Modelling of Wine Production Using Land Surface Temperature and FAPAR—The Case of the Douro Wine Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Corine Land Cover Map
2.3. Remotely Sensed Data
2.3.1. LST
2.3.2. FAPAR
2.4. Wine Production
2.5. Statistical Modelling
3. Results and Discussion
3.1. Douro Vineyards Phenological Cycle and Climate
3.2. Modelling Douro Wine Production using Remotely Sensed CDRs
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Santos, J.A.; Fraga, H.; Pinto, J.G. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res. 2010, 43, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Alsina, M.M.; Sanchez, L.; Alfieri, J.G. Daily mapping of 30 m LAI and NDVI for Grape Yield Prediction in California Vineyards. Remote Sens. 2017, 9, 317. [Google Scholar] [CrossRef]
- Tatem, A.J. Global climate matching: Satellite imagery as a tool for mapping vineyard suitability. J. Wine Res. 2005, 16, 19–32. [Google Scholar] [CrossRef]
- Jones, G.V.; Alves, F. Impact of climate change on wine production: A global overview and regional assessment in the Douro Valley of Portugal. Int. J. Glob. Warm. 2012, 4, 383–406. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Pickett-Heaps, C.A.; Canadell, J.G.; Briggs, P.R.; Gobron, N.; Haverd, V.; Paget, M.J.; Raupach, M.R. Evaluation of six satellite derived Fraction of Absorbed Photosynthetic Active Radiation (FAPAR) products across the Australian continent. Remote Sens. Environ. 2014, 140, 241–256. [Google Scholar] [CrossRef]
- Johnson, L.F. Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard. Aust. J. Grape Wine Res. 2003, 9, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Anastasiou, E.; Balafoutis, A.; Darra, N.; Psiroukis, V.; Biniari, A.; Xanthopoulos, G.; Fountas, S. Satellite and Proximal Sensing to Estimate the Yield and Quality of Table Grapes. Agriculture 2018, 8, 94. [Google Scholar] [CrossRef]
- Cunha, M.; Marçal, A.R.; Silva, L. Very early prediction of wine yield based on satellite data from VEGETATION. Int. J. Remote Sens. 2010, 31, 3125–3142. [Google Scholar] [CrossRef]
- Gouveia, C.; Liberato, M.L.R.; DaCamara, C.C.; Trigo, R.M.; Ramos, A.M. Modelling past and future wine production in the Portuguese Douro Valley. Clim. Res. 2011, 48, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Andresen, T.; De Aguiar, F.B.; Curado, M.J. The Alto Douro wine region greenway. Landsc. Urban Plan. 2004, 68, 289–303. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 2004, 91, 490–507. [Google Scholar] [CrossRef]
- García-Haro, F.J.; Camacho, F.; Verger, A.; Meliá, J. Current status and potential applications of the LSA-SAF suite of vegetation products. In Proceedings of the 29th EARSeL Symposium, Chania, Greece, 15–18 June 2009. [Google Scholar]
- LSA-SAF (2016). Algorithm Theoretical Basis Document for Vegetation parameters (VEGA). Ref: SAF/LAND/UV/ATBD_VEGA/2.0. Available online: https://landsaf.ipma.pt (accessed on 1 February 2019).
- Martínez, B.; Camacho, F.; Verger, A.; García-Haro, F.J.; Gilabert, M.A. Intercomparison and quality assessment of MERIS, MODIS and SEVIRI FAPAR products over the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 463–476. [Google Scholar] [CrossRef]
- OIV—International Organisation of Vine and Wine. State of the Vitiviniculture World Market—April 2018. Available online: http://www.oiv.int (accessed on 1 February 2019).
- Cunha, M.; Richter, C. Impact of Climate Dynamics on Cyclical Properties of Wine Production in Douro Region Using a Time-Frequency Approach (No. 47); Faculty of Management Technology, German University in Cairo: New Cairo, Egypt, 2018. [Google Scholar]
- Real, A.C.; Borges, J.; Cabral, J.S.; Jones, G.V. Partitioning the grapevine growing season in the Douro Valley of Portugal: Accumulated heat better than calendar dates. Int. J. Biometeorol. 2015, 59, 1045–1059. [Google Scholar] [CrossRef]
- Santos, J.A.; Grätsch, S.D.; Karremann, M.K.; Jones, G.V.; Pinto, J.G. Ensemble projections for wine production in the Douro Valley of Portugal. Clim. Chang. 2013, 117, 211–225. [Google Scholar] [CrossRef]
- Cunha, M.; Marçal, A.R.; Rodrigues, A. A comparative study of satellite and ground based vineyard phenology. In Proceedings of the 29th EARSeL Symposium, Chania, Greece, 15–18 June 2009; pp. 68–77. [Google Scholar]
- Santos, J.A.; Malheiro, A.C.; Karremann, M.K.; Pinto, J.G. Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. Int. J. Biometeorol. 2011, 55, 119–131. [Google Scholar] [CrossRef]
- IVV—Instituto do Vinho e da Vinha. Available online: http://www.ivv.gov.pt (accessed on 1 February 2019).
- Trigo, I.F.; Dacamara, C.C.; Viterbo, P.; Roujean, J.L.; Olesen, F.; Barroso, C.; Camacho-de-Coca, F.; Carrer, D.; Freitas, S.C.; Garcia-Haro, J.; et al. The Satellite Application Facility on Land Surface Analysis. Int. J. Remote Sens. 2011, 32, 2725–2744. [Google Scholar] [CrossRef]
- LSA-SAF (2009). Validation Report for Land Surface Temperature (LST). Ref: SAF/LAND/IM/VR_LST/I_09. Available online: https://landsaf.ipma.pt (accessed on 1 February 2019).
- LSA-SAF (2018). Validation Report for Vegetation parameters (VEGA). Ref: SAF/LAND/UV/VR_VEGA_MSG/3.1.. Available online: https://landsaf.ipma.pt (accessed on 1 February 2019).
- Jin, M.; Dickinson, R.E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett. 2010, 5, 044004. [Google Scholar] [CrossRef]
- Freitas, S.C.; Trigo, I.F.; Bioucas-Dias, J.M.; Gottsche, F.M. Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens. 2010, 48, 523–534. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- European Commission regulation (EC). No 607/2009 (2009). Laying down certain detailed rules for the implementation of Council Regulation (EC) No 479/2008 as regards protected designations of origin and geographical indications, traditional terms, labelling and presentation of certain wine sector products. Off. J. Eur. Union 2009, 193, 60–139. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Field, S.K.; Smith, J.P.; Holzapfel, B.P.; Hardie, W.J.; Emery, R.N. Grapevine response to soil temperature: Xylem cytokinins and carbohydrate reserve mobilization from budbreak to anthesis. Am. J. Enol. Vitic. 2009, 60, 164–172. [Google Scholar]
- Mullins, M.G.; Bouquet, A.; Williams, L.E. Biology of the Grapevine; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Marçal, A.R.; Gonçalves, J.A.; Gonçalves, H.; Cunha, M. Analysis of the temporal signature of vineyards in Portugal using VEGETATION. In Proceedings of the 26th EARSeL Symposium, New Developments and Challenges in Remote Sensing, Warsaw, Poland, 29 May–2 June 2006; Millpress: Rotterdam, The Netherlands, 2007; pp. 377–384. [Google Scholar]
- Malheiro, A.C.; Campos, R.; Fraga, H.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Winegrape phenology and temperature relationships in the Lisbon Wine Region, Portugal. J. Int. Des. Sci. De La Vigne Et Du Vin 2013, 47, 287–299. [Google Scholar] [CrossRef]
- Wolf, T.K.; Boyer, J.D. Vineyard Site SelectionVirginia Tech; Virginia State University: Blacksburg, VA, USA, 2003. [Google Scholar]
- Ferguson, J.C.; Moyer, M.M.; Mills, L.J.; Hoogenboom, G.; Keller, M. Modeling dormant bud cold hardiness and budbreak in twenty-three Vitis genotypes reveals variation by region of origin. Am. J. Enol. Vitic. 2014, 65, 59–71. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines: Anatomy and Physiology; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- ADVID—Associação para o Desenvolvimento da Viticultura Duriense. Available online: http://www.advid.pt/imagens/comunicacoes/14585596628243.pdf (accessed on 20 February 2019).
- Kogan, F.N. Global drought watch from space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [Google Scholar] [CrossRef]
- OIV—International Organisation of Vine and Wine. Global Economic Vitiviniculture Data—October, 26th 2018. Available online: http://www.oiv.int/en/oiv-life/press-releasenbspglobal-vitiviniculture-data (accessed on 1 February 2019).
Predictors | p-Value |
---|---|
FAPARDec | 0.0005 |
LST MEANJul | < 0.0001 |
LST MAXMar | 0.0017 |
F-statistic | < 0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magarreiro, C.; Gouveia, C.M.; Barroso, C.M.; Trigo, I.F. Modelling of Wine Production Using Land Surface Temperature and FAPAR—The Case of the Douro Wine Region. Remote Sens. 2019, 11, 604. https://doi.org/10.3390/rs11060604
Magarreiro C, Gouveia CM, Barroso CM, Trigo IF. Modelling of Wine Production Using Land Surface Temperature and FAPAR—The Case of the Douro Wine Region. Remote Sensing. 2019; 11(6):604. https://doi.org/10.3390/rs11060604
Chicago/Turabian StyleMagarreiro, Clarisse, Célia M. Gouveia, Carla M. Barroso, and Isabel F. Trigo. 2019. "Modelling of Wine Production Using Land Surface Temperature and FAPAR—The Case of the Douro Wine Region" Remote Sensing 11, no. 6: 604. https://doi.org/10.3390/rs11060604
APA StyleMagarreiro, C., Gouveia, C. M., Barroso, C. M., & Trigo, I. F. (2019). Modelling of Wine Production Using Land Surface Temperature and FAPAR—The Case of the Douro Wine Region. Remote Sensing, 11(6), 604. https://doi.org/10.3390/rs11060604