A Day-Ahead Wind Power Scenario Generation, Reduction, and Quality Test Tool
Abstract
:1. Introduction
- (1)
- to introduce a novel day-ahead wind power scenario tool that uses scenario generation, reduction, and scenario quality testing methods together; and
- (2)
- to propose a new day ahead wind power scenario generation method that combines two powerful approaches.
2. Scenario Generation, Reduction, and Quality Tests
2.1. Description of Study Site and Data
2.2. Modeling Forecast Errors
2.3. Scenario Generation Method
2.4. Scenario Generation Algorithm
- Step (1): If historical forecast data and actual error data are available, use them to obtain the initial error model and covariance matrix. The error model consists of 20 ECDFs obtained from historical errors occurring within 20 power levels (power bins). The error modelling procedure is given in Section 2.2. The MATLAB function ecdf is used in this procedure. Use Equation (7) to update Σ. If historical data is not available, one can set to be equal to a unit matrix.
- Step (2): A multivariate random number generator is used to generate D scenarios. Each scenario has 24 elements. The MATLAB function mvnrnd is used as a random number generator. Then, bin numbers of point forecasts are obtained by using the MATLAB function ceil. These bin numbers indicate ECDFs which are used to transform each to . The distribution transformation that was explained in the previous section is used to transform jointly-distributed numbers () to the scenario of forecast error .
- Step (3): D scenarios are obtained in Step 2. The scenario reduction algorithm mentioned in Section 2.4 is used to reduce number of scenarios D to d.
- Step (4): The ECDFs of the error model are updated after error realizations. Simply, all ECDFs are calculated again.
- Step (5): Use Equation (7) to update . The update process is applied after realization of the forecast errors. Each measured forecast error () is transformed into a normally-distributed value () via distribution transformation. A new is used in Equation (7). The algorithm goes back to Step 2.
2.5. Scenario Reduction Method
2.6. Scenario Quality Metrics
2.6.1. Mean Absolute Error Metric
2.6.2. Sum of Deviation Metric
2.7. Practical Application
3. Tests and Results
3.1. Application of the Proposed Scenario Generation Method
3.2. Scenario Quality Assessment Tests
3.3. Sample Scenario Sets
3.4. Results of Practical Application
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cox, S.; Tegen, S.; Gould, I.B.; Oteri, F.A.; Esterly, S.; Forsyth, T.; Baranowski, R. Policies to Support Wind Power Deployment Key Considerations and Good Practices. Available online: http://www.nrel.gov/docs/fy15osti/64177.pdf (accessed on 27 September 2016).
- World Energy Resources 2016. Available online: https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources_SummaryReport_2016.pdf (accessed on 27 September 2016).
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2011, 37, 1–8. [Google Scholar] [CrossRef]
- Baringo, L.; Conejo, A.J. Offering Strategy of Wind-Power Producer: A Multi-Stage Risk-Constrained Approach. IEEE Trans. Power Syst. 2016, 31, 1420–1429. [Google Scholar] [CrossRef]
- Mestre, V.G.; Nieta, A.A.S.; Contreras, J.; Catalão, J.P.S. Optimal bidding of a group of wind farms in day-ahead markets through an external agent. IEEE Trans. Power Syst. 2016, 31, 2688–2700. [Google Scholar] [CrossRef]
- Yang, S.; Zeng, D.; Ding, H.; Yao, J.; Wang, K.; Li, Y. Stochastic security-constrained economic dispatch for random responsive price-elastic load and wind power. IET Renew. Power Gen. 2016, 10, 936–943. [Google Scholar] [CrossRef]
- Uçkun, C.; Botterud, A.; Birge, J.R. An improved stochastic unit commitment formulation to accommodate wind uncertainty. IEEE Trans. Power Syst. 2016, 31, 2507–2517. [Google Scholar] [CrossRef]
- Ji, L.; Huang, G.H.; Huang, L.C.; Xie, Y.L.; Niu, D.X. Inexact stochastic risk-aversion optimal day-ahead dispatch model for electricity system management with wind power under uncertainty. Energy 2016, 109, 920–932. [Google Scholar] [CrossRef]
- González, J.G.; Muela, R.M.R.; Santos, L.M.; González, A.M. Stochastic joint optimization of wind generation and pumped-storage units in an electricity market. IEEE Trans. Power Syst. 2008, 23, 460–468. [Google Scholar] [CrossRef]
- Bouffard, F.; Galiana, F.D. Stochastic security for operations planning with significant wind power generation. IEEE Trans. Power Syst. 2008, 23, 306–316. [Google Scholar] [CrossRef]
- Meibom, P.; Barth, R.; Hasche, B.; Brand, H.; Weber, C.; O’Malley, M. Stochastic optimization model to study the operational impacts of high wind penetrations in Ireland. IEEE Trans. Power Syst. 2011, 26, 1367–1379. [Google Scholar] [CrossRef]
- Sharma, K.C.; Jain, P.; Bhakar, R. Wind power scenario generation and reduction in stochastic programming framework. Electr. Power Compon. Sys. 2013, 41, 271–285. [Google Scholar] [CrossRef]
- Morales, J.M.; Mínguez, R.; Conejo, A.J. A methodology to generate statistically dependent wind speed scenarios. Appl. Energy 2010, 87, 843–855. [Google Scholar] [CrossRef]
- Oskouei, M.Z.; Yazdankhah, A.S. Scenario-based stochastic optimal operation of wind, photovoltaic, pump-storage hybrid system in frequency-based pricing. Energy Convers. Manag. 2015, 105, 1105–1114. [Google Scholar] [CrossRef]
- Matevosyan, J.; Söder, L. Minimization of imbalance cost trading wind poweron the short-term power market. IEEE Trans. Power Syst. 2006, 21, 1396–1404. [Google Scholar] [CrossRef]
- Hosseini, F.M. Optimal offering strategy considering the risk management for wind power producers in electricity market. Int. J. Eelectr. Power 2013, 49, 359–368. [Google Scholar] [CrossRef]
- Parastegari, M.; Hooshmand, R.A.; Khodabakhshian, A.; Zare, A.H. Joint operation of wind, photovoltaic, pump-storage and energy storage devices in energy and reserve markets. Int. J. Eelectr. Power 2015, 64, 275–284. [Google Scholar] [CrossRef]
- Sharma, K.C.; Bhakar, R.; Tiwari, H.P. Strategic Bidding for Wind Power Producers in Electricity Markets. Energy Convers. Manag. 2014, 86, 259–267. [Google Scholar] [CrossRef]
- Wan, Y.H.; Ela, E.; Orwig, K. Development of an Equivalent Wind Plant Power-Curve. In Proceedings of the WindPower 2010, Dallas, TX, USA, 22–26 May 2010. [Google Scholar]
- Quevedo, P.M.; Contreras, J. Optimal placement of energy storage and wind power under uncertainty. Energies 2016, 9, 528. [Google Scholar] [CrossRef]
- Pinson, P.; Madsen, H.; Nielsen, H.A.; Papaefthymiou, G.; Klöckl, B. From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy. 2008, 12, 51–62. [Google Scholar] [CrossRef]
- Bludszuweit, H.; Domínguez-Navarro, J.A.; Llombart, A. Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 2008, 23, 983–991. [Google Scholar] [CrossRef]
- Ma, X.Y.; Sun, Y.Z.; Fang, H.L. Scenario generation of wind power based on statistical uncertainty and variability. IEEE Trans. Sustain. Energy 2013, 4, 894–904. [Google Scholar] [CrossRef]
- Dupaˇcov´a, J.; Growe-Kuska, N.; Romisch, W. Scenario reduction in stochastic programming an approach using probability metrics. Math. Program. 2003, 95, 493–511. [Google Scholar] [CrossRef]
- Sumaili, J.; Keko, H.; Miranda, V.; Zhou, Z.; Botterud, A.; Wang, J. Finding Representative Wind Power Scenarios and their Probabilities for Stochastic Models. In Proceedings of the 2011 16th International Conference on Intelligent System Applications to Power Systems, Hersonissos, Greece, 25–28 September 2011. [Google Scholar]
- Heitsch, H.; Römisch, W. Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 2003, 24, 187–206. [Google Scholar] [CrossRef]
- Growe-Kuska, N.; Heitsch, H.; Romisch, W. Scenario Reduction and Scenario Tree Construction for Power Management Problems. In Proceedings of the 2003 IEEE Bologna PowerTech Conference, Bologna, Italy, 23–26 June 2003. [Google Scholar]
- Sarfati, M. Modeling the Diversification Benefit of Transmission Investments in the Presence of Uncorrelated Generation Sources. Master’s Thesis, KTH Royal Inst. of Technology, Stockholm, Sweden, 2012. [Google Scholar]
- Terciyanlı, E.; Demirci, T.; Küçük, D.; Buhan, S.; Özkan, B.M.; Köksoy, C.E.; Koç, E.; Kahraman, C.; Haliloğlu, A.B.; Demir, T.; et al. The Architecture of a Large-Scale Wind Power Monitoring and Forecast System. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013. [Google Scholar]
- Pappala, V.S.; Erlich, I.; Rohrig, K.; Dobschinski, J. A Stochastic model for the optimal operation of a wind-thermal power system. IEEE Trans. Sustain. Energy. 2009, 24, 940–950. [Google Scholar] [CrossRef]
- Makarov, Y.V.; Etingov, P.V.; Ma, J. Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures. IEEE Trans. Sustain. Energy 2011, 2, 433–442. [Google Scholar] [CrossRef]
- Tewari, S.; Geyer, C.J.; Mohan, N.; Huang, Z.; Subbarao, K. A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets. IEEE Trans. Power Syst. 2011, 26, 2031–2039. [Google Scholar] [CrossRef]
- Pinson, P. Estimation on the Uncertainty in Wind Power Forecasting. Ph.D. Thesis, Mines Paris Tech. Graduate School, Paris, France, 23 March 2006. [Google Scholar]
- Spanos, A. Probability Theory and Statistical Inference: Econometric Modeling with Observational Data., 2nd ed.; Cambridge University Press: New York, NY, USA, 2003; pp. 229–253. [Google Scholar]
- Liu, P.L.; Kiureghian, A.D. Multivariate distribution models with prescribed marginals and covariances. Probabilist. Eng. Mech. 1986, 1, 105–112. [Google Scholar] [CrossRef]
- Conejo, A.J.; Carrión, M.; Morales, J.M. Decision Making Under Uncertainty in Electricity Markets; Springer: New York, NY, USA, 2010; pp. 74–75. [Google Scholar]
- Villanueva, D.; Feijóo, A.; Pazos, J.L. Simulation of correlated wind speed data for economic dispatch evaluation. IEEE Trans. Sustain. Energy 2012, 3, 142–149. [Google Scholar] [CrossRef]
- Bernard, F. A First Course in Multivariate Statistics, 1st ed.; Springer: New York, NY, USA, 1997; pp. 171–207. [Google Scholar]
- Wyszogrodzki, A.A.; Liu, Y.; Jacobs, N.; Childs, P.; Zhang, Y.; Roux, G.; Warner, T.T. Analysis of the surface temperature and wind rorecast errors of the NCAR-AirDat operational CONUS 4-km WRF forecasting system. Meteorol. Atmos. Phys. 2013, 122, 125–143. [Google Scholar] [CrossRef]
- Pousinhoa, H.M.I.; Mendesc, V.M.F.; Catalãoa, J.P.S. A stochastic programming approach for the development of offering strategies for a wind power producer. Electr. Power Syst. Res. 2012, 89, 45–53. [Google Scholar] [CrossRef]
Name of Wind Farm | Belen |
---|---|
Turbine Model | VESTAS V90 |
Hub Height (m) | 80 |
Rotor Diameter (m) | 90 |
Wind Class | IA |
Turbine Output Power (MW) | 3 |
Number of Turbines | 16 |
Total Installed Power (MW) | 48 |
Season | Wind Level | Approach1 | Approach2 | Increase |
---|---|---|---|---|
Winter | High | 134,326.902 | 137,974.862 | 3647.961 |
Low | 17,512.958 | 17,727.418 | 214.459 | |
Spring | High | 74,887.819 | 76,305.077 | 1417.258 |
Low | 10,702.941 | 10,848.907 | 145.966 | |
Summer | High | 170,449.988 | 172,864.430 | 2414.442 |
Low | 43,831.233 | 44,395.968 | 564.735 | |
Autumn | High | 100,672.182 | 102,901.536 | 2229.354 |
Low | 40,005.274 | 40,519.178 | 513.904 | |
Total Income (TL) | 592,389.297 | 603,537.376 | 11,148.079 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldız, C.; Tekin, M.; Gani, A.; Keçecioğlu, Ö.F.; Açıkgöz, H.; Şekkeli, M. A Day-Ahead Wind Power Scenario Generation, Reduction, and Quality Test Tool. Sustainability 2017, 9, 864. https://doi.org/10.3390/su9050864
Yıldız C, Tekin M, Gani A, Keçecioğlu ÖF, Açıkgöz H, Şekkeli M. A Day-Ahead Wind Power Scenario Generation, Reduction, and Quality Test Tool. Sustainability. 2017; 9(5):864. https://doi.org/10.3390/su9050864
Chicago/Turabian StyleYıldız, Ceyhun, Mustafa Tekin, Ahmet Gani, Ö. Fatih Keçecioğlu, Hakan Açıkgöz, and Mustafa Şekkeli. 2017. "A Day-Ahead Wind Power Scenario Generation, Reduction, and Quality Test Tool" Sustainability 9, no. 5: 864. https://doi.org/10.3390/su9050864
APA StyleYıldız, C., Tekin, M., Gani, A., Keçecioğlu, Ö. F., Açıkgöz, H., & Şekkeli, M. (2017). A Day-Ahead Wind Power Scenario Generation, Reduction, and Quality Test Tool. Sustainability, 9(5), 864. https://doi.org/10.3390/su9050864