Emissions
2.3. CO2 Sinks
2.4. Decomposition Analysis of Net CO2 Emission
3. Results
3.1. Net CO2 Emission in Wuhan Metropolitan Area from 2001 to 2009
3.2. Spatial Distribution of Net CO2 Emission in the Wuhan Metropolitan Area in 2009
4. Decomposition and Analysis of Net CO2 Emission in the Wuhan Metropolitan Area
4.1. Decomposition for Net CO2 Emission in the Wuhan Metropolitan Area
4.2. Decomposition Analysis
5. Conclusions and Implications
5.1. Conclusions
5.2. Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, K.; Oh, W. Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method. Energy Policy 2006, 34, 2779–2787. [Google Scholar] [CrossRef]
- Vinuya, F.; DiFurio, F.; Sandoval, E. A decomposition analysis of CO2 emissions in the United States. Appl. Econ. Lett. 2010, 17, 925–931. [Google Scholar] [CrossRef]
- Ang, B. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F. A survey of index decomposition analysis in energy and environmental studies. Energy 2000, 25, 1149–1176. [Google Scholar] [CrossRef]
- Karmellos, M.; Kopidou, D.; Diakoulaki, D. A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries. Energy 2016, 94, 680–692. [Google Scholar] [CrossRef]
- Hammond, G.P.; Norman, J.B. Decomposition analysis of energy-related carbon emissions from UK manufacturing. Energy 2012, 41, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Cansino, J.M.; Román, R.; Ordóñez, M. Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis. Energy Policy 2016, 89, 150–159. [Google Scholar] [CrossRef]
- De Freitas, L.C.; Kaneko, S. Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications. Energy Policy 2011, 39, 1495–1504. [Google Scholar] [CrossRef]
- Akbostancı, E.; Tunç, G.İ.; Türüt-Aşık, S. CO2 emissions of Turkish manufacturing industry: A decomposition analysis. Appl. Energy 2011, 88, 2273–2278. [Google Scholar] [CrossRef]
- Liu, L.-C.; Fan, Y.; Wu, G.; Wei, Y.-M. Using LMDI method to analyze the change of China’s industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy 2007, 35, 5892–5900. [Google Scholar] [CrossRef]
- Meng, L.; Guo, J.E.; Chai, J.; Zhang, Z. China’s regional CO2 emissions: Characteristics, inter-regional transfer and emission reduction policies. Energy Policy 2011, 39, 6136–6144. [Google Scholar] [CrossRef]
- Yu, S.; Wei, Y.-M.; Fan, J.; Zhang, X.; Wang, K. Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization. Appl. Energy 2012, 92, 552–562. [Google Scholar] [CrossRef]
- Nag, B.; Parikh, J. Indicators of carbon emission intensity from commercial energy use in India. Energy Econ. 2000, 22, 441–461. [Google Scholar] [CrossRef]
- Li, W.; Feng, T.; Hao, J. The evolving concepts of land administration in China: Cultivated land protection perspective. Land Use Pol. 2009, 26, 262–272. [Google Scholar] [CrossRef]
- Oh, I.; Wehrmeyer, W.; Mulugetta, Y. Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea. Energy Policy 2010, 38, 364–377. [Google Scholar] [CrossRef]
- Papagiannaki, K.; Diakoulaki, D. Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark. Energy Policy 2009, 37, 3259–3267. [Google Scholar] [CrossRef]
- Salta, M.; Polatidis, H.; Haralambopoulos, D. Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis. Energy 2009, 34, 90–111. [Google Scholar] [CrossRef]
- Xu, X.Y.; Ang, B.W. Index decomposition analysis applied to CO2 emission studies. Ecol. Econ. 2013, 93, 313–329. [Google Scholar] [CrossRef]
- Kaivo-oja, J.; Luukkanen, J.; Panula-Ontto, J.; Vehmas, J.; Chen, Y.; Mikkonen, S.; Auffermann, B. Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA. Energy 2014, 72, 115–125. [Google Scholar] [CrossRef]
- Ortega, D.L.; Wang, H.H.; Wu, L.; Olynk, N.J. Modeling heterogeneity in consumer preferences for select food safety attributes in China. Food Policy 2011, 36, 318–324. [Google Scholar] [CrossRef]
- Chong, H.B.W.; Guan, D.; Guthrie, P. Comparative analysis of carbonization drivers in China’s megacities. J. Ind. Ecol. 2012, 16, 564–575. [Google Scholar] [CrossRef]
- Ren, S.; Yin, H.; Chen, X. Using LMDI to analyze the decoupling of carbon dioxide emissions by China’s manufacturing industry. Environ. Dev. 2014, 9, 61–75. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Q.; Geng, Y. Trajectory and driving factors for GHG emissions in the Chinese cement industry. J. Clean. Prod. 2013, 53, 252–260. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B. Using LMDI method to analyze the change of industrial CO2 emission from energy use in Chongqing. Front. Earth Sci. 2011, 5, 103–109. [Google Scholar] [CrossRef]
- Zhao, M.; Tan, L.; Zhang, W.; Ji, M.; Liu, Y.; Yu, L. Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy 2010, 35, 2505–2510. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, S.; Geng, Y.; Xue, B.; Xi, F.; Pan, Y.; Zhang, T.; Fujita, T. Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing. Energy 2012, 37, 245–254. [Google Scholar] [CrossRef]
- Chen, G.; Chen, B. Extended-exergy analysis of the Chinese society. Energy 2009, 34, 1127–1144. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.; Ning, Y. Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy 2009, 37, 767–773. [Google Scholar] [CrossRef]
- Hörtenhuber, S.; Piringer, G.; Zollitsch, W.; Lindenthal, T.; Winiwarter, W. Land use and land use change in agricultural life cycle assessments and carbon footprints-the case for regionally specific land use change versus other methods. J. Clean. Prod. 2014, 73, 31–39. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, X.; Liu, Y.; Zhong, T.; Ding, M.; Chuai, X. Urban carbon footprint and carbon cycle pressure: The case study of Nanjing. J. Geogr. Sci. 2014, 24, 159–176. [Google Scholar] [CrossRef]
- Zhang, W.; Li, K.; Zhou, D.; Zhang, W.; Gao, H. Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method. Energy Policy 2016, 92, 369–381. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Yang, Z.; Li, S. Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies. Energy Policy 2011, 39, 7712–7718. [Google Scholar] [CrossRef]
- National Response to Climate Change Program (2014–2020). Avaible online: http://www.sdpc.gov.cn/zcfb/zcfbtz/201411/t20141104_642612.html (acessed on 19 September 2014). (In Chinese)
- 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Avaible online: http://www.ipcc-nggip.iges.or.jp /public/2006gl/chinese/ (acessed on 5 August 2016). (In Chinese)
- Li, L.; Chen, C.; Xie, S.; Huang, C.; Cheng, Z.; Wang, H.; Wang, Y.; Huang, H.; Lu, J.; Dhakal, S. Energy demand and carbon emissions under different development scenarios for Shanghai, China. Energy Policy 2010, 38, 4797–4807. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q.; Choi, K.H. Factorizing changes in energy and environmental indicators through decomposition. Energy 1998, 23, 489–495. [Google Scholar] [CrossRef]
Year | Energy | Industry | Agriculture | Waste | Total Emission | Cropland | Forest | Grassland (104 ton) | Land Use Change | Total Sinks | Net Emission |
---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 35.18 | 7.71 | 1.35 | 1.02 | 45.26 | 9.09 | 7.18 | 0.35 | 0.29 | 16.56 | 28.70 |
2002 | 28.22 | 11.13 | 1.34 | 1.06 | 41.75 | 8.93 | 7.25 | 0.35 | 0.51 | 16.69 | 25.06 |
2003 | 33.95 | 12.32 | 1.47 | 1.06 | 48.81 | 8.62 | 7.47 | 0.35 | 0.68 | 16.78 | 32.03 |
2004 | 39.88 | 14.36 | 1.50 | 1.03 | 56.77 | 10.04 | 7.51 | 0.28 | 0.35 | 17.90 | 38.87 |
2005 | 43.02 | 17.25 | 1.48 | 0.81 | 62.57 | 10.31 | 7.57 | 0.14 | 0.47 | 18.36 | 44.21 |
2006 | 45.98 | 18.56 | 1.76 | 0.81 | 67.12 | 10.65 | 7.57 | 0.14 | 0.22 | 18.45 | 48.67 |
2007 | 48.82 | 19.74 | 1.62 | 0.81 | 70.98 | 9.99 | 7.57 | 0.14 | 0.18 | 17.74 | 53.24 |
2008 | 44.76 | 24.57 | 1.92 | 0.95 | 72.20 | 10.91 | 7.57 | 0.14 | −0.10 | 18.38 | 53.82 |
2009 | 43.44 | 25.54 | 2.01 | 0.92 | 71.91 | 11.47 | 7.56 | 0.14 | −0.20 | 18.83 | 53.08 |
sum | 363.25 | 151.17 | 14.45 | 8.49 | 537.37 | 90.01 | 67.26 | 2.03 | 2.40 | 159.69 | 377.68 |
City | Energy | Industry | Agriculture | Waste | Total Emission | Cropland | Forest | Grassland (104 ton) | Land Use Change | Total Sinks | Net Emission |
---|---|---|---|---|---|---|---|---|---|---|---|
Wuhan | 21.51 | 8.05 | 0.40 | 0.53 | 83.38 | 1.73 | 0.43 | 0.01 | −0.17 | 1.76 | 28.73 |
Huangshi | 4.60 | 9.75 | 0.09 | 0.07 | 21.63 | 0.69 | 0.64 | 0.00 | −0.02 | 1.22 | 13.29 |
Ezhou | 2.78 | 1.27 | 0.13 | 0.04 | 8.27 | 0.41 | 0.09 | 0.00 | 0.00 | 0.45 | 3.77 |
Xiaogan | 4.49 | 2.07 | 0.32 | 0.08 | 14.47 | 2.64 | 0.72 | 0.00 | −0.04 | 3.04 | 3.91 |
Huanggang | 4.04 | 0.86 | 0.57 | 0.08 | 13.14 | 3.87 | 3.49 | 0.13 | −0.01 | 6.91 | −1.36 |
Xianning | 2.58 | 1.27 | 0.17 | 0.05 | 8.68 | 1.18 | 2.11 | 0.00 | −0.01 | 3.12 | 0.94 |
Xiantao | 1.12 | 0.82 | 0.11 | 0.03 | 4.88 | 0.96 | 0.03 | 0.00 | −0.01 | 0.87 | 1.20 |
Tianmen | 0.72 | 0.86 | 0.11 | 0.03 | 4.25 | 0.95 | 0.02 | 0.00 | 0.00 | 0.86 | 0.85 |
Qianjiang | 1.58 | 0.61 | 0.13 | 0.02 | 4.75 | 0.72 | 0.03 | 0.00 | −0.02 | 0.65 | 1.69 |
Sum | 43.43 | 25.54 | 2.01 | 0.92 | 163.45 | 13.14 | 7.56 | 0.14 | −0.28 | 18.88 | 53.03 |
Year | Energy Structure | Energy Efficiency | Economic Level | Population | Total Effect |
---|---|---|---|---|---|
2001–2002 | −811.08 | −60.80 | 216.64 | 12.53 | −642.71 |
2002–2003 | −372.29 | −237.33 | 285.53 | 16.79 | −307.31 |
2003–2004 | −835.97 | −263.14 | 473.02 | 6.17 | −619.92 |
2004–2005 | −1110.22 | −265.84 | 110.43 | −10.20 | −1275.83 |
2005–2006 | −536.01 | −242.57 | 585.18 | 54.70 | −138.70 |
2006–2007 | −445.64 | −198.22 | 941.89 | 41.57 | 339.60 |
2007–2008 | −656.53 | −128.52 | 1192.43 | 22.04 | 429.42 |
2008–2009 | −838.40 | −40.68 | 575.26 | 29.67 | −274.15 |
2001–2009 | −5606.14 | −1437.10 | 4380.39 | 173.26 | ----- |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Ma, C.; Zhang, A. Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China. Sustainability 2016, 8, 784. https://doi.org/10.3390/su8080784
Yang X, Ma C, Zhang A. Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China. Sustainability. 2016; 8(8):784. https://doi.org/10.3390/su8080784
Chicago/Turabian StyleYang, Xin, Chunbo Ma, and Anlu Zhang. 2016. "Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China" Sustainability 8, no. 8: 784. https://doi.org/10.3390/su8080784
APA StyleYang, X., Ma, C., & Zhang, A. (2016). Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China. Sustainability, 8(8), 784. https://doi.org/10.3390/su8080784