Using an Instrumented Drone to Probe Dust Devils on Oregon’s Alvord Desert
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stereo Cameras
2.2. Pressure-Temperature Logger
2.3. Drone
3. Data Analysis
3.1. Video Analysis
3.1.1. Analysis of the Drone Video
3.1.2. Analysis of the Stereo Videos Collected from the Ground
3.2. Pressure and Altitude Time-Series Analysis
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gillette, D.A.; Sinclair, P.C. Estimation of suspension of alkaline material by dust devils in the United States. Atmos. Environ. 1990, 24, 1135–1142. [Google Scholar] [CrossRef]
- Lorenz, R.; Myers, M. Dust Devil Hazard to Aviation: A Review of United States Air Accident Reports. J. Meteorol. 2005, 30, 178–184. [Google Scholar]
- Balme, M.; Greeley, R. Dust devils on Earth and Mars. Rev. Geophys. 2006, 44. [Google Scholar] [CrossRef]
- Lorenz, R.; Reiss, D. Solar Panel Clearing Events, Dust Devil Tracks, and in situ Vortex Detections on Mars. Icarus 2014, 248, 162–164. [Google Scholar] [CrossRef]
- Cantor, B.A. MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 2007, 186, 60–96. [Google Scholar] [CrossRef]
- Shirley, J.H. Solar System dynamics and global-scale dust storms on Mars. Icarus 2015, 251, 128–144. [Google Scholar] [CrossRef]
- Smith, M.D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 2004, 167, 148–165. [Google Scholar] [CrossRef]
- Basu, S.; Richardson, M.I.; Wilson, R.J. Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res. Planets 2004, 109. [Google Scholar] [CrossRef]
- Neakrase, L.D.V.; Greeley, R. Dust devil sediment flux on Earth and Mars: Laboratory simulations. Icarus 2010, 206, 306–318. [Google Scholar] [CrossRef]
- Neakrase, L.D.V.; Balme, M.R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J.F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G. Particle Lifting Processes in Dust Devils. Space Sci. Rev. 2016, 203, 347–376. [Google Scholar] [CrossRef]
- Rennó, N.O.; Burkett, M.L.; Larkin, M.P. A Simple Thermodynamical Theory for Dust Devils. J. Atmos. Sci. 1998, 55, 3244–3252. [Google Scholar] [CrossRef]
- Ryan, J.A.; Carroll, J.J. Dust devil wind velocities: Mature state. J. Geophys. Res. 1970, 75, 531–541. [Google Scholar] [CrossRef]
- Kurgansky, M.V.; Lorenz, R.D.; Renno, N.O.; Takemi, T.; Gu, Z.; Wei, W. Dust Devil Steady-State Structure from a Fluid Dynamics Perspective. Space Sci. Rev. 2016, 203, 209–244. [Google Scholar] [CrossRef]
- Rennó, N.O.; Nash, A.A.; Lunine, J.; Murphy, J. Martian and terrestrial dust devils: Test of a scaling theory using Pathfinder data. J. Geophys. Res. 2000, 105, 1859–1866. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Neakrase, L.D.; Anderson, J.D. In-situ measurement of dust devil activity at La Jornada Experimental Range, New Mexico, USA. Aeolian Res. 2015, 19, 183–194. [Google Scholar] [CrossRef]
- Jackson, B.; Lorenz, R.; Davis, K. A framework for relating the structures and recovery statistics in pressure time-series surveys for dust devils. Icarus 2018, arXiv:astro-ph.EP/1708.00484299, 166–174. [Google Scholar] [CrossRef]
- Lorenz, R. The longevity and aspect ratio of dust devils: Effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 2013, 226, 964–970. [Google Scholar] [CrossRef]
- Sinclair, P.C. The Lower Structure of Dust Devils. J. Atmos. Sci. 1973, 30, 1599–1619. [Google Scholar] [CrossRef]
- Metzger, S.M.; Balme, M.R.; Towner, M.C.; Bos, B.J.; Ringrose, T.J.; Patel, M.R. In situ measurements of particle load and transport in dust devils. Icarus 2011, 214, 766–772. [Google Scholar] [CrossRef]
- Sinclair, P.C. A Quantitative Analysis of the Dust Devil. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 1966. [Google Scholar]
- Lorenz, R.D. Observing desert dust devils with a pressure logger. Geosci. Instrum. Methods Data Syst. Discuss. 2012, 2, 477–505. [Google Scholar] [CrossRef]
- YouTube. Available online: youtu.be/MAdwmv8yRgs (accessed on 4 January 2018).
- YouTube. Available online: youtu.be/9VtcSrBjflY (accessed on 4 January 2018).
- YouTube. Available online: youtu.be/Rj7wua4GQyc (accessed on 4 January 2018).
- ffmpeg. Available online: https://www.ffmpeg.org/ (accessed on 4 January 2018).
- opencv. Available online: http://opencv.org/ (accessed on 4 January 2018).
- Scargle, J.D.; Norris, J.P.; Jackson, B.; Chiang, J. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations. Astrophys. J. 2013, arXiv:astro-ph.IM/1207.5578764, 167. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; University Press Group Limited: Bognor Regis, UK, 2006. [Google Scholar]
- Ambikasaran, S.; Foreman-Mackey, D.; Greengard, L.; Hogg, D.W.; O’Neil, M. Fast Direct Methods for Gaussian Processes. ArXiv, 2014; arXiv:math.NA/1403.6015. [Google Scholar]
- Goodman, J.; Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 2010, 5, 65–80. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, arXiv:astro-ph.IM/1202.3665125, 306. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C++ : The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Ford, E.B. Improving the Efficiency of Markov Chain Monte Carlo for Analyzing the Orbits of Extrasolar Planets. Astrophys. J. 2006, arXiv:astro-ph/0512634642, 505–522. [Google Scholar] [CrossRef]
- Renno, N.O.; Abreu, V.J.; Koch, J.; Smith, P.H.; Hartogensis, O.K.; De Bruin, H.A.R.; Burose, D.; Delory, G.T.; Farrell, W.M.; Watts, C.J.; et al. MATADOR 2002: A pilot field experiment on convective plumes and dust devils. J. Geophys. Res. Planets 2004, 109, E07001. [Google Scholar] [CrossRef]
- Shiina, T.; Yamada, S.; Senshu, H.; Otobe, N.; Hashimoto, G.; Kawabata, Y. LED minilidar for Mars rover. Proc. SPIE 2016. [Google Scholar] [CrossRef]
- Spiga, A.; Barth, E.; Gu, Z.; Hoffmann, F.; Ito, J.; Jemmett-Smith, B.; Klose, M.; Nishizawa, S.; Raasch, S.; Rafkin, S.; et al. Large-Eddy Simulations of Dust Devils and Convective Vortices. Sol. Syst. Rev. 2016, 203, 245–275. [Google Scholar] [CrossRef]
- Fenton, L.K.; Lorenz, R. Dust devil height and spacing with relation to the Martian planetary boundary layer thickness. Icarus 2015, 260, 246–262. [Google Scholar] [CrossRef]
Flight 0 | Encounter 1 Diameter | Encounter 2 Diameter |
Devil 1 | 4.2 m | 3.5 m |
Flight 2 | Encounter 1 Diameter | |
Devil 1 | 7.1 m | N/A |
Devil 2 | 2.2 m | N/A |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, B.; Lorenz, R.; Davis, K.; Lipple, B. Using an Instrumented Drone to Probe Dust Devils on Oregon’s Alvord Desert. Remote Sens. 2018, 10, 65. https://doi.org/10.3390/rs10010065
Jackson B, Lorenz R, Davis K, Lipple B. Using an Instrumented Drone to Probe Dust Devils on Oregon’s Alvord Desert. Remote Sensing. 2018; 10(1):65. https://doi.org/10.3390/rs10010065
Chicago/Turabian StyleJackson, Brian, Ralph Lorenz, Karan Davis, and Brock Lipple. 2018. "Using an Instrumented Drone to Probe Dust Devils on Oregon’s Alvord Desert" Remote Sensing 10, no. 1: 65. https://doi.org/10.3390/rs10010065
APA StyleJackson, B., Lorenz, R., Davis, K., & Lipple, B. (2018). Using an Instrumented Drone to Probe Dust Devils on Oregon’s Alvord Desert. Remote Sensing, 10(1), 65. https://doi.org/10.3390/rs10010065