Local Vegetation Trends in the Sahel of Mali and Senegal Using Long Time Series FAPAR Satellite Products and Field Measurement (1982–2010)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Bandiagara (Sahel of Mali)
2.1.2. Linguère (Sahel of Senegal)
2.2. FAPAR Time Series
2.3. Time Series Analysis
2.4. Validation and Interpretation Data and Methods
2.4.1. Qualitative Information
2.4.2. Quantitative Information
Biomass Observations
Rainfall Data
3. Results
3.1. Trend Analysis of Western Africa
3.2. Local Trend Patterns
3.2.1. Bandiagara (Sahel of Mali)
3.2.2. Linguère (Sahel of Senegal)
3.3. Validation and Interpretation of Trends by Ground Observations
3.3.1. Validation and Interpretation by Biomass Data
3.3.2. Validation and Interpretation by Rainfall Data
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ali, A.; Lebel, T. The Sahelian standardized rainfall index revisited. Int. J. Climatol 2009, 29, 1705–1714. [Google Scholar]
- Tappan, G.; Sall, M.; Wood, E.; Cushing, M. Ecoregions and land cover trends in Senegal. J. Arid Environ 2004, 59, 427–462. [Google Scholar]
- Oldeman, L.R.; Hakkeling, R.T.A.; Sombroek, W.G. World Map of the Status of Human-Induced Soil Degradation: An Explanatory Note; ISRIC: Wageningen, The Netherlands, 1990. Avaliable online: http://www.isric.org/isric/webdocs/docs/ExplanNote.pdf (accessed on 15 December 2013).
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang 2005, 15, 394–404. [Google Scholar]
- Hutchinson, C.; Herrmann, S.; Maukonen, T.; Weber, J. Introduction: The “Greening” of the Sahel. J. Arid Environ 2005, 63, 535–537. [Google Scholar]
- Olsson, L.; Eklundh, L.; Ardo, J. A recent greening of the Saheltrends, patterns and potential causes. J. Arid Environ 2005, 63, 556–566. [Google Scholar]
- Herrmann, S.; Tappan, G. Vegetation impoverishment despite greening: A case study from central Senegal. J. Arid Environ 2013, 90, 55–66. [Google Scholar]
- Brandt, M.; Romankiewicz, C.; Spiekermann, R.; Samimi, C. Environmental change in time series—An interdisciplinary study in the Sahel of Mali and Senegal. J. Arid Environ 2014. In press. [Google Scholar]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Grippa, M.; Tucker, C. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ 2014, 140, 350–364. [Google Scholar]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trendsIntercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ 2009, 113, 1886–1898. [Google Scholar]
- Fensholt, R.; Proud, S.R. Evaluation of earth observation based global long term vegetation trends Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ 2012, 119, 131–147. [Google Scholar]
- Martinez, B.; Gilabert, M.; Garca-Haro, F.; Faye, A.; Meli, J. Characterizing land condition variability in Ferlo, Senegal (2001–2009) using multi-temporal 1-km Apparent Green Cover (AGC) SPOT Vegetation data. Glob. Planet. Chang 2011, 76, 152–165. [Google Scholar]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ 2004, 91, 490–507. [Google Scholar]
- Wagenseil, H.; Samimi, C. Assessing spatio-Temporal variations in plant phenology using Fourier analysis on NDVI time series: Results from a dry savannah environment in Namibia. Int. J. Remote Sens 2006, 27, 3455–3471. [Google Scholar]
- Wessels, K.J.; Prince, S.D.; Frost, P.E.; van Zyl, D. Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens. Environ 2004, 91, 47–67. [Google Scholar]
- Dybkjaer, G.; Nielsen, T.T.; Rasmussen, K.; Schultz-Rasmussen, M.; Lars Boye, H.; Tour, A. Documentation and evaluation of the CSE NOAA AVHRR data set. Geografisk Tidsskrift 2003, 103, 125–135. [Google Scholar]
- Tucker, C.; Pinzon, J.; Brown, M.; Slayback, D.; Pak, E.; Mahoney, R.; Vermote, E.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens 2005, 26, 4485–4498. [Google Scholar]
- Bégué, A.; Vintrou, E.; Ruelland, D.; Claden, M.; Dessay, N. Can a 25-year trend in Soudano-Sahelian vegetation dynamics be interpreted in terms of land use change? A remote sensing approach. Glob. Environ. Chang 2011, 21, 413–420. [Google Scholar]
- Heumann, B.W.; Seaquist, J.W.; Eklundh, L.; Jonsson, P. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens. Environ 2007, 108, 385–392. [Google Scholar]
- Anyamba, A.; Tucker, C. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ 2005, 63, 596–614. [Google Scholar]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.; Myneni, R. Global data sets of vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g ferived from global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens 2013, 5, 927–948. [Google Scholar]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ 2013, 137, 299–309. [Google Scholar]
- Verger, A.; Baret, F.; Weiss, M.; Lacaze, R.; Makhmara, H.; Vermote, E. Long Term Consistent Global GEOV1 AVHRR Biophysical Products. Proceedings of the 1st EARSeL Workshop on Temporal Analysis of Satellite Images, Mykonos, Greece, 23–25 May 2012; pp. 28–33.
- Vrieling, A.; de Leeuw, J.; Said, M.Y. Length of growing period over Africa: Variability and trends from 30 years of NDVI time series. Remote Sens 2013, 5, 982–1000. [Google Scholar]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M.E. Shifts in global vegetation activity trends. Remote Sens 2013, 5, 1117–1133. [Google Scholar]
- Cook, B.I.; Pau, S. Aglobal assessment of long-term greening and browning trends in pasture lands using the GIMMS LAI3g dataset. Remote Sens 2013, 5, 2492–2512. [Google Scholar]
- Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing land degradation/recovery in the african sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens 2013, 5, 664–686. [Google Scholar]
- Baret, F.; Weiss, M.; Verger, A.; Kandasamy, S. BioPar Methods Compendium-LAI, FAPAR and FCOVER from LTDR AVHRR Series; Technical Report; INRA-EMMAH: Avignon, France, 2011. [Google Scholar]
- Myneni, R.B.; Williams, D.L. On the relationship between FAPAR and NDVI. Remote Sens. Environ 1994, 49, 200–211. [Google Scholar]
- Spiekermann, R.; Brandt, M.; Samimi, C. Using High Resolution Imagery to Detect Woody Vegetation and Land-Cover Change over 50 Years in the Sahel of Mali. Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013; 15, p. 11937.
- Spiekermann, R. Change of Woody Vegetation and Land Cover Using High Resolution Images on the Dogon Plateau and Sno Plains (Mali). M.Sc. Thesis, University of Vienna, Vienna, Austria. 2013. [Google Scholar]
- RapidEye. Satellite Imagery Product Specifications. 2013. Available online: http://blackbridge.com/rapideye/upload/RE_Product_Specifications_ENG.pdf (accessed on 25 February 2014).
- Weiss, M.; Baret, F.; Garrigues, S.; Lacaze, R. LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products. Remote Sens. Environ 2007, 110, 317–331. [Google Scholar]
- Verger, A.; Baret, F.; Weiss, M. Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products. Remote Sens. Environ 2008, 112, 2789–2803. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat 1990, 6, 3–73. [Google Scholar]
- Roderick, M.L.; Noble, I.R.; Cridland, S.W. Estimating woody and herbaceous vegetation cover from time series satellite observations. Glob. Ecol. Biogeogr 1999, 8, 501–508. [Google Scholar]
- Diouf, A.; Lambin, E.F. Monitoring land-cover changes in semi-arid regions: Remote sensing data and field observations in the Ferlo, Senegal. J. Arid Environ 2001, 48, 129–148. [Google Scholar]
- Maydell, H.J.V. Trees and Shrubs of the Sahel: Their Characteristics and Uses; Verlag Josef Margraf: Weikersheim, Germany, 1990. [Google Scholar]
- Stocking, M.A.; Murnaghan, N. A Handbook for the Field Assessment of Land Degradation; Routledge: London, UK, 2001. [Google Scholar]
- Diallo, O.; Diouf, A.; Hanan, N.P.; Ndiaye, A.; Prevost, Y. AVHRR monitoring of savanna primary production in Senegal, West Africa: 1987–1988. Int. J. Remote Sens 1991, 12, 1259–1279. [Google Scholar]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S.; Stisen, S.; Diouf, A. Evaluation of satellite based primary production modelling in the semi-arid Sahel. Remote Sens. Environ 2006, 105, 173–188. [Google Scholar]
- Mbow, C.; Fensholt, R.; Rasmussen, K.; Diop, D. Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground-based measurements. J. Arid Environ 2013, 97, 56–65. [Google Scholar]
- Hickler, T.; Eklundh, L.; Seaquist, J.; Smith, B.; Ard, J.; Olsson, L.; Sykes, M.; Sjstrm, M. Precipitation controls Sahel greening trend. Geophys. Res. Lett 2005, 32, L21415. [Google Scholar]
- Strommer, G.; Brandt, M.; Diongue-Niang, A.; Samimi, C. Analysis of Daily Rainfall of the Sahelian Weather-Station Linguere (Senegal)-Trends and its Impacts on the Local Population. Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013; 15, p. 12716.
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol 2014, 115, 15–40. [Google Scholar]
- Brandt, M.; Paeth, H.; Samimi, C. Vegetations veraenderungen in Westafrika-Spiegel von Klimawandel und Landnutzung. Geogr. Rundschau 2013, 65, 36–42. [Google Scholar]
- FAO, Global Forest Resources Assessment 2010, Global Tables; Technical Report; FAO: Rome, Italy, 2010; Available online: http://foris.fao.org/static/data/fra2010/FRA2010GlobaltablesEnJune29.xls (accessed on 23 October 2013).
- Allen, M. International Tree Foundation Narrative Report-MA295 Sahel ECO; Technical Report; Sahel ECO: Bamako, Mali, 2009. [Google Scholar]
- Nicholson, S.E. The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol 2013, 2013, 1–32. [Google Scholar]
- Giannini, A.; Salack, S.; Lodoun, T.; Ali, A.; Gaye, A.T.; Ndiaye, O. A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environ. Res. Lett 2013, 8. [Google Scholar] [CrossRef]
- Bobée, C.; Ottlé, C.; Maignan, F.; de Noblet-Ducoudré, N.; Maugis, P.; Lézine, A.M.; Ndiaye, M. Analysis of vegetation seasonality in Sahelian environments using MODIS LAI, in association with land cover and rainfall. J. Arid Environ 2012, 84, 38–50. [Google Scholar]
- Nutini, F.; Boschetti, M.; Brivio, P.; Bocchi, S.; Antoninetti, M. Land-use and land-cover change detection in a semi-arid area of Niger using multi-temporal analysis of Landsat images. Int. J. Remote Sens 2013, 34, 4769–4790. [Google Scholar]
- Reij, C.; Tappan, G.; Smale, M. Agroenvironmental Transformation in the Sahel: Another Kind of “Green Revolution”; Technical Report; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Gonzalez, P. Desertification and a shift of forest species in the West African Sahel. Clim. Res 2001, 17, 217–228. [Google Scholar]
- Pickett-Heaps, C.A.; Canadell, J.G.; Briggs, P.R.; Gobron, N.; Haverd, V.; Paget, M.J.; Pinty, B.; Raupach, M.R. Evaluation of six satellite-derived Fraction of Absorbed Photosynthetic Active Radiation (FAPAR) products across the Australian continent. Remote Sens. Environ 2014, 140, 241–256. [Google Scholar]
- Meroni, M.; Atzberger, C.; Vancutsem, C.; Gobron, N.; Baret, F.; Lacaze, R.; Eerens, H.; Leo, O. Evaluation ofagreement between space remote sensing SPOT-VEGETATION fAPAR time series. IEEE Trans. Geosci. Remote Sens 2013, 51, 1951–1962. [Google Scholar]
- McCallum, I.; Wagner, W.; Schmullius, C.; Shvidenko, A.; Obersteiner, M.; Fritz, S.; Nilsson, S. Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sens. Environ 2010, 114, 941–949. [Google Scholar]
Sites | Location | Coordinates (Long./Lat.) | Site Characteristics |
---|---|---|---|
MALdeg | Mali, Dogon Plateau | −3.8738 14.4276 | Tree-, shrub savanna, degraded bushland, crops, ferruginous, shallow soils |
MALpos | Mali, Dogon Plateau | −3.5312 14.3253 | Tree-, shrub savanna, cropping and onion plantations line the valleys, dams and irrigation structures |
C3L5 | Senegal, ferruginous Ferlo | −14.5815 15.2463 | Shrub-, tree savanna, dense bushland, ferruginous, spots of bare soil, shallow soils, pasture |
C2L5 | Senegal, southern sandy Ferlo | −15.2032 15.2309 | Tree-, shrub savanna, sandy, intersected by clayey depressions, pasture and small scale cropping |
C2L4 | Senegal. northern Ferlo | −15.2857 15.6035 | Open tree-, shrub savanna, sandy, pasture and small scale cropping, fallow fields |
Ldeg | Senegal, ferruginous Ferlo | −14.9444 15.4718 | Tree-, shrub savanna, ferruginous, laterite, shallow soils, degraded, intersected with woody depressions |
C3L5 | C2L5 | C2L4 | Ldeg | |
---|---|---|---|---|
GEOV1 FAPAR change | +0.22 [104%] ** | +0.12 [55%] ** | +0.11 [38%] ** | +0.09 [8%] ** |
GIMMS3g FAPAR change | +0.011 [7%] | +0.012 [3%] | +0.012 [4%] ** | +0.017 [10%] * |
total biomass change | +1025 [59%] * | +149 [10%] | +140 [13%] | |
leaf biomass change | +1172 [93%] ** | +462 [101%] ** | +174 [78%] * | |
herb. biomass change | −147 [−30%] | −313 [−28%] | −34 [−4%] | |
mean leaf biomass | 1254 | 457 | 222 | |
mean herb. biomass | 485 | 1085 | 865 |
Sites | GEOV1 | GIMMS3g | Leaf Biomass | Observations | Rainfall |
---|---|---|---|---|---|
MALdeg | o | not significant | NA | active degradation | ++ |
MALpos | ++ | o | NA | new plantations | ++ |
C3L5 | ++ | not significant | ++ | drought recovery | + |
C2L5 | ++ | not significant | ++ | drought recovery | + |
C2L4 | + | o | ++ | drought recovery | + |
Ldeg | o | + | NA | degradation | + |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Brandt, M.; Verger, A.; Diouf, A.A.; Baret, F.; Samimi, C. Local Vegetation Trends in the Sahel of Mali and Senegal Using Long Time Series FAPAR Satellite Products and Field Measurement (1982–2010). Remote Sens. 2014, 6, 2408-2434. https://doi.org/10.3390/rs6032408
Brandt M, Verger A, Diouf AA, Baret F, Samimi C. Local Vegetation Trends in the Sahel of Mali and Senegal Using Long Time Series FAPAR Satellite Products and Field Measurement (1982–2010). Remote Sensing. 2014; 6(3):2408-2434. https://doi.org/10.3390/rs6032408
Chicago/Turabian StyleBrandt, Martin, Aleixandre Verger, Abdoul Aziz Diouf, Frédéric Baret, and Cyrus Samimi. 2014. "Local Vegetation Trends in the Sahel of Mali and Senegal Using Long Time Series FAPAR Satellite Products and Field Measurement (1982–2010)" Remote Sensing 6, no. 3: 2408-2434. https://doi.org/10.3390/rs6032408
APA StyleBrandt, M., Verger, A., Diouf, A. A., Baret, F., & Samimi, C. (2014). Local Vegetation Trends in the Sahel of Mali and Senegal Using Long Time Series FAPAR Satellite Products and Field Measurement (1982–2010). Remote Sensing, 6(3), 2408-2434. https://doi.org/10.3390/rs6032408