Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces
Abstract
:1. Introduction
1.1. Valuing Ecosystem Services
1.2. Ecosystem Disservices
2. Materials and Methods
2.1. Overview
2.2. Site Description and History
2.3. Forest Carbon Stocks and Sequestration
2.4. Del Mar Woods Carbon Stock
2.5. Soil Carbon Stock and Nutrient Analysis
2.6. Greenhouse Gas Flux
2.7. Stormwater Runoff
3. Results
3.1. Tree Carbon Stock and Pollutant Removal
3.2. Soil Carbon Stock and Soil Soluble Reactive Phosphorus Analysis
3.3. Greenhouse Gas Flux Results
3.4. Stormwater Runoff Results
4. Discussion
4.1. Tree Carbon Stock and Pollutant Removal
4.2. Soil Carbon Stock
4.3. Soil Soluble Reactive Phosphorus
4.4. Greenhouse Gas Flux across the Wetland-Forest Gradient
4.5. Stormwater Runoff
4.6. Water Quality Improvement/Wetland Co-Benefits
4.7. Expanding Urban Green Spaces
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Sum of the Aboveground Biomass (kg) for Each Tree Species
Tree Species | Sum of Biomass (kg) |
American Elm | 1264 |
Ash | 504 |
Beech | 38 |
Ash | |
Black Ash | 866 |
G/B Ash | 469 |
Green Ash | 2721 |
Red Ash | 195 |
Black Cherry | 93 |
Box Elder | 162 |
Elm | 495 |
Hickory | 679 |
Kentucky Coffee Tree | 70 |
Linden | 696 |
Mockernut Hickory | 151 |
Norway Maple | 301 |
Oak | |
Chestnut Oak | 4568 |
Chestnut White Oak | 145 |
Red/Black Oak | 72,110 |
Swamp White Oak | 11,700 |
White Oak | 21,162 |
Peachleaf Willow | 1660 |
Scotch Pine | 550 |
Shagbark Hickory | 545 |
Silver Maple | 209 |
Slippery Elm | 3343 |
Swamp Cottonwood | 155 |
White Poplar | 1695 |
Walnut | |
Black Walnut | 1166 |
White Walnut | 2242 |
Unidentified | 7390 |
References
- United Nations. World Urbanization Prospects the 2007 Revision. Available online: http://www.un.org/esa/population/publications/wup2007/2007WUP_Highlights_web.pdf (assessed on 9 August 2016).
- Millington, G. 'Race', Culture and the Right to the City: Centres, Peripheries, Margins; Palgrave Macmillan: Basingstoke, UK, 2011. [Google Scholar]
- Patterson, Z.; Saddier, S.; Rezaei, A.; Manaugh, K. Use of the urban core index to analyze residential mobility: The case of seniors in canadian metropolitan regions. J. Transp. Geogr. 2014, 41, 116–125. [Google Scholar] [CrossRef]
- Vaughan, L.; Griffiths, S.; Haklay, M.; Jones, C.E. Do the suburbs exist? Discovering complexity and specificity in suburban built form. Trans. Inst. Br. Geogr. 2009, 34, 475–488. [Google Scholar] [CrossRef]
- Vaughn, R.M.; Hostetler, M.; Escobedo, F.J.; Jones, P. The influence of subdivision design and conservation of open space on carbon storage and sequestration. Landsc. Urban Plann. 2014, 131, 64–73. [Google Scholar] [CrossRef]
- Forsyth, A. Defining suburbs. J. Plan. Lit. 2012, 27, 270–281. [Google Scholar] [CrossRef]
- Daily, G.C. Nature's Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Churkina, G.; Brown, D.G.; Keoleian, G. Carbon stored in human settlements: The conterminous United States. Glob. Chang. Biol. 2010, 16, 135–143. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Hardin, P.J.; Jensen, R.R. The effect of urban leaf area on summertime urban surface kinetic temperatures: A terre haute case study. Urban For. Urban Green. 2007, 6, 63–72. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying urban forest structure, function, and value: The Chicago urban forest climate project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Brink, E.; Aalders, T.; Adam, D.; Feller, R.; Henselek, Y.; Hoffmann, A.; Ibe, K.; Matthey-Doret, A.; Meyer, M.; Negrut, N.L.; et al. Cascades of green: A review of ecosystem-based adaptation in urban areas. Glob. Environ. Chang. Hum. Policy Dimens. 2016, 36, 111–123. [Google Scholar] [CrossRef]
- Lantz, V.; Boxall, P.C.; Kennedy, M.; Wilson, J. The valuation of wetland conservation in an urban/peri urban watershed. Reg. Environ. Chang. 2013, 13, 939–953. [Google Scholar] [CrossRef]
- Brander, L.M.; Florax, R.; Vermaat, J.E. The empirics of wetland valuation: A comprehensive summary and a meta-analysis of the literature. Environ. Resour. Econ. 2006, 33, 223–250. [Google Scholar] [CrossRef]
- Brouwer, R.; Langford, I.H.; Bateman, I.J.; Turner, R.K. A meta-analysis of wetland contingent valuation studies. Reg. Environ. Chang. 1999, 1, 47–57. [Google Scholar] [CrossRef]
- Woodward, R.T.; Wui, Y.S. The economic value of wetland services: A meta-analysis. Ecol. Econ. 2001, 37, 257–270. [Google Scholar] [CrossRef]
- Charlesworth, S.M.; Harker, E.; Rickard, S. A review of sustainable drainage systems (SuDS): A soft option for hard drainage questions? Geography 2003, 88, 99–107. [Google Scholar]
- Chocat, B.; Krebs, P.; Marsalek, J.; Rauch, W.; Schilling, W. Urban drainage redefined: From stormwater removal to integrated management. Water Sci. Technol. 2001, 43, 61–68. [Google Scholar] [PubMed]
- Rauch, W.; Seggelke, K.; Brown, R.; Krebs, P. Integrated approaches in urban storm drainage: Where do we stand? Environ. Manag. 2005, 35, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Boyer, T.; Polasky, S. Valuing urban wetlands: A review of non-market valuation studies. Wetlands 2004, 24, 744–755. [Google Scholar] [CrossRef]
- Kenney, W.A.; Van Wassenaer, P.J.E.; Satel, A.L. Criteria and indicators for strategic urban forest planning and management. Arboric. Urban For. 2011, 37, 108–117. [Google Scholar]
- Schmitt-Harsh, M.; Mincey, S.K.; Patterson, M.; Fischer, B.C.; Evans, T.P. Private residential urban forest structure and carbon storage in a moderate-sized urban area in the midwest, United States. Urban For. Urban Green. 2013, 12, 454–463. [Google Scholar] [CrossRef]
- Gough, C.M.; Elliott, H.L. Lawn soil carbon storage in abandoned residential properties: An examination of ecosystem structure and function following partial human-natural decoupling. J. Environ. Manag. 2012, 98, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, J.L.; Davies, Z.G.; McHugh, N.; Gaston, K.J.; Leake, J.R. Organic carbon hidden in urban ecosystems. Sci. Rep. 2012, 2, 926. [Google Scholar] [CrossRef] [PubMed]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon storage by urban soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. Hum. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- U.S. Forest Service and Department of Agriculture. i-Tree i-Tree Canopy. Web. i-Tree Software Suite v5.X. (n.D.). Available online: https://www.itreetools.org/ (assessed on 9 August 2016).
- Kovacs, K.; Polasky, S.; Nelson, E.; Keeler, B.L.; Pennington, D.; Plantinga, A.J.; Taff, S.J. Evaluating the return in ecosystem services from investment in public land acquisitions. PLoS ONE 2013, 8, e62202. [Google Scholar] [CrossRef] [PubMed]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Spash, C.L.; Aslaksen, I. Re-establishing an ecological discourse in the policy debate over how to value ecosystems and biodiversity. J. Environ. Manag. 2015, 159, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Rees, W.E. How should a parasite value its host? Ecol. Econ. 1998, 25, 49–52. [Google Scholar] [CrossRef]
- Lyytimaki, J.; Sipila, M. Hopping on one leg—The challenge of ecosystem disservices for urban green management. Urban For. Urban Green. 2009, 8, 309–315. [Google Scholar] [CrossRef]
- Von Dohren, P.; Haase, D. Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecol. Indic. 2015, 52, 490–497. [Google Scholar] [CrossRef]
- Bruland, G.L.; Hanchey, M.F.; Richardson, C.J. Effects of agriculture and wetland restoration on hydrology, soils, and water quality of a Carolina bay complex. Wetl. Ecol. Manag. 2003, 11, 141–156. [Google Scholar] [CrossRef]
- Woltemade, C.J. Ability of restored wetlands to reduce nitrogen and phosphorus concentrations in agricultural drainage water. J. Soil Water Conserv. 2000, 55, 303–309. [Google Scholar]
- Ballantine, K.; Schneider, R. Fifty-five years of soil development in restored freshwater depressional wetlands. Ecol. Appl. 2009, 19, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Aldous, A.; McCormick, P.; Ferguson, C.; Graham, S.; Craft, C. Hydrologic regime controls soil phosphorus fluxes in restoration and undisturbed wetlands. Restor. Ecol. 2005, 13, 341–347. [Google Scholar] [CrossRef]
- Kinsman-Costello, L.E.; O’Brien, J.; Hamilton, S.K. Re-flooding a historically drained wetland leads to rapid sediment phosphorus release. Ecosystems 2014, 17, 641–656. [Google Scholar] [CrossRef]
- Reddy, K.R.; Wetzel, R.G.; Kadlec, R.H. Biogeochemistry of phosphorus in wetlands. In Phosphorus: Agriculture and the environment; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WS, USA, 2005. [Google Scholar]
- Sharpley, A.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.A.; Eames, J.M. Prairie wolf slough wetlands demonstration project: A case study illustrating the need for incorporating soil and water quality assessment in wetland restoration planning, design and monitoring. Restor. Ecol. 2008, 16, 618–628. [Google Scholar] [CrossRef]
- Taebi, A.; Droste, R.L. Pollution loads in urban runoff and sanitary wastewater. Sci. Total Environ. 2004, 327, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Hey, D.L.; Kostel, J.A.; Hurter, A.P.; Kadlec, R.H. Nutrient farming and traditional removal: An economic comparison. In Water Environment Research Foundation Final Report; Metropolitan Water Reclamation District of Greater Chicago: Chicago, IL, USA, 2005. [Google Scholar]
- Bronson, K.F.; Mosier, A.R. Effect of nitrogen fertilizer and nitrification inhibitors on methane and nitrous oxide fluxes in irrigated corn. Springer 1993, 278–289. [Google Scholar]
- Dunmola, A.S.; Tenuta, M.; Moulin, A.P.; Yapa, P.; Lobb, D.A. Pattern of greenhouse gas emission from a prairie pothole agricultural landscape in Manitoba, Canada. Can. J. Soil Sci. 2010, 90, 243–256. [Google Scholar] [CrossRef]
- Hernandez-Ramirez, G.; Brouder, S.M.; Smith, D.R.; Van Scoyoc, G.E. Greenhouse gas fluxes in an eastern corn belt soil: Weather, nitrogen source, and rotation. J. Environ. Qual. 2009, 38, 841–854. [Google Scholar] [CrossRef] [PubMed]
- Mosier, A.; Schimel, D.; Valentine, D.; Bronson, K.; Parton, W. Methane and nitrous-oxide fluxes in native, fertilized and cultivated grasslands. Nature 1991, 350, 330–332. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Brander, L.; Brouwer, R.; Wagtendonk, A. Economic valuation of regulating services provided by wetlands in agricultural landscapes: A meta-analysis. Ecol. Eng. 2013, 56, 89–96. [Google Scholar] [CrossRef]
- Stott, I.; Soga, M.; Inger, R.; Gaston, K.J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 2015, 13, 387–393. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service (NRCS); United States Department of Agriculture (USDA). Web Soil Survey. USDA-NRCS: Lincoln, Nebraska. Available online: http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (assessed on 9 August 2016).
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. Comprehensive Database of Diameter-Based Biomass Regressions for North American Tree Species. Available online: http://svinet2.fs.fed.us/ne/durham/4104/papers/ne_gtr319_jenkins_and_others.pdf (assessed on 9 August 2016).
- Nowak, D.J. Atmospheric carbon-reduction by urban trees. J. Environ. Manag. 1993, 37, 207–217. [Google Scholar] [CrossRef]
- Tritton, L.M.; Hornbeck, J.W. Biomass Equations for Major Tree Species of the Northeast. Available online: http://www.columbia.edu/itc/barnard/envsci/bc3016/edit/biomass_eq.pdf (assessed on 9 August 2016).
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A ground-based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Technology Transfer Network Air Quality System (AQS) and AQS Data Mart. Available online: https://www3.epa.gov/ttn/airs/airsaqs/ (assessed on 9 August 2016).
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis under Executive Order 12866. Available online: https://www.whitehouse.gov/sites/default/files/omb/inforeg/social_cost_of_carbon_for_ria_2013_update.pdf (assessed on 9 August 2016).
- Bureau of Economic Analysis. The National Income and Product Accounts Tables. U.S. Department of Commerce. Available online: http://www.bea.gov/index.htm (assessed on 9 August 2016).
- De Vos, B.; Vandecasteele, B.; Deckers, J.; Muys, B. Capability of loss-on-ignition as a predictor of total organic carbon in non-calcareous forest soils. Commun. Soil Sci. Plant Anal. 2005, 36, 2899–2921. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich-3 soil test extractant—A modification of mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- The R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://cran.fiocruz.br/web/packages/dplR/vignettes/timeseries-dplR.pdf (assessed on 9 August 2016).
- Livingston, G.P.; Hutchinson, G.L. Enclosure-based measurement of trace-gas exchange: Applications and sources of error. In Biogenic Trace Gases Measuring Emissions from Soil and Water; Matson, P.A., Harriss, R.C., Eds.; Blackwell Science: Oxford, UK; Cambridge, MA, USA, 1995; pp. 14–51. [Google Scholar]
- Holland, E.A.; Robertson, G.P.; Greenberg, J.; Groffman, P.M.; Boone, R.D.; Gosz, J.R.; Coleman, D.C.; Bledsoe, C.S.; Sollins, P. Standard Soil Methods for Long-Term Ecological Research. Available online: https://books.google.com/books?hl=en&lr=&id=npbmCwAAQBAJ&oi=fnd &pg=PR11&dq=Standard+soil+methods+for+long-term+ecological+research&ots=d92MLGNaFP&sig=bzQl86N6wb9DW6D1L_A8vHNt1H0#v=onepage&q=Standard%20soil%20methods%20for%20long-term%20ecological%20research&f=false (assessed on 9 August 2016).
- Morse, J.L.; Ardon, M.; Bernhardt, E.S. Greenhouse gas fluxes in southeastern U.S. Coastal plain wetlands under contrasting land uses. Ecol. Appl. 2012, 22, 264–280. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Roger, C. Urban Hydrology for Small Watersheds. Available online: http://repositories.tdl.org/tamug-ir/bitstream/handle/1969.3/24438/6545-Urban%20Hydrology%20for%20Small%20Watersheds.pdf?sequence=1&isAllowed=y (assessed on 9 August 2016).
- Cox, C.B. Stormwater and Nonpoint Source Pollution Control: Best Management Practices Manual. Available online: https://www.pca.state.mn.us/water/stormwater-best-management-practices-manual (assessed on 9 August 2016).
- Garn, H.S. Effects of Lawn Fertilizer on Nutrient Concentration in Runoff from Lakeshore Lawns, Lauderdale Lakes, Wisconsin. Available online: http://wi.water.usgs.gov/pubs/wrir-02-4130/wrir-02-4130.pdf (assessed on 9 August 2016).
- Changnon, S.A.; Vogel, J.L. Hydroclimatological characteristics of isolated severe rainstorms. Water Resour. Res. 1981, 17, 1694–1700. [Google Scholar] [CrossRef]
- Schlindwein, P.A. Hydrologic Study of the Prairie Wolf Slough Wetlands Demonstration Project, Illinois—For Friends of the Chicago River, Inc. And the Lake County Forest Preserve District. Available online: http://onlinelibrary.wiley.com/doi/10.1111/j.1526-100X.2008.00492.x/full (assessed on 9 August 2016).
- Metropolitan Water Reclamation District Reports. Available online: https://www.mwrd.org/irj/portal/anonymous?NavigationTarget=navurl://02b3c7f46cefc82c570d76ddf9fe9b2c (assessed on 9 August 2016).
- McPherson, G.E.; Nowak, D.J.; Rowntree, R.A. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. Available online: http://www.treesearch.fs.fed.us/pubs/4285 (assessed on 9 August 2016).
- Kim, G.; Miller, P.A.; Nowak, D.J. Assessing urban vacant land ecosystem services: Urban vacant land as green infrastructure in the city of Roanoke, Virginia. Urban For. Urban Green. 2015, 14, 519–526. [Google Scholar] [CrossRef]
- Bae, J.; Ryu, Y. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc. Urban Plann. 2015, 136, 57–67. [Google Scholar] [CrossRef]
- Mestdagh, I.; Sleutel, S.; Lootens, P.; Van Cleemput, O.; Carlier, L. Soil organic carbon stocks in verges and urban areas of Flanders, Belgium. Grass Forage Sci. 2005, 60, 151–156. [Google Scholar] [CrossRef]
- Dunne, E.J.; Coveney, M.F.; Hoge, V.R.; Conrow, R.; Naleway, R.; Lowe, E.F.; Battoe, L.E.; Wang, Y. Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water. Ecol. Eng. 2015, 79, 132–142. [Google Scholar] [CrossRef]
- Lynch, S. Compilation of Benefits and Costs of Sta and Reservoir Projects in the South Florida Water Management District, Report for the World Wildlife Fund Acting on Behalf of the Florida Ranchlands Environmental Services Project. Available online: http://www.fresp.org/pdfs/Compilation%20of%20STA%20and%20REZ%20Benefits%20Costs%20HandS%2011_2011.pdf (assessed on 9 August 2016).
- Sano, D.; Hodges, A.; Degner, R. Economic Analyses of Water Treatements for Phosphorus Removal in Florida. Available online: http://edis.ifas.ufl.edu/pdffiles/FE/FE57600.pdf (assessed on 9 August 2016).
- Keller, C.H.; Wetland Solutions Inc. Development of Design Criteria for Stormwater Treatement Areas (STAs) in the Northern Lake Okeechobee Watershed. Available online: http://www.wetlandsolutionsinc.com/download/TreatmentWetlands/Final%20NLO%20Design%20Criteria%20Task%202.pdf (assessed on 9 August 2016).
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, U.; Zhang, L.; Anderson, C.J.; Jorgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Megonigal, J.P.; Keller, J.K.; Bliss, N.B.; Trettin, C. The carbon balance of North American wetlands. Wetl. 2006, 26, 889–916. [Google Scholar] [CrossRef]
- Changnon, S.A. Trends in floods and related climate conditions in Illinois. Clim. Chang. 1983, 5, 341–363. [Google Scholar] [CrossRef]
- Huff, F.A.; Angel, J.R. Frequency Distribution and Hydroclimatic Characteristics of Heavy Rainstorms in Illinois. Available online: http://www.isws.illinois.edu/pubdoc/B/ISWSB-70.pdf (assessed on 9 August 2016).
- Changnon, S.A.; Kunkel, K.E.; Changnon, D. Winter 2007—2008: Record-Setting Storms Caused Major Damages in Illinois. Available online: http://docplayer.net/504631-Winter-2007-2008-record-setting-storms-caused-major-damages-in-illinois.html (assessed on 9 August 2016).
- McKinley, D.C.; Ryan, M.G.; Birdsey, R.A.; Giardina, C.P.; Harmon, M.E.; Heath, L.S.; Houghton, R.A.; Jackson, R.B.; Morrison, J.F.; Murray, B.C.; et al. A synthesis of current knowledge on forests and carbon storage in the United States. Ecol. Appl. 2011, 21, 1902–1924. [Google Scholar] [CrossRef] [PubMed]
- Sander, H.A.; Zhao, C. Urban green and blue: Who values what and where? Land Use Policy 2015, 42, 194–209. [Google Scholar] [CrossRef]
- Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key issues for sustainable urban stormwater management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.; Acreman, M.; Knowler, D. Economic Valuation of Wetlands: A Guide for Policy Makers and Planners. Available online: http://www.terrabrasilis.org.br/ecotecadigital/pdf/economic-valuation-of-wetlands.pdf (assessed on 9 August 2016).
- Reiss, K.C. Florida wetland condition index for depressional forested wetlands. Ecol. Indic. 2006, 6, 337–352. [Google Scholar] [CrossRef]
- Brouwer, R. Environmental value transfer: State of the art and future prospects. Ecol. Econ. 2000, 32, 137–152. [Google Scholar] [CrossRef]
- City of Chicago. City-Owned Land Inventory. Available online: http://www.cityofchicago.org/city/en/depts/dcd/supp_info/city-owned_land_inventory.html (assessed on 9 August 2016).
- Wang, D.H.; Medley, K.E. Land use model for carbon conservation across a midwestern USA landscape. Landsc. Urban Plan. 2004, 69, 451–465. [Google Scholar] [CrossRef]
- National Wildlife W Federation. Available online: http://www.nwf.org/How-to-Help/Garden-for-Wildlife/Community-Habitats.aspx (assessed on 9 August 2016).
- USEPA. Green Infrastructure Strategic Agenda. Available online: http://water.epa.gov/infrastructure/greeninfrastructure/upload/2013_GI_FINAL_Agenda_101713.pdf (assessed on 9 August 2016).
- Rayfield, B.; Pelletier, D.; Dumitru, M.; Cardille, J.A.; Gonzalez, A.; Travis, J. Multipurpose habitat networks for short-range and long-range connectivity: A new method combining graph and circuit connectivity. Methods Ecol. Evolut. 2016, 7, 222–231. [Google Scholar] [CrossRef]
Forest | Prairie | Wet Meadow | Cattail Marsh | Subdivision | |
---|---|---|---|---|---|
Tree carbon stock | x | x | |||
Soil organic carbon | x | x | x | ||
Greenhouse gas flux | x | x | x | x | |
Stormwater runoff reduction | x | x | x | x | x |
Soil soluble reactive phosphorus | x | x | x |
Ecosystem Services from Tree Canopy | Forest | Subdivision | ||||||
---|---|---|---|---|---|---|---|---|
Value ($) | Amount | Value per Hectare | Amount per Hectare | Value ($) | Amount | Value per Hectare | Amount per Hectare | |
Carbon monoxide | $8.28 ± 0.14 | 5.64 ± 0.10 | $1.76 | 1.20 | $18.43 ± 0.49 | 12.54 ± 0.34 | $1.12 | 0.76 |
Nitrogen dioxide | $38.59 ± 0.66 | 42.57 ± 0.73 | $8.21 | 9.06 | $85.83 ± 2.30 | 94.69 ± 2.54 | $5.20 | 5.74 |
Ozone | $831.07 ± 14.16 | 187.39 ± 3.19 | $176.82 | 39.87 | $1848.68 ± 49.65 | 416.85 ± 11.19 | $112.04 | 25.26 |
Particulate matter less than 2.5 microns | $2179.74 ± 37.14 | 10.83 ± 0.18 | $463.77 | 2.30 | $4848.72 ± 130.21 | 24.08 ± 0.65 | $293.86 | 1.46 |
Sulfur dioxide | $5.15 ± 0.09 | 15.3 ± 0.26 | $1.10 | 3.26 | $11.47 ± 0.31 | 34.04 ± 0.91 | $0.70 | 2.06 |
Particulate 2.5 microns > 10 microns | $380.66 ± 6.49 | 55.09 ± 0.94 | $80.99 | 11.72 | $846.76 ± 22.74 | 122.55 ± 3.29 | $51.32 | 7.43 |
Carbon dioxide sequestration | $1836.12 ± 31.29 | 45.87 ± 0.78 t | $390.66 | 9.76 t/ha | $4084.36 ± 109.68 | 102.04 t ± 2.74 | $247.54 | 6.18 t |
Total annual benefit | $5279.61 | $1123.32 | $11,744.25 | $711.78 | ||||
Carbon dioxide storage * | 49,899.12 ± 850.22 | 1.25 ± 0.02 kt | $10,616.83 | 0.27 kt/ha | $110,998.16 ± 2980.81 | 2.77 kt ± 0.07 kt | $6727.16 | 0.17 kt |
Stormwater runoff reduction | - | - | - | - | $3521.57 | 55,670 m3 | $212.62 | 3363 m3 |
Forest | Prairie | Wet Meadow | Cattail Marsh | |||||
Value per Hectare | Amount per Hectare | Value per Hectare | Amount per Hectare | Value per Hectare | Amount per Hectare | Value per Hectare | Amount per Hectare | |
Soil carbon storage (tons CO2 per hectare) | $9126.84 | 228 | $7925.94 | 198 | - | - | $8806.60 | 220 |
Ecosystem disservice from GHGs (CO2e) | −$170.53 | 4.26 | −$209.76 | 5.24 | −$51.24 | 1.81 | −$72.24 | 1.28 |
CO2 | −$55.64 | 1.39 | −$116.09 | 2.90 | −$24.81 | 0.62 | −$48.04 | 1.20 |
N2O in CO2e | −$96.47 | 2.41 | −$78.06 | 1.95 | −$18.41 | 0.46 | −$20.02 | 0.50 |
CH4 in CO2e | −$18.41 | 0.46 | −$15.61 | 0.39 | −$8.01 | 0.20 | −$4.40 | 0.11 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimas, C.; Williams, A.; Hoff, M.; Lawrence, B.; Thompson, J.; Montgomery, J. Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces. Sustainability 2016, 8, 853. https://doi.org/10.3390/su8090853
Klimas C, Williams A, Hoff M, Lawrence B, Thompson J, Montgomery J. Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces. Sustainability. 2016; 8(9):853. https://doi.org/10.3390/su8090853
Chicago/Turabian StyleKlimas, Christie, Allison Williams, Megan Hoff, Beth Lawrence, Jennifer Thompson, and James Montgomery. 2016. "Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces" Sustainability 8, no. 9: 853. https://doi.org/10.3390/su8090853
APA StyleKlimas, C., Williams, A., Hoff, M., Lawrence, B., Thompson, J., & Montgomery, J. (2016). Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces. Sustainability, 8(9), 853. https://doi.org/10.3390/su8090853