First Estimation of Global Trends in Nocturnal Power Emissions Reveals Acceleration of Light Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background
2.2. Calibration of Uncalibrated DMSP-OLS Data
2.3. Smoothing and Recalibration of All Data Series Using Energy Consumption Data
- (i)
- Using the 2012 VIIRS image, we fitted a linear least-squares regression between the total light emitted (per province, as the sum of values from all pixels within that province) and the energy consumption of municipal street lighting in 2012. The slope of this regression yields an estimated conversion factor between provincial energy consumption and the expected radiance produced by the lights. We then converted the radiance units of nW cm−2 sr−1 into total radiant energy within the range of wavelengths detected by the satellite (in W), assuming an isotropic distribution of radiance (equal radiance in all directions). This conversion was undertaken for all satellite images.
- (ii)
- We then plotted the relationship between annual total light emitted (converted to detectable radiant energy in W) and estimated detectable radiant energy from the energy consumption data for each province (as a proxy of the real change slope). We calculated the mean residual from this relationship for each province. In this case a positive residual value for a province indicates a higher-than-expected energy consumption value for a given observed radiance; this may be due to, for example, effective shielding of street lighting or energy inefficient lighting within the province. Conversely a negative residual value may indicate emissions from private or commercial sources, low shielding of lighting or more efficient street lighting.
- (iii)
- We then fitted separate linear regressions for each image, between the total light emitted (converted to radiant energy in W) and estimated detectable radiant energy from the energy consumption data, adjusted by subtracting the province-specific residual values. The slope for each line was recalculated at this stage.
- (iv)
- We then subtracted the mean residual value for each province across images (assumed to represent consistent, localised differences in lighting efficiency and type) from the provincial data and recalculated the regression slopes for each image. The coefficients of this regression were then used to recalibrate the values to convert each image to radiant energy in W. Steps ii-iv were repeated iteratively until radiance values converged on stable values, and the converged values were used to calibrate global images.
2.4. Adjusting National Data for Differing Times of Acquisition
2.5. Adjusting Data for Increased Emission of Blue Light from LEDs
2.6. Details of the Method, Limitations, and Validation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez, M.A.; Miguel, O.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote. Sens. Environ. 2020, 237, 111–443. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Duffy, J.P.; Inger, R.; Gaston, K.J. Contrasting trends in light pollution across Europe based on satellite observed night time lights. Sci. Rep. 2015, 4, 3789. [Google Scholar] [CrossRef] [Green Version]
- Bustamante-Calabria, M.; Sánchez, M.A.; Martín-Ruiz, S.; Ortiz, J.L.; Vílchez, J.M.; Pelegrina, A.; García, A.; Zamorano, J.; Bennie, J.; Gaston, K.J. Effects of the COVID-19 lockdown on urban light emissions: Ground and satellite comparison. Remote Sens. 2021, 13, 258. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent form DMSP-OLS night lights. Remote. Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F.; Elvidge, C.D. The first world atlas of artificial night sky brightness. Mon. Not. R. Astron. Soc. 2001, 328, 689–707. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.; C, M.; Ruby, A.; Kuechly, H.U.; Kinzey, B.; Miller, N.; Sanders, J.; Barentine, J.; Kleinodt, R.; Espey, B. Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Light. Res. Technol. 2021, 53, 189–211. [Google Scholar] [CrossRef]
- Hoag, A.A.; Schoening, W.E.; Coucke, M. City sky glow monitoring at Kitt Peak. Publ. Astron. Soc. Pac. 1973, 85, 503. [Google Scholar] [CrossRef]
- Benn, C.R.; Ellison, S.L. Brightness of the night sky over La Palma. New Astron. Rev. 1998, 42, 503–507. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Saenz, A.; Sánchez, M.A.; Espinosa, A.; Valentín, A.; Aragonés, N.; Llorca, J.; Amiano, P.; Sánchez, V.M.; Guevara, M.; Capelo, R.; et al. Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (MCC-Spain study). Environ. Health Persp. 2018, 126, 047011. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Stevens, R.G.; Haim, A.; Portnov, B.A. Nighttime light level co-distributes with breast cancer incidence worldwide. Cancer Causes Control 2010, 21, 2059–2068. [Google Scholar] [CrossRef]
- Owens, A.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E. Light pollution as a driver of insect declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Eisenbeis, G.; Hänel, A.; McDonnell., J.M.; Hahs, A.; Breuste, J. Light pollution and the impact of artificial night lighting on insects. In Ecology of Cities and Towns: A comparative approach; Cambridge University Press: New York, NY, USA, 2009; pp. 243–263. [Google Scholar]
- Sanders, D.; Gaston, K.J. How ecological communities respond to artificial light. J. Exp. Zool. A 2018, 329, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longcore, T.; Rich, C. Ecological light pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. Artificial light at night as a new threat to pollination. Nature 2017, 548, 206–209. [Google Scholar] [CrossRef]
- Altermatt, F.; Ebert, D. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biol. Lett. 2016, 12, 4. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Hsu, F.C.; Baugh, K.E.; Ghosh, T. National trends in satellite observed lighting: 1992–2012. In Global Urban Monitoring and Assessment through Earth Observation; Weng, Q., Ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kyba, C.C.M.; Kuester, T.; Sánchez, M.A.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “City Lights” satellite data to map urban area. Remote Sens. Environ. 1997, 6, 361–370. [Google Scholar] [CrossRef]
- Tuttle, B.T.; Anderson, S.; Elvidge, C.D.; Tilottama, G.; Baugh, K.; Baugh, K.; Sutton, P.C. Aladdin’s magic lamp: Active target calibration of the DMSP OLS. Remote Sens. 2014, 6, 12708–12722. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.A.; Kyba, C.C.; Zamorano, J.; Gallego, J.; Gaston, K.J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 2020, 10, 1–16. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pacific. Adv. Netw. 2013, 35, 62–69. [Google Scholar]
- Sánchez, M.A.; Kyba, C.C.M.; Aube, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 2019, 224, 92–103. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. Intercalibration of DMSP-OLS night-time light data by the invariant region method. Int. J. Remote Sens. 2013, 34, 7356–7368. [Google Scholar] [CrossRef]
- Pandey, B.; Zhang, Q.; Seto, K.C. Comparative evaluation of relative calibration methods for DMSP/OLS nighttime lights. Remote Sens. Environ. 2017, 195, 67–78. [Google Scholar] [CrossRef]
- Ryan, R.E.; Pagnutti, M.; Burch, K.; Leigh, L.; Ruggles, T.; Cao, C.Y.; Aaron, D.; Blonski, S.; Helder, D. The Terra Vega active light source: A first step in a new approach to perform absolute radiometric calibrations and early results calibrating the VIIRS DNB. Remote Sens. 2019, 11, 710. [Google Scholar] [CrossRef] [Green Version]
- Hsu, F.; Baugh, K.E.; Ghosh, T.; Zhizhin, M.; Elvidge, C.D. DMSP-OLS radiance calibrated nighttime lights time series with intercalibration. Remote Sens. 2015, 7, 1855–1876. [Google Scholar] [CrossRef] [Green Version]
- SpA, T. Statistical Data on Electricity in Italy (‘in Italian’). Available online: http://www.terna.it (accessed on 20 August 2021).
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.; Erwin, E.H.; Zhizhin, M.N. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping urban extent using Luojia 1-01 nighttime light imagery. Sensors 2018, 11, 3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, M.A.; Zamorano, J.; Gómez, C.J.; Pascual, S. Evolution of the energy consumed by Street lighting in Spain estimated with DMSP-OLS data. J. Quant. Spectrosc. Rad. 2014, 139, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Pandey, B.; Seto, K.C. A robust method to generate a consistent time series from DMSP/OLS nighttime light data. IEEE T. Geosci. Remote 2016, 54, 5821–5831. [Google Scholar] [CrossRef]
- Xiong, X.; Wilson, T.; Angal, A.; Sun, J. Using the moon and stars for VIIRS day/night band on-orbit calibration. P. Soc. Photo-Opt. Ins 2019, 11151, 111511Q. [Google Scholar]
- R Core Team. Available online: https://www.R-project.org/ (accessed on 20 August 2021).
- Gorelick, N.; Hancher, M.; Dixon, M.; Llyushchenko., S.; Thau, D.; Moore., R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; Van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.; Price-Whelan, A.M.; Kerzendorf, W.E.; et al. Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar]
- McKinney, W. Available online: https://bit.ly/3gkRhGD (accessed on 20 August 2021).
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Salunke, S.S. Selenium Webdriver in Python: Learn with Examples; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2014. [Google Scholar]
- Anfalum. Available online: https://bit.ly/3gj9Hrd (accessed on 20 August 2021).
- Donatello, S.; Quintero, R.R.; Caldas, M.G.; Wolf, O.; Van, T.P.; Van, H.V.; Geerken, T. Revision of the EU Green Public Procurement Criteria for Road Lighting and Traffic Signals; Publications Office of the European Union: Luxembourg, 2009. [Google Scholar]
- Legifrance. Available online: https://bit.ly/3851LVX (accessed on 20 August 2021).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use and fate of all plastic ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017, 15, 84–90. [Google Scholar] [CrossRef]
- Longcore, T.; Rodriguez, A.; Witherington, B.; Penniman, J.F.; Herf, L.; Herf, M. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zool. A 2018, 329, 511–521. [Google Scholar] [CrossRef]
- Lyalko, V.; Apostolov, A.; Yelistratova, L.; Khodorovsky, A. The assessment of the social-economic elaboration of the Ukraine in independent years within the DMSP/OLS satellite data about the night lighting. Ukrainian. J. Remote Sens. 2018, 16, 27–33. [Google Scholar]
- Jiang, W.; He, G.; Long, T.; Liu, H. Ongoing conflict makes Yemen dark: From the perspective of nighttime light. Remote Sens. 2017, 9, 798. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez de Miguel, A.; Bennie, J.; Rosenfeld, E.; Dzurjak, S.; Gaston, K.J. First Estimation of Global Trends in Nocturnal Power Emissions Reveals Acceleration of Light Pollution. Remote Sens. 2021, 13, 3311. https://doi.org/10.3390/rs13163311
Sánchez de Miguel A, Bennie J, Rosenfeld E, Dzurjak S, Gaston KJ. First Estimation of Global Trends in Nocturnal Power Emissions Reveals Acceleration of Light Pollution. Remote Sensing. 2021; 13(16):3311. https://doi.org/10.3390/rs13163311
Chicago/Turabian StyleSánchez de Miguel, Alejandro, Jonathan Bennie, Emma Rosenfeld, Simon Dzurjak, and Kevin J. Gaston. 2021. "First Estimation of Global Trends in Nocturnal Power Emissions Reveals Acceleration of Light Pollution" Remote Sensing 13, no. 16: 3311. https://doi.org/10.3390/rs13163311