Topographic Correction of Forest Image Data Based on the Canopy Reflectance Model for Sloping Terrains in Multiple Forward Mode
Abstract
:1. Introduction
2. Methodology
2.1. The MFM-GOST2 Correction
2.2. Evaluation Methods
3. Experimental Data
4. Results and Analysis
4.1. Visual Analysis
4.2. Statistical Analysis—The Linear Relationship between Radiances and Cosine of Incidence Angles
4.3. Statistical Analysis—The Rose Diagram
5. Discussion
5.1. The MFM-GOST2 Correction
5.2. The Evaluation Methods
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kane, V.R.; Gillespie, A.R.; McGaughey, R.; Lutz, J.A.; Ceder, K.; Franklin, J.F. Interpretation and topographic compensation of conifer canopy self-shadowing. Remote Sens. Environ. 2008, 112, 3820–3832. [Google Scholar] [CrossRef]
- Szantoi, Z.; Simonetti, D. Fast and robust topographic correction method for medium resolution satellite imagery using a stratified approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1921–1932. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A.; Hall, R.J.; Hall, F.G. Improved topographic correction of forest image data using a 3-D canopy reflectance model in multiple forward mode. Int. J. Remote Sens. 2008, 29, 1007–1027. [Google Scholar] [CrossRef]
- Li, X.W.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 272–296. [Google Scholar] [CrossRef]
- Chen, J.M.; Leblanc, S.G. A 4-scale bidirectional reflection model based on canopy architecture. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1316–1337. [Google Scholar] [CrossRef]
- Vanonckelen, S.; Lhermitte, S.; Ronpaey, A.V. The effect of atmospheric and topographic correction methods on land cover classification accuracy. Int. J. Appl. Earth Obs. 2013, 24, 9–21. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Hantson, S.; Chuvieco, E. Evaluation of different topographic correction methods for Landsat imagery. Int. J. Appl. Earth Obs. 2011, 13, 691–700. [Google Scholar] [CrossRef]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef]
- Civco, D.L. Topographic normalisation of Landsat Thematic Mapper digital imagery. Photogramm. Eng. Remote Sens. 1989, 55, 1303–1309. [Google Scholar]
- Gu, D.; Gillespie, A. Topographic normalization of Landsat TM images of forest based on subpixel Sun-Canopy-Sensor geometry. Remote Sens. Environ. 1998, 64, 166–175. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS + C: A modified Sun-Canopy-Sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Smith, J.A.; Lin, T.L.; Ranson, K.L. The Lambertian assumption and Landsat data. Photogramm. Eng. Remote Sens. 1980, 46, 1183–1189. [Google Scholar]
- Reeder, D.H. Topographic Correction of Satellite Images Theory and Application. Ph.D. Thesis, Dartmouth College, Hanover, NH, USA, 2002. [Google Scholar]
- Dymond, J.R.; Shepherd, J.D. Correction of the topographic effect in remote sensing. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2618–2619. [Google Scholar] [CrossRef]
- Lu, D.; Ge, H.; He, S.; Xu, A.; Zhou, G.; Du, H. Pixel-based Minnaert correction method for reducing topographic effects on the Landsat 7 ETM+ image. Photogramm. Eng. Remote Sens. 2008, 74, 1343–1350. [Google Scholar]
- Kobayashi, S.; Sanga-Ngoie, K. The integrated radiometric correction of optical remote sensing imageries. Int. J. Remote Sens. 2008, 29, 5957–5985. [Google Scholar] [CrossRef]
- Gao, Y.N.; Zhang, W.C. Variable Empirical Coefficient Algorithm for Removal of Topographic Effects on Remotely Sensed Data from Rugged Terrain. In Proceedings of the IEEE International Geosciences and Remote Sensing Symposium (IGARSS2007), Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Pimple, U.; Sitthi, A.; Simonetti, D.; Pungkul, S.; Leadprathom, K.; Chidthaisong, A. Topographic correction of Landsat TM-5 and Landsat OLI-8 imagery to improve the performance of forest classification in the mountainous terrain of Northeast Thailand. Sustainability 2017, 9, 258. [Google Scholar] [CrossRef]
- Riaño, D.; Chuvieco, E.; Salas, J.; Aguado, I. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1056–1061. [Google Scholar] [CrossRef]
- Meyer, P.; Itten, K.I.; Kellenberger, T.; Sandmeier, S.; Sandmeier, R. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS J. Photogramm. Remote Sens. 1993, 48, 17–28. [Google Scholar] [CrossRef]
- Peddle, D.R.; Teillet, P.M.; Wulder, M.A. Chapter 7—Radiometric image processing. In Remote Sensing of Forest Environments: Concepts and Case Studies; Wulder, M.A., Franklin, S.E., Eds.; Springer: New York, NY, USA, 2003; pp. 181–208. ISBN 978-1-4615-0306-4. [Google Scholar]
- Gao, Y.N.; Zhang, W.C. A simple empirical topographic correction method for ETM+ imagery. Int. J. Remote Sens. 2009, 20, 2259–2275. [Google Scholar] [CrossRef]
- Karathanassi, V.; Andronis, V.; Rokos, D. Evaluation of the topographic normalization methods for a Mediterranean forest area. Int. Arch. Photogramm. Remote Sens. 2000, 33, 654–661. [Google Scholar]
- Schaaf, C.B.; Li, X.W.; Strahler, A.H. Topographic effects on bidirectional and hemispherical reflectances calculated with a geometricoptical canopy model. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1186–1193. [Google Scholar] [CrossRef]
- Fan, W.L.; Li, J.; Liu, Q.H. GOST2: The improvement of the canopy reflectance model GOST in separating the sunlit and shaded leaves. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1423–1431. [Google Scholar] [CrossRef]
- Fan, W.L.; Chen, J.M.; Ju, W.M.; Zhu, G.L. GOST: A geometric–optical model for sloping terrains. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5469–5482. [Google Scholar]
- Fan, W.L.; Chen, J.M.; Ju, W.M.; Nesbitt, N. Hybrid geometric optical-radiative transfer model suitable for forests on slopes. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5579–5586. [Google Scholar]
- Peddle, D.R.; Johnson, R.L.; Cihlar, J.; Leblanc, S.G.; Chen, J.M.; Hall, F.G. Physically-based inversion modeling for unsupervised cluster labeling, independent forest classification and LAI estimation using MFM-5-Scale. Can. J. Remote Sens. 2007, 33, 214–225. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Pérez-Cabello, F.; Lasanta, T. Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sens. Environ. 2008, 112, 3916–3934. [Google Scholar] [CrossRef]
- Li, F.Q.; David, L.B.; Jupp, M.T.; Leo, L.; Norman, M.; Lewis, A.; Held, A. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens. Environ. 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Tan, B.; Masek, J.G.; Wolfe, R.; Gao, F.; Huang, C.Q.; Vermote, E.F.; Sexton, J.O.; Ederer, G. Improved forest change detection with terrain illumination corrected Landsat images. Remote Sens. Environ. 2013, 136, 469–483. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, Y.; Fan, H. Evaluating and comparing performances of topographic correction methods based on multi-source DEMs and Landsat-8 OLI Data. Int. J. Remote Sens. 2016, 37, 4712–4730. [Google Scholar] [CrossRef]
- Richter, R.; Kellenberger, T.; Kaufman, H. Comparison of topographic correction methods. Remote Sens. 2009, 1, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, N.; Mohammadzadeh, A.; Sahebi, M.R. Assessment of different topographic correction methods in ALOS AVNIR-2 data over a forest area. Int. J. Digit. Earth 2013, 6, 504–520. [Google Scholar] [CrossRef]
- Reese, H.; Olsson, H. C-correction of optical satellite data over alpine vegetation areas: A comparison of sampling strategies for determining the empirical C-parameter. Remote Sens. Environ. 2011, 115, 1387–1400. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wen, J.; Liu, Q.; Yan, G. Improved topographic normalization for Landsat TM images by introducing the MODIS surface BRDF. Remote Sens. 2015, 7, 6558–6575. [Google Scholar] [CrossRef]
- Hall, F.G.; Knapp, D.E.; Huemmrich, K.F. Physically based classification and satellite mapping of biophysical characteristics in the southern boreal forest. J. Geophys. Res. Atmos. 1997, 102, 29567–29580. [Google Scholar] [CrossRef]
- Peddle, D.R.; Hall, F.G.; Ledrew, E.F. Spectral mixture analysis and geometric-optical reflectance modeling of boreal forest biophysical structure. Remote Sens. Environ. 1999, 67, 288–297. [Google Scholar] [CrossRef]
Model | Equations | References |
---|---|---|
COSIN-T | [9] | |
COSIN-C | [10] | |
C-correction | [9] | |
SCS | [11] | |
SCS + C | [12] | |
Minnaert | [13] | |
Minnaert-SCS | [14] | |
Dymond-Shepherd | [15] | |
PBM | [16] | |
PBC | [17] | |
VECA | [18] | |
Teillet regression | [9] |
Canopy Parameters | Values |
---|---|
Stem density (stem/ha) | 1300, 4000, 6000, 10,000 |
Tree distribution | neyman, poisson |
Radius of trees (m) | 0.5, 1.5, 2.5, 3.5 |
Under-branch height (m) | 1, 7, 15 |
Crown height (m) | 0.5, 5.5, 10.5, 15.5 |
Leaf angular distribution (G) | 0.5 |
Clumping index (ΩE) | 0.6, 0.8, 1 |
Leaf area index of a crown (m2/m2) | 1, 2, 4, 6, 8, 10, 12 |
Leaf shape | circular, spherical |
Crown shape | cone, cone + cylinder, ellipsoid |
Solar zenith/azimuth angle (°) | 97 angular combinations |
View zenith/azimuth angle (°) | 75 angular combinations |
Slope (°) | 0, 10, 20, 30, 40, 50 |
Aspect (°) | from 0 to 360 at intervals of 20 |
Leaf BRF (the red band) | 0.02, 0.07, 0.1 |
Leaf transmittance (the red band) | 0.012, 0.05, 0.06 |
Background BRF (the red band) | 0.1, 0.16, 0.45 |
Leaf BRF (the NIR band) | 0.2, 0.35, 0.4, 0.5, 0.7 |
Leaf transmittance (the NIR band) | 0.15, 0.2, 0.3, 0.5 |
Background BRF (the NIR band) | 0.15, 0.23, 0.25, 0.3 |
Leaf BRF(the SWIR band) | 0.1, 0.3, 0.5 |
Leaf transmittance (the SWIR band) | 0.1, 0.25, 0.45 |
Background BRF (the SWIR band) | 0.2, 0.4, 0.6 |
Methods | Red | NIR | SWIR |
---|---|---|---|
Uncorrected | 0.3714 | 0.4756 | 0.5179 |
MFM-GOST2 | 0.0004 | 0.0337 | 0.0004 |
COSIN_T | 0.0202 | 0.0764 | 0.0855 |
COSIN_C | 0.0778 | 0.2340 | 0.2566 |
C-correction | 0.3585 | 0.4179 | 0.4605 |
SCS | 0.0207 | 0.0825 | 0.0912 |
SCS + C | 0.3573 | 0.4159 | 0.4583 |
Minnaert | 0.0856 | 0.1071 | 0.1320 |
Minnaert-SCS | 0.0743 | 0.0947 | 0.1160 |
Dymond–Shepherd | 0.4765 | 0.6432 | 0.6774 |
PBM | 0.0797 | 0.1000 | 0.1224 |
PBC | 0.2756 | 0.4035 | 0.3564 |
VECA | 0.3584 | 0.4179 | 0.4605 |
Teillet regression | 0.3336 | 0.3720 | 0.4134 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, W.; Li, J.; Liu, Q.; Zhang, Q.; Yin, G.; Li, A.; Zeng, Y.; Xu, B.; Xu, X.; Zhou, G.; et al. Topographic Correction of Forest Image Data Based on the Canopy Reflectance Model for Sloping Terrains in Multiple Forward Mode. Remote Sens. 2018, 10, 717. https://doi.org/10.3390/rs10050717
Fan W, Li J, Liu Q, Zhang Q, Yin G, Li A, Zeng Y, Xu B, Xu X, Zhou G, et al. Topographic Correction of Forest Image Data Based on the Canopy Reflectance Model for Sloping Terrains in Multiple Forward Mode. Remote Sensing. 2018; 10(5):717. https://doi.org/10.3390/rs10050717
Chicago/Turabian StyleFan, Weiliang, Jing Li, Qinhuo Liu, Qian Zhang, Gaifei Yin, Ainong Li, Yelu Zeng, Baodong Xu, Xiaojun Xu, Guomo Zhou, and et al. 2018. "Topographic Correction of Forest Image Data Based on the Canopy Reflectance Model for Sloping Terrains in Multiple Forward Mode" Remote Sensing 10, no. 5: 717. https://doi.org/10.3390/rs10050717
APA StyleFan, W., Li, J., Liu, Q., Zhang, Q., Yin, G., Li, A., Zeng, Y., Xu, B., Xu, X., Zhou, G., & Du, H. (2018). Topographic Correction of Forest Image Data Based on the Canopy Reflectance Model for Sloping Terrains in Multiple Forward Mode. Remote Sensing, 10(5), 717. https://doi.org/10.3390/rs10050717