E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Editor's Choice Articles - Remote Sens.

View options order results:
result details:
Displaying articles 1-26
Export citation of selected articles as:

Research

Jump to: Review

Open AccessEditor’s ChoiceArticle Integrating Radarsat-2, Lidar, and Worldview-3 Imagery to Maximize Detection of Forested Inundation Extent in the Delmarva Peninsula, USA
Remote Sens. 2017, 9(2), 105; doi:10.3390/rs9020105
Received: 30 September 2016 / Revised: 9 January 2017 / Accepted: 20 January 2017 / Published: 25 January 2017
Cited by 4 | PDF Full-text (4880 KB) | HTML Full-text | XML Full-text
Abstract
Natural variability in surface-water extent and associated characteristics presents a challenge to gathering timely, accurate information, particularly in environments that are dominated by small and/or forested wetlands. This study mapped inundation extent across the Upper Choptank River Watershed on the Delmarva Peninsula, occurring
[...] Read more.
Natural variability in surface-water extent and associated characteristics presents a challenge to gathering timely, accurate information, particularly in environments that are dominated by small and/or forested wetlands. This study mapped inundation extent across the Upper Choptank River Watershed on the Delmarva Peninsula, occurring within both Maryland and Delaware. We integrated six quad-polarized Radarsat-2 images, Worldview-3 imagery, and an enhanced topographic wetness index in a random forest model. Output maps were filtered using light detection and ranging (lidar)-derived depressions to maximize the accuracy of forested inundation extent. Overall accuracy within the integrated and filtered model was 94.3%, with 5.5% and 6.0% errors of omission and commission for inundation, respectively. Accuracy of inundation maps obtained using Radarsat-2 alone were likely detrimentally affected by less than ideal angles of incidence and recent precipitation, but were likely improved by targeting the period between snowmelt and leaf-out for imagery collection. Across the six Radarsat-2 dates, filtering inundation outputs by lidar-derived depressions slightly elevated errors of omission for water (+1.0%), but decreased errors of commission (−7.8%), resulting in an average increase of 5.4% in overall accuracy. Depressions were derived from lidar datasets collected under both dry and average wetness conditions. Although antecedent wetness conditions influenced the abundance and total area mapped as depression, the two versions of the depression datasets showed a similar ability to reduce error in the inundation maps. Accurate mapping of surface water is critical to predicting and monitoring the effect of human-induced change and interannual variability on water quantity and quality. Full article
(This article belongs to the Special Issue Remote Sensing of Climate Change and Water Resources)
Figures

Open AccessEditor’s ChoiceArticle Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2
Remote Sens. 2017, 9(2), 119; doi:10.3390/rs9020119
Received: 22 December 2016 / Accepted: 24 January 2017 / Published: 1 February 2017
Cited by 4 | PDF Full-text (6584 KB) | HTML Full-text | XML Full-text
Abstract
Assessment and monitoring of rice agriculture over large areas has been limited by cloud cover, optical sensor spatial and temporal resolutions, and lack of systematic or open access radar. Dense time series of open access Sentinel-1 C-band data at moderate spatial resolution offers
[...] Read more.
Assessment and monitoring of rice agriculture over large areas has been limited by cloud cover, optical sensor spatial and temporal resolutions, and lack of systematic or open access radar. Dense time series of open access Sentinel-1 C-band data at moderate spatial resolution offers new opportunities for monitoring agriculture. This is especially pertinent in South and Southeast Asia where rice is critical to food security and mostly grown during the rainy seasons when high cloud cover is present. In this research application, time series Sentinel-1A Interferometric Wide images (632) were utilized to map rice extent, crop calendar, inundation, and cropping intensity across Myanmar. An updated (2015) land use land cover map fusing Sentinel-1, Landsat-8 OLI, and PALSAR-2 were integrated and classified using a randomforest algorithm. Time series phenological analyses of the dense Sentinel-1 data were then executed to assess rice information across all of Myanmar. The broad land use land cover map identified 186,701 km2 of cropland across Myanmar with mean out-of-sample kappa of over 90%. A phenological time series analysis refined the cropland class to create a rice mask by extrapolating unique indicators tied to the rice life cycle (dynamic range, inundation, growth stages) from the dense time series Sentinel-1 to map rice paddy characteristics in an automated approach. Analyses show that the harvested rice area was 6,652,111 ha with general (R2 = 0.78) agreement with government census statistics. The outcomes show strong ability to assess and monitor rice production at moderate scales over a large cloud-prone region. In countries such as Myanmar with large populations and governments dependent upon rice production, more robust and transparent monitoring and assessment tools can help support better decision making. These results indicate that systematic and open access Synthetic Aperture Radar (SAR) can help scale information required by food security initiatives and Monitoring, Reporting, and Verification programs. Full article
Figures

Open AccessEditor’s ChoiceArticle Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification
Remote Sens. 2017, 9(2), 139; doi:10.3390/rs9020139
Received: 30 November 2016 / Revised: 18 January 2017 / Accepted: 25 January 2017 / Published: 7 February 2017
Cited by 5 | PDF Full-text (28694 KB) | HTML Full-text | XML Full-text
Abstract
Recently, superpixel segmentation has been proven to be a powerful tool for hyperspectral image (HSI) classification. Nonetheless, the selection of the optimal superpixel size is a nontrivial task. In addition, compared with single-scale superpixel segmentation, the same image segmented on a different scale
[...] Read more.
Recently, superpixel segmentation has been proven to be a powerful tool for hyperspectral image (HSI) classification. Nonetheless, the selection of the optimal superpixel size is a nontrivial task. In addition, compared with single-scale superpixel segmentation, the same image segmented on a different scale can obtain different structure information. To overcome such a drawback also utilizing the structural information, a multiscale superpixel-based sparse representation (MSSR) algorithm for the HSI classification is proposed. Specifically, a modified segmentation strategy of multiscale superpixels is firstly applied on the HSI. Once the superpixels on different scales are obtained, the joint sparse representation classification is used to classify the multiscale superpixels. Furthermore, majority voting is utilized to fuse the labels of different scale superpixels and to obtain the final classification result. Two merits are realized by the MSSR. First, multiscale information fusion can more effectively explore the spatial information of HSI. Second, in the multiscale superpixel segmentation, except for the first scale, the superpixel number on a different scale for different HSI datasets can be adaptively changed based on the spatial complexity of the corresponding HSI. Experiments on four real HSI datasets demonstrate the qualitative and quantitative superiority of the proposed MSSR algorithm over several well-known classifiers. Full article
Figures

Open AccessEditor’s ChoiceArticle Urban Land Extraction Using VIIRS Nighttime Light Data: An Evaluation of Three Popular Methods
Remote Sens. 2017, 9(2), 175; doi:10.3390/rs9020175
Received: 15 December 2016 / Revised: 29 January 2017 / Accepted: 15 February 2017 / Published: 20 February 2017
Cited by 3 | PDF Full-text (3711 KB) | HTML Full-text | XML Full-text
Abstract
Timely and accurate extraction of urban land area using the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data is important for urban studies. However, a comprehensive assessment of the existing methods for extracting urban land using VIIRS nighttime
[...] Read more.
Timely and accurate extraction of urban land area using the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data is important for urban studies. However, a comprehensive assessment of the existing methods for extracting urban land using VIIRS nighttime light data remains inadequate. Therefore, we first reviewed the relevant methods and selected three popular methods for extracting urban land area using nighttime light data. These methods included local-optimized thresholding (LOT), vegetation-adjusted nighttime light urban index (VANUI), integrated nighttime lights, normalized difference vegetation index, and land surface temperature support vector machine classification (INNL-SVM). Then, we assessed the performance of these methods for extracting urban land area based on the VIIRS nighttime light data in seven evaluation areas with various natural and socioeconomic conditions in China. We found that INNL-SVM had the best performance with an average kappa of 0.80, which was 6.67% higher than the LOT and 2.56% higher than the VANUI. The superior performance of INNL-SVM was mainly attributed to the integration of information on nighttime light, vegetation cover, and land surface temperature. This integration effectively reduced the commission and omission errors arising from the overflow effect and low light brightness of the VIIRS nighttime light data. Additionally, INNL-SVM can extract urban land area more easily. Thus, we suggest that INNL-SVM has great potential for effectively extracting urban land with VIIRS nighttime light data at large scales. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing with Nighttime Lights)
Figures

Open AccessEditor’s ChoiceArticle Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
Remote Sens. 2017, 9(3), 185; doi:10.3390/rs9030185
Received: 8 December 2016 / Revised: 16 February 2017 / Accepted: 18 February 2017 / Published: 23 February 2017
Cited by 8 | PDF Full-text (11211 KB) | HTML Full-text | XML Full-text
Abstract
Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that
[...] Read more.
Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees representing various tree species and developmental stages were collected in June 2014 using a UAV remote sensing system equipped with a frame format hyperspectral camera and an RGB camera in highly variable weather conditions. Dense point clouds were measured photogrammetrically by automatic image matching using high resolution RGB images with a 5 cm point interval. Spectral features were obtained from the hyperspectral image blocks, the large radiometric variation of which was compensated for by using a novel approach based on radiometric block adjustment with the support of in-flight irradiance observations. Spectral and 3D point cloud features were used in the classification experiment with various classifiers. The best results were obtained with Random Forest and Multilayer Perceptron (MLP) which both gave 95% overall accuracies and an F-score of 0.93. Accuracy of individual tree identification from the photogrammetric point clouds varied between 40% and 95%, depending on the characteristics of the area. Challenges in reference measurements might also have reduced these numbers. Results were promising, indicating that hyperspectral 3D remote sensing was operational from a UAV platform even in very difficult conditions. These novel methods are expected to provide a powerful tool for automating various environmental close-range remote sensing tasks in the very near future. Full article
(This article belongs to the Special Issue Recent Trends in UAV Remote Sensing)
Figures

Open AccessEditor’s ChoiceArticle Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas
Remote Sens. 2017, 9(3), 213; doi:10.3390/rs9030213
Received: 21 October 2016 / Revised: 8 February 2017 / Accepted: 22 February 2017 / Published: 25 February 2017
Cited by 2 | PDF Full-text (4316 KB) | HTML Full-text | XML Full-text
Abstract
Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map
[...] Read more.
Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data. The Vieilledent’s AGB map of Madagascar was established using optical images, with parameters calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints geolocation) estimation of AGB (GLAS AGB) covering Madagascar forested areas, with a density of 0.52 footprint/km2. Second, the difference between the AGB from the Vieilledent’s AGB map and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by taking into account the spatial structure of these additional correction factors to provide a continuous correction factor map. Finally, the existing and the correction factor maps were summed to improve the Vieilledent’s AGB map. The results showed that the integration of GLAS data improves the precision of Vieilledent’s AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE on AGB estimates decreases from 81 t/ha (R2 = 0.62) to 74.1 t/ha (R2 = 0.71). Most importantly, we showed that this approach using LiDAR data avoids underestimating high biomass values (new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach). Full article
Figures

Open AccessEditor’s ChoiceArticle Hyperspatial and Multi-Source Water Body Mapping: A Framework to Handle Heterogeneities from Observations and Targets over Large Areas
Remote Sens. 2017, 9(3), 211; doi:10.3390/rs9030211
Received: 19 August 2016 / Revised: 19 January 2017 / Accepted: 21 February 2017 / Published: 25 February 2017
Cited by 1 | PDF Full-text (8099 KB) | HTML Full-text | XML Full-text
Abstract
Recent advances in remote sensing technologies and the cost reduction of surveying, along with the importance of natural resources management, present new opportunities for mapping land cover at a very high resolution over large areas. This paper proposes and applies a framework to
[...] Read more.
Recent advances in remote sensing technologies and the cost reduction of surveying, along with the importance of natural resources management, present new opportunities for mapping land cover at a very high resolution over large areas. This paper proposes and applies a framework to update hyperspatial resolution (<1 m) land thematic mapping over large areas by handling multi-source and heterogeneous data. This framework deals with heterogeneity both from observation and the targeted features. First, observation diversity comes from the different platform and sensor types (25-cm passive optical and 1-m LiDAR) as well as the different instruments (three cameras and two LiDARs) used in heterogeneous observation conditions (date, time, and sun angle). Second, the local heterogeneity of the targeted features results from their within-type diversity and neighborhood effects. This framework is applied to surface water bodies in the southern part of Belgium (17,000 km2). This makes it possible to handle both observation and landscape contextual heterogeneity by mapping observation conditions, stratifying spatially and applying ad hoc classification procedures. The proposed framework detects 83% of the water bodies—if swimming pools are not taken into account—and more than 98% of those water bodies greater than 100 m2, with an edge accuracy below 1 m over large areas. Full article
Figures

Open AccessEditor’s ChoiceArticle Assessment of Canopy Chlorophyll Content Retrieval in Maize and Soybean: Implications of Hysteresis on the Development of Generic Algorithms
Remote Sens. 2017, 9(3), 226; doi:10.3390/rs9030226
Received: 4 January 2017 / Accepted: 22 February 2017 / Published: 2 March 2017
Cited by 2 | PDF Full-text (1817 KB) | HTML Full-text | XML Full-text
Abstract
Canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting
[...] Read more.
Canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in three irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm reparameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2. Full article
Figures

Open AccessEditor’s ChoiceArticle SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm
Remote Sens. 2017, 9(3), 253; doi:10.3390/rs9030253
Received: 14 November 2016 / Revised: 1 March 2017 / Accepted: 4 March 2017 / Published: 9 March 2017
PDF Full-text (13249 KB) | HTML Full-text | XML Full-text
Abstract
The recently launched Chinese GaoFen-4 (GF4) satellite provides valuable information to obtain geophysical parameters describing conditions in the atmosphere and at the Earth’s surface. The surface reflectance is an important parameter for the estimation of other remote sensing parameters linked to the eco-environment,
[...] Read more.
The recently launched Chinese GaoFen-4 (GF4) satellite provides valuable information to obtain geophysical parameters describing conditions in the atmosphere and at the Earth’s surface. The surface reflectance is an important parameter for the estimation of other remote sensing parameters linked to the eco-environment, atmosphere environment and energy balance. One of the key issues to achieve atmospheric corrected surface reflectance is to precisely retrieve the aerosol optical properties, especially Aerosol Optical Depth (AOD). The retrieval of AOD and corresponding atmospheric correction procedure normally use the full radiative transfer calculation or Look-Up-Table (LUT) methods, which is very time-consuming. In this paper, a Simplified AtmospHeric correction AlgoRithm for gAofen data (SAHARA) is presented for the retrieval of AOD and corresponding atmospheric correction procedure. This paper is the first part of the algorithm, which describes the aerosol retrieval algorithm. In order to achieve high-accuracy analytical form for both LUT and surface parameterization, the MODIS Dark-Target (DT) aerosol types and Deep Blue (DB) similar surface parameterization have been proposed for GF4 data. Limited Gaofen observations (i.e., all that were available) have been tested and validated. The retrieval results agree quite well with MODIS Collection 6.0 aerosol product, with a correlation coefficient of R2 = 0.72. The comparison between GF4 derived AOD and Aerosol Robotic Network (AERONET) observations has a correlation coefficient of R2 = 0.86. The algorithm, after comprehensive validation, can be used as an operational running algorithm for creating aerosol product from the Chinese GF4 satellite. Full article
(This article belongs to the Special Issue Atmospheric Correction of Remote Sensing Data)
Figures

Open AccessEditor’s ChoiceArticle Calibration of METRIC Model to Estimate Energy Balance over a Drip-Irrigated Apple Orchard
Remote Sens. 2017, 9(7), 670; doi:10.3390/rs9070670
Received: 26 May 2017 / Revised: 19 June 2017 / Accepted: 20 June 2017 / Published: 29 June 2017
PDF Full-text (10045 KB) | HTML Full-text | XML Full-text
Abstract
A field experiment was carried out to calibrate and evaluate the METRIC (Mapping EvapoTranspiration at high Resolution Internalized with Calibration) model for estimating the spatial and temporal variability of instantaneous net radiation (Rni), soil heat flux (Gi), sensible heat
[...] Read more.
A field experiment was carried out to calibrate and evaluate the METRIC (Mapping EvapoTranspiration at high Resolution Internalized with Calibration) model for estimating the spatial and temporal variability of instantaneous net radiation (Rni), soil heat flux (Gi), sensible heat flux (Hi), and latent heat flux (LEi) over a drip-irrigated apple (Malus domestica cv. Pink Lady) orchard located in the Pelarco valley, Maule Region, Chile (35°25′20′′LS; 71°23′57′′LW; 189 m.a.s.l.). The study was conducted in a plot of 5.5 hectares using 20 satellite images (Landsat 7 ETM+) acquired on clear sky days during three growing seasons (2012/2013, 2013/2014 and 2014/2015). Specific sub-models to estimate Gi, leaf area index (LAI) and aerodynamic roughness length for momentum transfer (Zom) were calibrated for the apple orchard as an improvement to the standard METRIC model. The performance of the METRIC model was evaluated at the time of satellite overpass using measurements of Hi and LEi obtained from an eddy correlation system. In addition, estimated values of Rni, Gi and LAI were compared with ground-truth measurements from a four-way net radiometer, soil heat flux plates and plant canopy analyzer, respectively. Validation indicated that LAI, Zom and Gi were estimated using the calibrated functions with errors of +2%, +6% and +3% while those were computed using the standard functions with error of +59%, +83%, and +12%, respectively. In addition, METRIC using the calibrated functions estimated Hi and LEi with error of +5% and +16%, while using the original functions estimated Hi and LEi with error of +29% and +26%, respectively. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Estimating Mangrove Canopy Height and Above-Ground Biomass in the Everglades National Park with Airborne LiDAR and TanDEM-X Data
Remote Sens. 2017, 9(7), 702; doi:10.3390/rs9070702
Received: 1 June 2017 / Revised: 29 June 2017 / Accepted: 4 July 2017 / Published: 7 July 2017
PDF Full-text (10278 KB) | HTML Full-text | XML Full-text
Abstract
Mangrove forests are important natural ecosystems due to their ability to capture and store large amounts of carbon. Forest structural parameters, such as canopy height and above-ground biomass (AGB), provide a good measure for monitoring temporal changes in carbon content. The protected coastal
[...] Read more.
Mangrove forests are important natural ecosystems due to their ability to capture and store large amounts of carbon. Forest structural parameters, such as canopy height and above-ground biomass (AGB), provide a good measure for monitoring temporal changes in carbon content. The protected coastal mangrove forest of the Everglades National Park (ENP) provides an ideal location for studying these processes, as harmful human activities are minimal. We estimated mangrove canopy height and AGB in the ENP using Airborne LiDAR/Laser (ALS) and TanDEM-X (TDX) datasets acquired between 2011 and 2013. Analysis of both datasets revealed that mangrove canopy height can reach up to ~25 m and AGB can reach up to ~250 Mg•ha−1. In general, mangroves ranging from 9 m to 12 m in stature dominate the forest canopy. The comparison of ALS and TDX canopy height observations yielded an R2 = 0.85 and Root Mean Square Error (RMSE) = 1.96 m. Compared to a previous study based on data acquired during 2000–2004, our analysis shows an increase in mangrove stature and AGB, suggesting that ENP mangrove forests are continuing to accumulate biomass. Our results suggest that ENP mangrove forests have managed to recover from natural disturbances, such as Hurricane Wilma. Full article
(This article belongs to the Section Forest Remote Sensing)
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
Remote Sens. 2017, 9(7), 708; doi:10.3390/rs9070708
Received: 12 May 2017 / Revised: 5 July 2017 / Accepted: 6 July 2017 / Published: 10 July 2017
Cited by 1 | PDF Full-text (6532 KB) | HTML Full-text | XML Full-text
Abstract
Correct estimation of above-ground biomass (AGB) is necessary for accurate crop growth monitoring and yield prediction. We estimated AGB based on images obtained with a snapshot hyperspectral sensor (UHD 185 firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany) mounted on an unmanned aerial vehicle (UAV).
[...] Read more.
Correct estimation of above-ground biomass (AGB) is necessary for accurate crop growth monitoring and yield prediction. We estimated AGB based on images obtained with a snapshot hyperspectral sensor (UHD 185 firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany) mounted on an unmanned aerial vehicle (UAV). The UHD 185 images were used to calculate the crop height and hyperspectral reflectance of winter wheat canopies from hyperspectral and panchromatic images. We constructed several single-parameter models for AGB estimation based on spectral parameters, such as specific bands, spectral indices (e.g., Ratio Vegetation Index (RVI), NDVI, Greenness Index (GI) and Wide Dynamic Range VI (WDRVI)) and crop height and several models combined with spectral parameters and crop height. Comparison with experimental results indicated that incorporating crop height into the models improved the accuracy of AGB estimations (the average AGB is 6.45 t/ha). The estimation accuracy of single-parameter models was low (crop height only: R2 = 0.50, RMSE = 1.62 t/ha, MAE = 1.24 t/ha; R670 only: R2 = 0.54, RMSE = 1.55 t/ha, MAE = 1.23 t/ha; NDVI only: R2 = 0.37, RMSE = 1.81 t/ha, MAE = 1.47 t/ha; partial least squares regression R2 = 0.53, RMSE = 1.69, MAE = 1.20), but accuracy increased when crop height and spectral parameters were combined (partial least squares regression modeling: R2 = 0.78, RMSE = 1.08 t/ha, MAE = 0.83 t/ha; verification: R2 = 0.74, RMSE = 1.20 t/ha, MAE = 0.96 t/ha). Our results suggest that crop height determined from the new UAV-based snapshot hyperspectral sensor can improve AGB estimation and is advantageous for mapping applications. This new method can be used to guide agricultural management. Full article
(This article belongs to the Special Issue Earth Observations for Precision Farming in China (EO4PFiC))
Figures

Open AccessEditor’s ChoiceArticle Retrieval of Biophysical Crop Variables from Multi-Angular Canopy Spectroscopy
Remote Sens. 2017, 9(7), 726; doi:10.3390/rs9070726
Received: 13 June 2017 / Revised: 4 July 2017 / Accepted: 12 July 2017 / Published: 14 July 2017
PDF Full-text (7466 KB) | HTML Full-text | XML Full-text
Abstract
The future German Environmental Mapping and Analysis Program (EnMAP) mission, due to launch in late 2019, will deliver high resolution hyperspectral data from space and will thus contribute to a better monitoring of the dynamic surface of the earth. Exploiting the satellite’s ±30°
[...] Read more.
The future German Environmental Mapping and Analysis Program (EnMAP) mission, due to launch in late 2019, will deliver high resolution hyperspectral data from space and will thus contribute to a better monitoring of the dynamic surface of the earth. Exploiting the satellite’s ±30° across-track pointing capabilities will allow for the collection of hyperspectral time-series of homogeneous quality. Various studies have shown the possibility to retrieve geo-biophysical plant variables, like leaf area index (LAI) or leaf chlorophyll content (LCC), from narrowband observations with fixed viewing geometry by inversion of radiative transfer models (RTM). In this study we assess the capability of the well-known PROSPECT 5B + 4SAIL (Scattering by Arbitrarily Inclined Leaves) RTM to estimate these variables from off-nadir observations obtained during a field campaign with respect to EnMAP-like sun–target–sensor-geometries. A novel approach for multiple inquiries of a large look-up-table (LUT) in hierarchical steps is introduced that accounts for the varying instances of all variables of interest. Results show that anisotropic effects are strongest for early growth stages of the winter wheat canopy which influences also the retrieval of the variables. RTM inversions from off-nadir spectra lead to a decreased accuracy for the retrieval of LAI with a relative root mean squared error (rRMSE) of 18% at nadir vs. 25% (backscatter) and 24% (forward scatter) at off-nadir. For LCC estimations, however, off-nadir observations yield improvements, i.e., rRMSE (nadir) = 24% vs. rRMSE (forward scatter) = 20%. It follows that for a variable retrieval through RTM inversion, the final user will benefit from EnMAP time-series for biophysical studies regardless of the acquisition angle and will thus be able to exploit the maximum revisit capability of the mission. Full article
Figures

Open AccessEditor’s ChoiceArticle Gauging the Severity of the 2012 Midwestern U.S. Drought for Agriculture
Remote Sens. 2017, 9(8), 767; doi:10.3390/rs9080767
Received: 7 June 2017 / Revised: 21 July 2017 / Accepted: 22 July 2017 / Published: 26 July 2017
PDF Full-text (19092 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Different drought indices often provide different diagnoses of drought severity, making it difficult to determine the best way to evaluate these different drought monitoring results. Additionally, the ability of a newly proposed drought index, the Process-based Accumulated Drought Index (PADI) has not yet
[...] Read more.
Different drought indices often provide different diagnoses of drought severity, making it difficult to determine the best way to evaluate these different drought monitoring results. Additionally, the ability of a newly proposed drought index, the Process-based Accumulated Drought Index (PADI) has not yet been tested in United States. In this study, we quantified the severity of 2012 drought which affected the agricultural output for much of the Midwestern US. We used several popular drought indices, including the Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index with multiple time scales, Palmer Drought Severity Index, Palmer Z-index, VegDRI, and PADI by comparing the spatial distribution, temporal evolution, and crop impacts produced by each of these indices with the United States Drought Monitor. Results suggested this drought incubated around June 2011 and ended in May 2013. While different drought indices depicted drought severity variously. SPI outperformed SPEI and has decent correlation with yield loss especially at a 6 months scale and in the middle growth season, while VegDRI and PADI demonstrated the highest correlation especially in late growth season, indicating they are complementary and should be used together. These results are valuable for comparing and understanding the different performances of drought indices in the Midwestern US. Full article
(This article belongs to the Special Issue Remote Sensing of Land-Atmosphere Interactions)
Figures

Open AccessEditor’s ChoiceArticle Application of Abundance Map Reference Data for Spectral Unmixing
Remote Sens. 2017, 9(8), 793; doi:10.3390/rs9080793
Received: 13 June 2017 / Revised: 19 July 2017 / Accepted: 27 July 2017 / Published: 1 August 2017
PDF Full-text (6911 KB) | HTML Full-text | XML Full-text
Abstract
Reference data (“ground truth”) maps have traditionally been used to assess the accuracy of classification algorithms. These maps typically classify pixels or areas of imagery as belonging to a finite number of ground cover classes, but do not include sub-pixel abundance estimates; therefore,
[...] Read more.
Reference data (“ground truth”) maps have traditionally been used to assess the accuracy of classification algorithms. These maps typically classify pixels or areas of imagery as belonging to a finite number of ground cover classes, but do not include sub-pixel abundance estimates; therefore, they are not sufficiently detailed to directly assess the performance of spectral unmixing algorithms. Our research aims to efficiently generate, validate, and apply abundance map reference data (AMRD) to airborne remote sensing scenes. Scene-wide AMRD for this study were generated using the remotely sensed reference data (RSRD) technique, which spatially aggregates classification or unmixing results from fine scale imagery (e.g., 1-m GSD) to co-located coarse scale imagery (e.g., 10-m GSD or larger). Validation of the accuracy of these methods was previously performed for generic 10 m × 10 m coarse scale imagery, resulting in AMRD with known accuracy. The purpose of this paper was to apply this previously validated AMRD to specific examples of airborne coarse scale imagery. Application of AMRD involved three main parts: (1) spatial alignment of coarse and fine scale imagery; (2) aggregation of fine scale abundances to produce coarse scale imagery specific AMRD; and (3) demonstration of comparisons between coarse scale unmixing abundances and AMRD. Spatial alignment was performed using our new scene-wide spectral comparison (SWSC) algorithm, which aligned imagery with accuracy approaching the distance of a single fine scale pixel. We compared simple rectangular aggregation to coarse sensor point-spread function (PSF) aggregation, and found that PSF returned lower error, but that rectangular aggregation more accurately estimated true AMRD at ground level. We demonstrated various metrics for comparing unmixing results to AMRD, including several new techniques which adjust for known error in the reference data itself. These metrics indicated that fully constrained linear unmixing of AVIRIS imagery across all three scenes returned an average error of 10.83% per class and pixel. Our reference data research has demonstrated a viable methodology to efficiently generate, validate, and apply AMRD to specific examples of airborne remote sensing imagery, thereby enabling direct quantitative assessment of spectral unmixing performance. Full article
Figures

Open AccessEditor’s ChoiceArticle Ongoing Conflict Makes Yemen Dark: From the Perspective of Nighttime Light
Remote Sens. 2017, 9(8), 798; doi:10.3390/rs9080798
Received: 31 May 2017 / Revised: 27 July 2017 / Accepted: 1 August 2017 / Published: 3 August 2017
PDF Full-text (19495 KB) | HTML Full-text | XML Full-text
Abstract
The Yemen conflict has caused a severe humanitarian crisis. This study aims to evaluate the Yemen crisis by making use of time series nighttime light images from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite sensor (NPP-VIIRS). We develop a process
[...] Read more.
The Yemen conflict has caused a severe humanitarian crisis. This study aims to evaluate the Yemen crisis by making use of time series nighttime light images from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite sensor (NPP-VIIRS). We develop a process flow to correct NPP-VIIRS nighttime light from April 2012 to March 2017 by employing the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) stable nighttime light image. The time series analyses at national scales show that there is a sharp decline in the study period from February 2015 to June 2015 and that the total nighttime light (TNL) of Yemen decreased by 71.60% in response to the decline period. The nighttime light in all provinces also showed the same decline period, which indicates that the Saudi-led airstrikes caused widespread and severe humanitarian crisis in Yemen. Spatial pattern analysis shows that the areas of declining nighttime light are mainly concentrated in Sana’a, Dhamar, Ibb, Ta’izz, ’Adan, Shabwah and Hadramawt. According to the validation with high-resolution images, the decline in nighttime light in Western cities is caused by the damage of urban infrastructure, including airports and construction; moreover, the reason for the decline in nighttime light in eastern cities is the decrease in oil exploration. Using nighttime light remote sensing imagery, our findings suggest that war made Yemen dark and provide support for international humanitarian assistance organizations. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing with Nighttime Lights)
Figures

Open AccessEditor’s ChoiceArticle Identifying Droughts Affecting Agriculture in Africa Based on Remote Sensing Time Series between 2000–2016: Rainfall Anomalies and Vegetation Condition in the Context of ENSO
Remote Sens. 2017, 9(8), 831; doi:10.3390/rs9080831
Received: 13 July 2017 / Revised: 27 July 2017 / Accepted: 29 July 2017 / Published: 11 August 2017
PDF Full-text (30658 KB) | HTML Full-text | XML Full-text
Abstract
Droughts are amongst the most destructive natural disasters in the world. In large regions of Africa, where water is a limiting factor and people strongly rely on rain-fed agriculture, droughts have frequently led to crop failure, food shortages and even humanitarian crises. In
[...] Read more.
Droughts are amongst the most destructive natural disasters in the world. In large regions of Africa, where water is a limiting factor and people strongly rely on rain-fed agriculture, droughts have frequently led to crop failure, food shortages and even humanitarian crises. In eastern and southern Africa, major drought episodes have been linked to El Niño-Southern Oscillation (ENSO) events. In this context and with limited in-situ data available, remote sensing provides valuable opportunities for continent-wide assessment of droughts with high spatial and temporal resolutions. This study aimed to monitor agriculturally relevant droughts over Africa between 2000–2016 with a specific focus on growing seasons using remote sensing-based drought indices. Special attention was paid to the observation of drought dynamics during major ENSO episodes to illuminate the connection between ENSO and droughts in eastern and southern Africa. We utilized Tropical Rainfall Measuring Mission (TRMM)-based Standardized Precipitation Index (SPI) with 0 . 25 resolution and Moderate-resolution Imaging Spectroradiometer (MODIS)-derived Vegetation Condition Index (VCI) with 500 m resolution as indices for analysing the spatio-temporal patterns of droughts. We combined the drought indices with information on the timing of site-specific growing seasons derived from MODIS-based multi-annual average of Normalized Difference Vegetation Index (NDVI). We proved the applicability of SPI-3 and VCI as indices for a comprehensive continental-scale monitoring of agriculturally relevant droughts. The years 2009 and 2011 could be revealed as major drought years in eastern Africa, whereas southern Africa was affected by severe droughts in 2003 and 2015/2016. Drought episodes occurred over large parts of southern Africa during strong El Niño events. We observed a mixed drought pattern in eastern Africa, where areas with two growing seasons were frequently affected by droughts during La Niña and zones of unimodal rainfall regimes showed droughts during the onset of El Niño. During La Niña 2010/2011, large parts of cropland areas in Somalia (88%), Sudan (64%) and South Sudan (51%) were affected by severe to extreme droughts during the growing seasons. However, no universal El Niño- or La Niña-related response pattern of droughts could be deduced for the observation period of 16 years. In this regard, we discussed multi-year atmospheric fluctuations and characteristics of ENSO variants as further influences on the interconnection between ENSO and droughts. By utilizing remote sensing-based drought indices focussed on agricultural zones and periods, this study attempts to contribute to a better understanding of spatio-temporal patterns of droughts affecting agriculture in Africa, which can be essential for implementing strategies of drought hazard mitigation. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Figures

Open AccessFeature PaperEditor’s ChoiceArticle The 2015 Surge of Hispar Glacier in the Karakoram
Remote Sens. 2017, 9(9), 888; doi:10.3390/rs9090888
Received: 14 June 2017 / Revised: 4 August 2017 / Accepted: 15 August 2017 / Published: 26 August 2017
Cited by 1 | PDF Full-text (13403 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Karakoram mountain range is well known for its numerous surge-type glaciers of which several have recently surged or are still doing so. Analysis of multi-temporal satellite images and digital elevation models have revealed impressive details about the related changes (e.g., in glacier
[...] Read more.
The Karakoram mountain range is well known for its numerous surge-type glaciers of which several have recently surged or are still doing so. Analysis of multi-temporal satellite images and digital elevation models have revealed impressive details about the related changes (e.g., in glacier length, surface elevation and flow velocities) and considerably expanded the database of known surge-type glaciers. One glacier that has so far only been reported as impacted by surging tributaries, rather than surging itself, is the 50 km long main trunk of Hispar Glacier in the Hunza catchment. We here present the evolution of flow velocities and surface features from its 2015/16 surge as revealed from a dense time series of SAR and optical images along with an analysis of historic satellite images. We observed maximum flow velocities of up to 14 m d−1 (5 km a−1) in spring 2015, sudden drops in summer velocities, a second increase in winter 2015/16 and a total advance of the surge front of about 6 km. During a few months the surge front velocity was much higher (about 90 m d−1) than the maximum flow velocity. We assume that one of its northern tributary glaciers, Yutmaru, initiated the surge at the end of summer 2014 and that the variability in flow velocities was driven by changes in the basal hydrologic regime (Alaska-type surge). We further provide evidence that Hispar Glacier has surged before (around 1960) over a distance of about 10 km so that it can also be regarded as a surge-type glacier. Full article
(This article belongs to the Special Issue Remote Sensing of Glaciers)
Figures

Open AccessEditor’s ChoiceArticle Lidar Aboveground Vegetation Biomass Estimates in Shrublands: Prediction, Uncertainties and Application to Coarser Scales
Remote Sens. 2017, 9(9), 903; doi:10.3390/rs9090903
Received: 4 June 2017 / Revised: 11 August 2017 / Accepted: 29 August 2017 / Published: 31 August 2017
Cited by 3 | PDF Full-text (8420 KB) | HTML Full-text | XML Full-text
Abstract
Our study objectives were to model the aboveground biomass in a xeric shrub-steppe landscape with airborne light detection and ranging (Lidar) and explore the uncertainty associated with the models we created. We incorporated vegetation vertical structure information obtained from Lidar with ground-measured biomass
[...] Read more.
Our study objectives were to model the aboveground biomass in a xeric shrub-steppe landscape with airborne light detection and ranging (Lidar) and explore the uncertainty associated with the models we created. We incorporated vegetation vertical structure information obtained from Lidar with ground-measured biomass data, allowing us to scale shrub biomass from small field sites (1 m subplots and 1 ha plots) to a larger landscape. A series of airborne Lidar-derived vegetation metrics were trained and linked with the field-measured biomass in Random Forests (RF) regression models. A Stepwise Multiple Regression (SMR) model was also explored as a comparison. Our results demonstrated that the important predictors from Lidar-derived metrics had a strong correlation with field-measured biomass in the RF regression models with a pseudo R2 of 0.76 and RMSE of 125 g/m2 for shrub biomass and a pseudo R2 of 0.74 and RMSE of 141 g/m2 for total biomass, and a weak correlation with field-measured herbaceous biomass. The SMR results were similar but slightly better than RF, explaining 77–79% of the variance, with RMSE ranging from 120 to 129 g/m2 for shrub and total biomass, respectively. We further explored the computational efficiency and relative accuracies of using point cloud and raster Lidar metrics at different resolutions (1 m to 1 ha). Metrics derived from the Lidar point cloud processing led to improved biomass estimates at nearly all resolutions in comparison to raster-derived Lidar metrics. Only at 1 m were the results from the point cloud and raster products nearly equivalent. The best Lidar prediction models of biomass at the plot-level (1 ha) were achieved when Lidar metrics were derived from an average of fine resolution (1 m) metrics to minimize boundary effects and to smooth variability. Overall, both RF and SMR methods explained more than 74% of the variance in biomass, with the most important Lidar variables being associated with vegetation structure and statistical measures of this structure (e.g., standard deviation of height was a strong predictor of biomass). Using our model results, we developed spatially-explicit Lidar estimates of total and shrub biomass across our study site in the Great Basin, U.S.A., for monitoring and planning in this imperiled ecosystem. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Figures

Open AccessEditor’s ChoiceArticle A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring
Remote Sens. 2017, 9(9), 902; doi:10.3390/rs9090902
Received: 29 July 2017 / Revised: 22 August 2017 / Accepted: 22 August 2017 / Published: 31 August 2017
PDF Full-text (4498 KB) | HTML Full-text | XML Full-text
Abstract
Combination of different satellite data will provide increased opportunities for more frequent cloud-free surface observations due to variable cloud cover at the different satellite overpass times and dates. Satellite data from the polar-orbiting Landsat-8 (launched 2013), Sentinel-2A (launched 2015) and Sentinel-2B (launched 2017)
[...] Read more.
Combination of different satellite data will provide increased opportunities for more frequent cloud-free surface observations due to variable cloud cover at the different satellite overpass times and dates. Satellite data from the polar-orbiting Landsat-8 (launched 2013), Sentinel-2A (launched 2015) and Sentinel-2B (launched 2017) sensors offer 10 m to 30 m multi-spectral global coverage. Together, they advance the virtual constellation paradigm for mid-resolution land imaging. In this study, a global analysis of Landsat-8, Sentinel-2A and Sentinel-2B metadata obtained from the committee on Earth Observation Satellite (CEOS) Visualization Environment (COVE) tool for 2016 is presented. A global equal area projection grid defined every 0.05° is used considering each sensor and combined together. Histograms, maps and global summary statistics of the temporal revisit intervals (minimum, mean, and maximum) and the number of observations are reported. The temporal observation frequency improvements afforded by sensor combination are shown to be significant. In particular, considering Landsat-8, Sentinel-2A, and Sentinel-2B together will provide a global median average revisit interval of 2.9 days, and, over a year, a global median minimum revisit interval of 14 min (±1 min) and maximum revisit interval of 7.0 days. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Figures

Open AccessEditor’s ChoiceArticle Mapping Smallholder Yield Heterogeneity at Multiple Scales in Eastern Africa
Remote Sens. 2017, 9(9), 931; doi:10.3390/rs9090931
Received: 3 August 2017 / Revised: 1 September 2017 / Accepted: 4 September 2017 / Published: 8 September 2017
PDF Full-text (7788 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Accurate measurements of crop production in smallholder farming systems are critical to the understanding of yield constraints and, thus, setting the appropriate agronomic investments and policies for improving food security and reducing poverty. Nevertheless, mapping the yields of smallholder farms is challenging because
[...] Read more.
Accurate measurements of crop production in smallholder farming systems are critical to the understanding of yield constraints and, thus, setting the appropriate agronomic investments and policies for improving food security and reducing poverty. Nevertheless, mapping the yields of smallholder farms is challenging because of factors such as small field sizes and heterogeneous landscapes. Recent advances in fine-resolution satellite sensors offer promise for monitoring and characterizing the production of smallholder farms. In this study, we investigated the utility of different sensors, including the commercial Skysat and RapidEye satellites and the publicly accessible Sentinel-2, for tracking smallholder maize yield variation throughout a ~40,000 km2 western Kenya region. We tested the potential of two types of multiple regression models for predicting yield: (i) a “calibrated model”, which required ground-measured yield and weather data for calibration, and (ii) an “uncalibrated model”, which used a process-based crop model to generate daily vegetation index and end-of-season biomass and/or yield as pseudo training samples. Model performance was evaluated at the field, division, and district scales using a combination of farmer surveys and crop cuts across thousands of smallholder plots in western Kenya. Results show that the “calibrated” approach captured a significant fraction (R2 between 0.3 and 0.6) of yield variations at aggregated administrative units (e.g., districts and divisions), while the “uncalibrated” approach performed only slightly worse. For both approaches, we found that predictions using the MERIS Terrestrial Chlorophyll Index (MTCI), which included the red edge band available in RapidEye and Sentinel-2, were superior to those made using other commonly used vegetation indices. We also found that multiple refinements to the crop simulation procedures led to improvements in the “uncalibrated” approach. We identified the prevalence of small field sizes, intercropping management, and cloudy satellite images as major challenges to improve the model performance. Overall, this study suggested that high-resolution satellite imagery can be used to map yields of smallholder farming systems, and the methodology presented in this study could serve as a good foundation for other smallholder farming systems in the world. Full article
Figures

Open AccessEditor’s ChoiceArticle Fractional Snow Cover Mapping from FY-2 VISSR Imagery of China
Remote Sens. 2017, 9(10), 983; doi:10.3390/rs9100983
Received: 3 August 2017 / Revised: 18 September 2017 / Accepted: 19 September 2017 / Published: 22 September 2017
PDF Full-text (8904 KB) | HTML Full-text | XML Full-text
Abstract
Daily fractional snow cover (FSC) products derived from optical sensors onboard low Earth orbit (LEO) satellites are often discontinuous, primarily due to prevalent cloud cover. To map the daily cloud-reduced FSC over China, we utilized clear-sky multichannel observations from the first-generation Chinese geostationary
[...] Read more.
Daily fractional snow cover (FSC) products derived from optical sensors onboard low Earth orbit (LEO) satellites are often discontinuous, primarily due to prevalent cloud cover. To map the daily cloud-reduced FSC over China, we utilized clear-sky multichannel observations from the first-generation Chinese geostationary orbit (GEO) satellites (namely, the FY-2 series) by taking advantage of their high temporal resolution. The method proposed in this study combines a newly developed binary snow cover detection algorithm designed for the Visible and Infrared Spin Scan Radiometer (VISSR) onboard FY-2F with a simple linear spectral mixture technique applied to the visible (VIS) band. This method relies upon full snow cover and snow-free end-members to estimate the daily FSC. The FY-2E/F VISSR FSC maps of China were compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) FSC data based on the multiple end-member spectral mixture analysis (MESMA), and with Landsat-8 Operational Land Imager (OLI) FSC maps based on the SNOWMAP approach. The FY-2E/F VISSR FSC maps, which demonstrate a lower cloud coverage, exhibit the root mean squared errors (RMSEs) of 0.20/0.19 compared with the MODIS FSC data. When validated against the Landsat-8 OLI FSC data, the FY-2E/F VISSR FSC maps, which display overall accuracies that can reach 0.92, have an RMSE of 0.18~0.29 with R2 values ranging from 0.46 to 0.80. Full article
(This article belongs to the Special Issue Snow Remote Sensing)
Figures

Open AccessEditor’s ChoiceArticle 3D Monitoring of Buildings Using TerraSAR-X InSAR, DInSAR and PolSAR Capacities
Remote Sens. 2017, 9(10), 1010; doi:10.3390/rs9101010
Received: 30 June 2017 / Revised: 21 August 2017 / Accepted: 22 September 2017 / Published: 29 September 2017
PDF Full-text (12556 KB) | HTML Full-text | XML Full-text
Abstract
The rapid expansion of cities increases the need of urban remote sensing for a large scale monitoring. This paper provides greater understanding of how TerraSAR-X (TSX) high-resolution abilities enable to reach the spatial precision required to monitor individual buildings, through the use of
[...] Read more.
The rapid expansion of cities increases the need of urban remote sensing for a large scale monitoring. This paper provides greater understanding of how TerraSAR-X (TSX) high-resolution abilities enable to reach the spatial precision required to monitor individual buildings, through the use of a 4 year temporal stack of 100 images over Paris (France). Three different SAR modes are investigated for this purpose. First a method involving a whole time-series is proposed to measure realistic heights of buildings. Then, we show that the small wavelength of TSX makes the interferometric products very sensitive to the ordinary building-deformation, and that daily deformation can be measured over the entire building with a centimetric accuracy, and without any a priori on the deformation evolution, even when neglecting the impact of the atmosphere. Deformations up to 4 cm were estimated for the Eiffel Tower and up to 1 cm for other lower buildings. These deformations were analyzed and validated with weather and in situ local data. Finally, four TSX polarimetric images were used to investigate geometric and dielectric properties of buildings under the deterministic framework. Despite of the resolution loss of this mode, the possibility to estimate the structural elements of a building orientations and their relative complexity in the spatial organization are demonstrated. Full article
(This article belongs to the Special Issue Recent Advances in Polarimetric SAR Interferometry)
Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceArticle Global Registration of 3D LiDAR Point Clouds Based on Scene Features: Application to Structured Environments
Remote Sens. 2017, 9(10), 1014; doi:10.3390/rs9101014
Received: 4 August 2017 / Revised: 22 September 2017 / Accepted: 26 September 2017 / Published: 30 September 2017
PDF Full-text (9010 KB) | HTML Full-text | XML Full-text
Abstract
Acquiring 3D data with LiDAR systems involves scanning multiple scenes from different points of view. In actual systems, the ICP algorithm (Iterative Closest Point) is commonly used to register the acquired point clouds together to form a unique one. However, this method faces
[...] Read more.
Acquiring 3D data with LiDAR systems involves scanning multiple scenes from different points of view. In actual systems, the ICP algorithm (Iterative Closest Point) is commonly used to register the acquired point clouds together to form a unique one. However, this method faces local minima issues and often needs a coarse initial alignment to converge to the optimum. This paper develops a new method for registration adapted to indoor environments and based on structure priors of such scenes. Our method works without odometric data or physical targets. The rotation and translation of the rigid transformation are computed separately, using, respectively, the Gaussian image of the point clouds and a correlation of histograms. To evaluate our algorithm on challenging registration cases, two datasets were acquired and are available for comparison with other methods online. The evaluation of our algorithm on four datasets against six existing methods shows that the proposed method is more robust against sampling and scene complexity. Moreover, the time performances enable a real-time implementation. Full article
Figures

Open AccessEditor’s ChoiceArticle Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine
Remote Sens. 2017, 9(10), 1065; doi:10.3390/rs9101065
Received: 11 July 2017 / Revised: 27 September 2017 / Accepted: 10 October 2017 / Published: 19 October 2017
PDF Full-text (13160 KB) | HTML Full-text | XML Full-text
Abstract
A satellite-derived cropland extent map at high spatial resolution (30-m or better) is a must for food and water security analysis. Precise and accurate global cropland extent maps, indicating cropland and non-cropland areas, are starting points to develop higher-level products such as crop
[...] Read more.
A satellite-derived cropland extent map at high spatial resolution (30-m or better) is a must for food and water security analysis. Precise and accurate global cropland extent maps, indicating cropland and non-cropland areas, are starting points to develop higher-level products such as crop watering methods (irrigated or rainfed), cropping intensities (e.g., single, double, or continuous cropping), crop types, cropland fallows, as well as for assessment of cropland productivity (productivity per unit of land), and crop water productivity (productivity per unit of water). Uncertainties associated with the cropland extent map have cascading effects on all higher-level cropland products. However, precise and accurate cropland extent maps at high spatial resolution over large areas (e.g., continents or the globe) are challenging to produce due to the small-holder dominant agricultural systems like those found in most of Africa and Asia. Cloud-based geospatial computing platforms and multi-date, multi-sensor satellite image inventories on Google Earth Engine offer opportunities for mapping croplands with precision and accuracy over large areas that satisfy the requirements of broad range of applications. Such maps are expected to provide highly significant improvements compared to existing products, which tend to be coarser in resolution, and often fail to capture fragmented small-holder farms especially in regions with high dynamic change within and across years. To overcome these limitations, in this research we present an approach for cropland extent mapping at high spatial resolution (30-m or better) using the 10-day, 10 to 20-m, Sentinel-2 data in combination with 16-day, 30-m, Landsat-8 data on Google Earth Engine (GEE). First, nominal 30-m resolution satellite imagery composites were created from 36,924 scenes of Sentinel-2 and Landsat-8 images for the entire African continent in 2015–2016. These composites were generated using a median-mosaic of five bands (blue, green, red, near-infrared, NDVI) during each of the two periods (period 1: January–June 2016 and period 2: July–December 2015) plus a 30-m slope layer derived from the Shuttle Radar Topographic Mission (SRTM) elevation dataset. Second, we selected Cropland/Non-cropland training samples (sample size = 9791) from various sources in GEE to create pixel-based classifications. As supervised classification algorithm, Random Forest (RF) was used as the primary classifier because of its efficiency, and when over-fitting issues of RF happened due to the noise of input training data, Support Vector Machine (SVM) was applied to compensate for such defects in specific areas. Third, the Recursive Hierarchical Segmentation (RHSeg) algorithm was employed to generate an object-oriented segmentation layer based on spectral and spatial properties from the same input data. This layer was merged with the pixel-based classification to improve segmentation accuracy. Accuracies of the merged 30-m crop extent product were computed using an error matrix approach in which 1754 independent validation samples were used. In addition, a comparison was performed with other available cropland maps as well as with LULC maps to show spatial similarity. Finally, the cropland area results derived from the map were compared with UN FAO statistics. The independent accuracy assessment showed a weighted overall accuracy of 94%, with a producer’s accuracy of 85.9% (or omission error of 14.1%), and user’s accuracy of 68.5% (commission error of 31.5%) for the cropland class. The total net cropland area (TNCA) of Africa was estimated as 313 Mha for the nominal year 2015. The online product, referred to as the Global Food Security-support Analysis Data @ 30-m for the African Continent, Cropland Extent product (GFSAD30AFCE) is distributed through the NASA’s Land Processes Distributed Active Archive Center (LP DAAC) as (available for download by 10 November 2017 or earlier): https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001 and can be viewed at https://croplands.org/app/map. Causes of uncertainty and limitations within the crop extent product are discussed in detail. Full article
(This article belongs to the Special Issue Google Earth Engine Applications)
Figures

Review

Jump to: Research

Open AccessEditor’s ChoiceReview MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane
Remote Sens. 2017, 9(10), 1052; doi:10.3390/rs9101052
Received: 26 August 2017 / Revised: 29 September 2017 / Accepted: 2 October 2017 / Published: 16 October 2017
Cited by 1 | PDF Full-text (4855 KB) | HTML Full-text | XML Full-text
Abstract
The MEthane Remote sensing Lidar missioN (MERLIN) aims at demonstrating the spaceborne active measurement of atmospheric methane, a potent greenhouse gas, based on an Integrated Path Differential Absorption (IPDA) nadir-viewing LIght Detecting and Ranging (Lidar) instrument. MERLIN is a joint French and German
[...] Read more.
The MEthane Remote sensing Lidar missioN (MERLIN) aims at demonstrating the spaceborne active measurement of atmospheric methane, a potent greenhouse gas, based on an Integrated Path Differential Absorption (IPDA) nadir-viewing LIght Detecting and Ranging (Lidar) instrument. MERLIN is a joint French and German space mission, with a launch currently scheduled for the timeframe 2021/22. The German Space Agency (DLR) is responsible for the payload, while the platform (MYRIADE Evolutions product line) is developed by the French Space Agency (CNES). The main scientific objective of MERLIN is the delivery of weighted atmospheric columns of methane dry-air mole fractions for all latitudes throughout the year with systematic errors small enough (<3.7 ppb) to significantly improve our knowledge of methane sources from global to regional scales, with emphasis on poorly accessible regions in the tropics and at high latitudes. This paper presents the MERLIN objectives, describes the methodology and the main characteristics of the payload and of the platform, and proposes a first assessment of the error budget and its translation into expected uncertainty reduction of methane surface emissions. Full article
(This article belongs to the Special Issue Remote Sensing of Greenhouse Gases)
Figures

Back to Top