Towards an Interoperable Field Spectroscopy Metadata Standard with Extended Support for Marine Specific Applications
Abstract
:1. Introduction
1.1. The Importance of Interoperable Field Spectroscopy Metadatasets
1.2. Unique Requirements for Marine Field Spectroscopy Metadata
1.3. Reviewing Existing Field Spectroscopy Protocols for a Framework for Interoperability
Topics Addressed | ||||||
---|---|---|---|---|---|---|
Name of Document | Application Specific | Electromagnetic Radiation Theory | Instrument Optimization | Recommended Viewing Geometry | Sampling Strategy | Field Data Documentation Protocol |
NERC FSF instrument guides (ASD Field Spec Pro, GER1500, GER3700) [20,21,22] | X | |||||
Australian Government Department of Sustainability, Environment, Water, Population and Communities: Standards for reflectance spectral measurement of temporal vegetation plots [24] | X | X | X | X | X | X |
University of Queensland Field Spectrometer and Radiometer Guide [23] | X | X | X | X | X | X |
Spectranomics Protocol: Leaf Spectroscopy (350–2500 nm) [25] | X | X | ||||
ASD instrument guides and FAQ [26,27] | X | X | X |
1.4. Existing Metadata Standards in Support of Specific Field Spectroscopy Applications
1.5. The Impact of Metadata Schema on Interoperability and Dataset Discoverability
- (1)
- simple (highest degree of interoperability with other metadata schemas, generally multidisciplinary and non-granular, with 15–25 metadata fields);
- (2)
- simple/moderate (interoperability is inversely correlated with the specific needs of an application or discipline, granular with more metadata fields);
- (3)
- complex (interoperability requires expertise, hierarchical, granular, and extensive, with more than 100 metadata fields) [36]
2. Work Methodology
2.1. Identifying Key Metadata for Marine Measurements
- (1)
- comprehensive: accurately documents the protocol executed to obtain the data;
- (2)
- complete: inclusive of all metadata critical to that metadataset;
- (3)
- interoperable (digitally and semantically): comprises metadata elements expressed in a manner conforming to commonly accepted terminologies and ontologies to accommodate fusion with other datasets and exchange across data platforms;
- (4)
- explicit: captures the requisite metadata to a granularity that minimizes potential for recording ambiguous metadata (granularity in this context is the smallest unit of metadata defined for capturing a given unit of information)
2.2. Assessing Geospatial Metadata Standards to Support the Core Metadataset and the Benthic Reflectance Metadataset
Metadata Standard | Date Created (Initial Version) | Creator(s) | Purpose | External Standards Incorporated | # of Elements |
---|---|---|---|---|---|
Dublin Core 1.1 | 1995 | Dublin Core Metadata Initiative | for use in resource description for a wide range of resources [33] | None | 15 |
Access to Biological Collections Data Schema 2.06 | 2006 | ABCD Task Group | support the exchange and integration of detailed primary collection and observation data [31] | • Dublin Core; • FGDC Content standards for digital spatial metadata; • FGDC-STD-005 Vegetation Classification and Information Standards; • FGDC-STD-001-1998; • FGDC Content Standard for Digital Geospatial Metadata: Biological Data Profile; • SPECTRUM | 1004 |
Ecological Metadata Language 2.1.1 | 2000 | National Center for Ecological Analysis and Synthesis | provide the ecological community with an extensible, flexible, metadata standard for use in data analysis and archiving that will allow automated machine processing, searching and retrieval [34] | • Dublin Core; • CSDGM; • CSDGM Biological Profile; • ISO 19115; • ISO 8601 Date and Time Standard | 562 |
Darwin Core | 1998 | Darwin Core Task Group | • provide a stable standard reference for sharing information on biological diversity; • provide stable semantic definitions with the goal of being maximally reusable in a variety of contexts [32] | Dublin Core | 45 |
Content Standard for Digital GeoSpatial Metadata: Remote Sensing Extension | 1998 | Federal Geographic Data Committee | provide a common terminology and set of definitions for documenting geospatial data obtained by remote sensing [29] | ISO 19115 | 360 |
Content Standard for Digital GeoSpatial Metadata: Shoreline Metadata Profile | 2001 | • Federal Geographic Data Committee; • Marine and Coastal Spatial Data Subcommittee | capture the critical processes and conditions the revolve around creating and collecting shoreline data, and to help define and qualify shoreline data for use [50] | FGDC-STD-001-1998 | 33 |
ANZLIC Metadata Profile 1.1 (Geographic dataset core) | 2007 | ANZLIC | create metadata records that provide information about the identification, spatial and temporal extent, quality application schema, spatial reference system, and distribution of digital geographic data [30] | • AS/NZS ISO 19115:2005; • ISO 19115:2003/Cor.1:2006; • ISO/TS 19139:2007 | 45 |
Accept | Reject |
---|---|
Explicit reference Example: The “Wind speed” metadata element in the FDGC Marine Extension standard was successfully mapped to “Wind Speed” in the coral target metadataset. Implicit reference Example: Instrument category metadata elements (“Make”, “Model”, “Serial Number”) could be recorded in the EML 2.1.1 “Instrumentation” metadata field in both the “Protocol” and “Methods” module. | Undefined or ambiguous metadata element Example: Where the parameter description was absent or too vague to determine its purpose, it was not counted as a suitable metadata element. For example, in ABCD standard user guidelines, the “Method” field within the “/DataSets/DataSet/Units/Unit/Sequences/Sequence/” class has no definition. Incorrect parent or container class Example: The “Viewing Geometry” category in the proposed core metadataset is comprised of critical elements relating to sensor viewing angles. A mapping was not successful if counterparts in an existing standard were in the wrong parent or container classes. Sensor azimuth and zenith angle parameters exist within the FGDC Remote Sensing Extension but are defined within the “Satellite” container class and therefore could not be mapped to sensor geometry metadata in the core dataset. Manually-defined classes or fields Example: Instances of the EML 2.1.1 “attribute” parameter that could defined by the user to record any campaign metadata. Generic metadata element Example: Any metadata elements within an existing standard that referred to data that could be extracted from a generic data table, such as those referenced by the EML 2.1.1 “dataset” module; the “measurementValue”, “Attribute”, “dynamicProperties” metadata fields in Darwin Core 1.1 that could be applied to any numeric or text metadata parameter. |
2.3. Flexibility Analysis
3. Results and Discussion
3.1. Benthic Reflectance Metadata
Metadata Field | Reason for Inclusion/Comments | Example | Data Type |
---|---|---|---|
Artificial canopy effect | Shadowing with diver’s body to eliminate influences (e.g., Wave lensing) If measurement is from a boat, then boat may shade | shadowing of target from diver | Text |
Depth | From lowest astronomical tide | 18 m | Numeric |
Depth of sensor from surface | Critical for water column profiles | 7 m | Numeric |
Distance from bottom/substrate | Critical if 3D structure present (seagrass, branching coral) | 20 m | Numeric |
Distance of operator from sensor | Only applies if there is presence of shading from operator’s body | 0.25 m | Numeric |
Homogeneity/heterogeneity (photo) | Attached photo can be used as a reference | photo # or filename | Text |
Light spectrum | Range of irradiance spectrum | VIS/NIR | Text |
Presence of epiphytes | Useful for endmember analysis of spectral measurements | Numerous epiphytes | Text |
Presence of epiphytes (photo) | Attached photo can be used as a reference | photo # or filename | Text |
Reference to photo of local relevant environment + target | Provides additional visual data where recording additional metadata of target and environment is not possible or feasible | photo # or filename | Text |
Species or name | Coral species | Diploria strigosa | Text |
Substratum height | Input parameter for determining upwelling radiance/background reflectance affecting spectral measurements | 4 m | Numeric |
Target ID | Code identifier/tag for sample | Name code | Text |
Tide conditions H or L | Input for determining true depth relative to datum and wave lensing effects | 6:36 P.M. | Time |
Type | Qualitative descriptor of target type | Coral algae etc. | Text |
Wave lensing | Can’t be measured in situ; this can be obtained from wave height data | yes/no | Boolean |
Wind direction | Critical in severe conditions | Ssw | Text |
Wind speed | Critical in severe conditions | 5 kn | Numeric |
3.2. Metadata Schema Mappings to the Core Metadataset
3.3. Metadata Schema Mapping Analysis
Metadata Field | Reason for Inclusion/Comments | Example | Data Type |
---|---|---|---|
Benthic microalgae (absence/presence) | Useful for endmember analysis of spectral measurements | Chla sampling | text |
Bulb intensity | Input parameter for downwelling radiance calculation | 100 W | numeric |
CDOM concentration | Coloured dissolved organic matter; critical for water column profiles | A 440 nm | numeric |
CDOM spectral slope | Coloured dissolved organic matter; critical for water column profiles | -S value | numeric |
Density of growth | Quantitative measure of density of target | 2.94 g·cm−3 | text |
Detritus concentration | Critical for water column profiles | 1200 μg C·L−1 | numeric |
GPS coordinates | Permits referencing to aerial/satellite/other campaigns; Difficult to do in situ; done on the dive site; Coordinates, datum + projection can be determined from external sources like Google Earth | x,y,z | numeric |
Height of sensor from surface | Critical for water column profiles | 1.75 m | numeric |
Homogeneity/heterogeneity | Qualitative description of degree of homogeneity of target being sampled | homogeneous | text |
Location description (in situ/on boat/other) | Critical to quantifying environmental factors to spectral measurement | Lab/boat/in situ | text |
Natural canopy shading | Only in seagrass, branching corals | seagrass shadowing | text |
Phytoplankton species/classes | Critical for water column profiles | Gymnodinium spp. | text |
Wave height and period (for reflectance measures) | Input for determining true depth relative to datum and wave lensing effects | 0.25 m | numeric |
Size (diameter) | Size of target | 30 cm | numeric |
Slope | Input parameter for determining upwelling radiance/background reflectance affecting spectral measurements | 5% | numeric |
Strike | Input parameter for determining upwelling radiance/background reflectance affecting spectral measurements | 25° | numeric |
3.3.1. Dublin Core 1.1
3.3.2. Access to Biological Collections Data Schema 2.06
3.3.3. Ecological Metadata Language 2.1.1
3.3.4. Darwin Core
3.3.5. FGDC Content Standard for Digital Geospatial Metadata (Remote Sensing Extension)
3.3.6. FGDC Content Standard for Digital Geospatial Metadata: Shoreline Metadata Profile
3.3.7. ANZLIC Metadata Profile 1.1 (Geographic Dataset Core)
3.4. Metadata Standard Flexibility Analysis
4. A Way Forward: Towards a Robust Metadata Standard
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Appendix 1. Metadata Schema Mappings to the Core Metadataset
Core Metadataset | ABCD v2 | ||
---|---|---|---|
Instrument | Instrument operator | /DataSets/DataSet/Units/Unit/Gathering/Agents/GatheringAgent/Person/FullName | |
Viewing Geometry | Distance from target | /DataSets/DataSet/Units/Unit/Gathering/Method | |
Distance from ground/background | |||
Area of target in field of view | |||
Illumination zenith angle | |||
Illumination azimuth angle | |||
Sensor zenith angle | |||
Sensor azimuth angle | |||
Project Information | Relevant publication | /DataSets/DataSet/Metadata/IPRStatements/Citations/Citation/Text | |
Relevant websites | /DataSets/DataSet/Units/Unit/Gathering/Project/Contact/URIs/URL | ||
Project participants | /DataSets/DataSet/Units/Unit/Gathering/Project/Contact/Organisation/Name/Representation/Text /DataSets/DataSet/Units/Unit/Gathering/Agents/GatheringAgent/Person/FullName | ||
Acknowledgement text (sponsorship/affiliates/other) | /DataSets/DataSet/Metadata/IPRStatements/Acknowledgements/Acknowledgement/Text | ||
Name of experiment/Project | /DataSets/DataSet/Units/Unit/Gathering/Project/ProjectTitle | ||
Date of experiment | /DataSets/DataSet/Units/Unit/Gathering/DateTime/DateText
/DataSets/DataSet/Units/Unit/Gathering/DateTime/DayNumberBegin /DataSets/DataSet/Units/Unit/Gathering/DateTime/DayNumberEnd | ||
Location Information | Location Description | /DataSets/DataSet/Units/Unit/Gathering/NamedAreas/NamedArea /DataSets/DataSet/Units/Unit/Gathering/AreaDetail /DataSets/DataSet/Units/Unit/Gathering/LocalityText | |
Referencing Datum | /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/ CoordinatesLatLong/SpatialDatum | ||
Longitude | /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/ CoordinatesLatLong/LongitudeDecimal | ||
Latitude | /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/ CoordinatesLatLong/LatitudeDecimal | ||
Altitude | /DataSets/DataSet/Units/Unit/Gathering/Altitude/MeasurementOrFactAtomised/Parameter /DataSets/DataSet/Units/Unit/Gathering/Altitude/MeasurementOrFactAtomised/LowerValue /DataSets/DataSet/Units/Unit/Gathering/Altitude/MeasurementOrFactAtomised/UpperValue /DataSets/DataSet/Units/Unit/Gathering/Altitude/MeasurementOrFactAtomised/UnitOfMeasurement | ||
Coordinate source | /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/CoordinateMethod | ||
General Target and Sampling Information | Target ID | /DataSets/DataSet/Units/Unit/ObservationUnit/ObservationUnitIdentifiers/ObservationUnitIdentifier | |
Target treatment | /DataSets/DataSet/Units/Unit/SpecimenUnit/Preparations/Preparation/PreparationType /DataSets/DataSet/Units/Unit/SpecimenUnit/Preparations/Preparation/PreparationProcess /DataSets/DataSet/Units/Unit/SpecimenUnit/Preparations/Preparation/PreparationMaterials | ||
Field sampling design (transect, plot, other) | /DataSets/DataSet/Units/Unit/Gathering/Method | ||
Plot type | |||
Plot dimensions/footprint | |||
Transect type | |||
Transect interval | |||
Time of sampling by instrument | /DataSets/DataSet/Units/Unit/Gathering/DateTime/ISODateTimeBegin /DataSets/DataSet/Units/Unit/Gathering/DateTime/TimeOfDayBegin /DataSets/DataSet/Units/Unit/Gathering/DateTime/ISODateTimeEnd /DataSets/DataSet/Units/Unit/Gathering/DateTime/TimeOfDayEnd | ||
Time of collection from field | /DataSets/DataSet/Units/Unit/Gathering/SiteMeasurementsOrFacts/SiteMeasurementOrFact/MeasurementOrFactAtomised/MeasurementDateTime /DataSets/DataSet/Units/Unit/Gathering/DateTime/ISODateTimeBegin /DataSets/DataSet/Units/Unit/Gathering/DateTime/ISODateTimeEnd /DataSets/DataSet/Units/Unit/Gathering/DateTime/TimeOfDayBegin /DataSets/DataSet/Units/Unit/Gathering/DateTime/TimeOfDayEnd | ||
Target photograph | /DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/ID /DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/FileURI /DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/Format /DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/Comment |
Core Metadataset | ANZLIC Metadata Profile 1.1 | |
---|---|---|
General Project Information | Relevant websites | On-line resource |
Project participants | Dataset responsible party, Metadata contact individual name, Metadata contact organisation, Metadata contact position, Metadata contact role | |
Name of experiment/Project | Dataset title | |
Date of experiment | Dataset reference date | |
Location Information | Location Description | Geographic location of the resource (by description) |
Longitude | West longitude, East longitude, Geographic location of the dataset (by four coordinates or by description) | |
Latitude | South latitude, North latitude, Geographic location of the dataset (by four coordinates or by description) | |
Altitude | Vertical extent information for the dataset |
Core Metadataset | Darwin Core | |
---|---|---|
General Project Information | Relevant publication | bibliographicCitation, references, associatedReferences |
Project participants | institutionID, institutionCode, ownerInstitutionCode, recordedBy | |
Name of experiment/Project | datasetName | |
Date of experiment | eventDate, startDayOfYear, endDayOfYear, year, month, day, verbatimEventDate | |
Location Information | Location Description | habitat, locationRemarks, locality |
Referencing Datum | verbatimSRS, geodeticDatum | |
Longitude | verbatimLongitude, decimalLongitude | |
Latitude | verbatimLatitude, decimalLatitude, | |
Altitude | verbatimElevation, minimumElevationInMeters, maximumElevationInMeters | |
General Target and Sampling Information | Description of target/sample | occurrenceRemarks |
Target ID | individualID, materialSampleID | |
Target treatment | Preparations | |
Time of sampling by instrument | eventTime | |
Total number of targets | individualCount | |
Time of collection from field | eventTime | |
Target photograph | associatedMedia |
Core Metadataset | Dublin Core | |
---|---|---|
General Project Information | Project participants | Contributor |
Acknowledgement text (sponsorship/affiliates/other) | Contributor | |
Name of experiment/Project | Title | |
Date of experiment | Date | |
Location Information | Location Description | Coverage |
Core Metadataset | EML 2.1.1 | |
---|---|---|
Instrument | Make and model | instrumentation (methods module) |
Spectral wavelength range | ||
Spectral bandwidth | ||
Spectral resolution | ||
Dark signal correction | ||
Optic Field-of-view—dimension X | ||
Optic field-of-view—dimension Y | ||
Integration time | ||
Instrument | Setup (single beam, dual beam) | instrumentation (methods module) |
Mode (cos-conical, bi–conical) | ||
Manufacturer | ||
Serial number | ||
Owner | ||
Instrument operator | ||
Detector types | ||
Signal to Noise | ||
Scan duration | ||
Gain settings (Automatic/Manual) | ||
Signal averaging (instrumental) | ||
Reference Standard | No reference standard used | methodStep (methods module), substep (methods module), sampling (methods module), qualityControl (methods module), description (methods module), proceduralStep (protocol module), protocol (protocol module) |
Reference (panel, cosine) | ||
Reference material | ||
Time interval for reference measurement | ||
Calibration standard | ||
Serial number | ||
Cosine receptor | ||
Calibration | Date | instrumentation (methods module) |
Darknoise | ||
Signal to noise | ||
Option | ||
StrayLight | ||
Calibration data | ||
Irradiance | ||
Radiance | ||
Linearity | ||
Traceability | ||
Standard | ||
Hyperspectral Signal Properties | Data type (Reflectance, Radiance…) | instrumentation (methods module) |
Data precision | ||
Wavelength interval | ||
X units | ||
Y units | ||
Scaling factors | ||
X factor | ||
Y factor | ||
Wavelength data | ||
Spectrum | ||
First X value | ||
Last X value | ||
First Y value | ||
Hyperspectral Signal Properties | Last Y Value | instrumentation (methods module) |
Min X value | ||
Max X value | ||
Min Y value | ||
Max Y value | ||
Number of X values | ||
Illumination Information | Source of illumination (e.g., sun, lamp) | methodStep (methods module), substep (methods module), sampling (methods module), qualityControl (methods module), protocol (methods module), description (methods module), proceduralStep (protocol module), protocol (protocol module) |
Optical measure of ambient conditions (direct, diffuse) | ||
Bulb intensity | ||
Light spectrum | ||
Single beam/multi beam | ||
Beam coverage (as a degree measure) | ||
Viewing Geometry | Distance from target | methodStep (methods module), substep (methods module), sampling (methods module), qualityControl (methods module), protocol (methods module), description (methods module), proceduralStep (protocol module), protocol (protocol module) |
Distance from ground/background | ||
Area of target in field of view | ||
Illumination zenith angle | ||
Illumination azimuth angle | ||
Sensor zenith angle | ||
Sensor azimuth angle | ||
General Project Information | Relevant publication | citation (project module), citation (methods module), literature module (76 metadata elements) |
Relevant websites | onlineUrl (party module), url (physical module) | |
Project participants | project (dataset module), originator (coverage module), repository (coverage module), personnel (project module), role (project module), individualName (party module), organizationName (party module) | |
General Project Information | Acknowledgement text (sponsorship/affiliates/other) | project (dataset module), abstract (project module), funding (project module) |
Name of experiment/Project | title (project module) | |
Date of experiment | singleDateTime (coverage module), rangeOfDates (coverage module), beginDate (coverage module), endDate (coverage module), calendarDate (coverage module) | |
Location Information | Location Description | geographicDescription (coverage module) |
Referencing Datum | datum (SpatialReferenc module) | |
Longitude | Longitude (spatialReference module), name (angleUnits) (spatialReference module), value (spatialReference module), name (lengthUnits) (spatialReference module) | |
Latitude | Name (angleUnits) (spatialReference module), value (spatialReference module), name (lengthUnits) (spatialReference module) | |
Location Information | Altitude | altitudeMinimum required (coverage module) altitudeMaximum required (coverage module) altitudeUnits (coverage module) |
Map projection | projection (spatialReference module) | |
Base unit | unit (spatialReference module) | |
General Target Sampling Information | Target type (vegetation, mineral, aquatic, etc.) | Specimen (coverage module), commonName (coverage module) |
Target ID | referencedEntityId (methods module) | |
Target treatment | sampling description (methods module) | |
Field sampling design (transect, plot, other) | sampling description (methods module), spatialSamplingUnits (methods module) | |
Plot type | spatialSamplingUnits (methods module) | |
Plot dimensions/footprint | ||
Plot number | ||
Transect type | ||
Transect interval | ||
Time of sampling by instrument | time (coverage module) | |
Time of collection from field | time (coverage module) |
Core Metadataset | FGDC Remote Sensing Extension | |
---|---|---|
General Project Information | Relevant publication | Science_Paper (Description_Documentation module) |
Date of experiment | Time_Period_of_Content (Identification_Information module) |
Core Metadataset | FGDC Marine Shoreline Extension | |
---|---|---|
Atmospheric Conditions | Wind speed | Wind Speed |
Location Information | Location Description | Description of Geographic Extent |
Appendix 2. Metadata Schema Mappings to the Benthic Reflectance Metadataset *
Coral Reflectance Metadataset | ABCD v2 |
---|---|
Location description (in situ/on boat/in lab) | /DataSets/DataSet/Units/Unit/Gathering/AreaDetail |
GPS coordinates | /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/CoordinatesLatLong/LongitudeDecimal /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/CoordinatesLatLong/LatitudeDecimal /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/CoordinatesLatLong/SpatialDatum |
Reference to photo of local relevant environment + target | /DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/ID /DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/FileURI /DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/Format /DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/Comment /DataSets/DataSet/Units/Unit/Gathering/SiteImages/SiteImage/ID /DataSets/DataSet/Units/Unit/Gathering/SiteImages/SiteImage/FileURI /DataSets/DataSet/Units/Unit/Gathering/SiteImages/SiteImage/Format /DataSets/DataSet/Units/Unit/Gathering/SiteImages/SiteImage/Comment |
Depth | /DataSets/DataSet/Units/Unit/Gathering/Depth[@datum] /DataSets/DataSet/Units/Unit/Gathering/Depth/MeasurementOrFactAtomised/Parameter /DataSets/DataSet/Units/Unit/Gathering/Depth/MeasurementOrFactAtomised/LowerValue /DataSets/DataSet/Units/Unit/Gathering/Depth/MeasurementOrFactAtomised/UpperValue /DataSets/DataSet/Units/Unit/Gathering/Depth/MeasurementOrFactAtomised/UnitOfMeasurement |
Height of sensor from surface (if characterizing water column properties) | /DataSets/DataSet/Units/Unit/Gathering/Method |
Phytoplankton species/classes | /DataSets/DataSet/Units/Unit/SpecimenUnit/NomenclaturalTypeDesignations/NomenclaturalTypeDesignation/TypifiedName/FullScientificNameString |
Distance of operator from sensor | /DataSets/DataSet/Units/Unit/Gathering/Method |
Target ID | DataSets/DataSet/Units/Unit/ObservationUnit/ObservationUnitIdentifiers/ObservationUnitIdentifier |
Species or name | /DataSets/DataSet/Units/Unit/SpecimenUnit/NomenclaturalTypeDesignations/NomenclaturalTypeDesignation/TypifiedName/FullScientificNameString |
Coral Reflectance Metadataset | ANZLIC Metadata Profile 1.1 (Geographic Dataset Core) |
---|---|
GPS coordinates | West longitude, East longitude, South latitude, North latitude |
Coral Reflectance Metadataset | Darwin Core |
---|---|
Location description (in situ/on boat/in lab) | locationRemarks |
GPS coordinates | verbatimLatitude, verbatimLongitude, decimalLatitude, decimalLongitude |
Reference to photo of local relevant environment + target | associatedMedia |
Depth | verbatimDepth, minimumDepthInMeters, maximumDepthInMeters, minimumDistanceAboveSurfaceInMeters, maximumDistanceAboveSurfaceInMeters |
Phytoplankton species/classes | specificEpithet |
Target ID | individualID, materialSampleID |
Species or name | specificEpithet |
Coral Reflectance Metadataset | EML 2.1.1 |
---|---|
GPS coordinates | longitude (spatialReference module), name (angleUnits) (spatialReference module), value (spatialReference module), name (lengthUnits) (spatialReference module) |
Depth | depthDatumName (spatialReference module) depthResolution (spatialReference module) depthDistanceUnits (spatialReference module) depthEncodingMethod (spatialReference module) |
Height of sensor from surface (if characterizing water column properties) | methodStep, substep, sampling, qualityControl, description (methods module), proceduralStep (protocol module), protocol (protocol module) |
Depth of sensor from surface (if profiling water column) | methodStep, substep, sampling, qualityControl, description (methods module), proceduralStep (protocol module), protocol (protocol module) |
Distance from bottom/substrate | methodStep, substep, sampling, qualityControl, description (methods module), proceduralStep (protocol module), protocol (protocol module) |
Distance of operator from sensor | methodStep, substep, sampling, qualityControl, description (methods module), proceduralStep (protocol module), protocol (protocol module) |
Target ID | referencedEntityId(methods module) |
Coral Reflectance Metadataset | FGDC Marine Shoreline Extension |
---|---|
Wave height and period (for reflectance measures) | Wave Height |
Tide conditions H or L | Time of Low Tide, Time of High Tide, Tidal Datum, Range of Tide |
Wind speed | Wind Speed |
Wind direction | Wind Direction |
References
- Pfitzner, K.; Bollhöfer, A.; Carr, G. A standard design for collecting vegetation reference spectra: Implementation and implications for data sharing. Spat. Sci. 2006, 52, 79–92. [Google Scholar] [CrossRef]
- Rasaiah, B.; Malthus, T.; Jones, S.D.; Bellman, C. Building better hyperspectral datasets: The fundamental role of metadata protocols in hyperspectral field campaigns. In Proceedings of the 2001 Surveying & Spatial Sciences Conference, Wellington, New Zealand, 21–25 November 2001.
- Rasaiah, B.; Malthus, T.; Jones, S.D.; Bellman, C. Designing a robust hyperspectral dataset: The fundamental role of metadata protocols in hyperspectral field campaigns. In Proceedings of the 2011 GSR 1 Research Symposium, Melbourne, Australia, 28–30 November 2011.
- Rasaiah, B.; Malthus, T.; Jones, S.D.; Bellman, C. Critical metadata protocols in hyperspectral field campaigns for building robust hyperspectral datasets. In Proceedings of the XXII ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, Melbourne, Australia, 26 August–1 September 2012.
- Rasaiah, B.A.; Jones, S.D.; Bellman, C.; Malthus, T.J. Critical Metadata for Spectroscopy Field Campaign. Remote Sens. 2014, 6, 3662–3680. [Google Scholar] [CrossRef]
- Rasaiah, B.A.; Jones, S.D.; Bellman, C.; Malthus, T.J.; Hueni, A. Assessing Field Spectroscopy Metadata Quality. Remote Sens. 2015, 7, 4499–4526. [Google Scholar] [CrossRef]
- Higgins, S. What are Metadata Standards. 2007. Available online: http://www.dcc.ac.uk/resources/briefing-papers/standards-watch-papers/what-are-metadata-standards (accessed on 7 January 2014).
- Arms, W.Y. Digital Libraries; MIT Press: Cambridge, UK, 2000. [Google Scholar]
- Borgamon, C.L. From Gutenberg to the Global Infrastructure: Access to Information in the Networked World; MIT Press: Cambridge, UK, 2000. [Google Scholar]
- Neiswender, C.; Montgomery, E. Metadata Interoperability—What Is It, and Why Is It Important? 2009. Available online: http://marinemetadata.org/guides/mdataintro/mdatainteroperability (accessed on 27 June 2015).
- Haslhofer, B.; Klas, W. A survey of techniques for achieving metadata interoperability. ACM Comput. Surv. 2010, 42, 1–42. [Google Scholar] [CrossRef]
- Jung, A.; Götze, C.; Glässer, C. Overview of Experimental Setups in Spectroscopic Laboratory Measurements—The SpecTour Project. Photogramm. Fernerkund. Geoinform. 2012, 4, 433–442. [Google Scholar] [CrossRef]
- Mac Arthur, A.; Alonso, L.; Malthus, T.; Moreno, J. Spectroscopy field strategies and their effect on measurements of heterogeneous and homogeneous earth surfaces. In Proceedings of the 2013 Living Planet Symposium, Edinburgh, UK, 9–13 September 2013.
- Ben Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma 2015, 245, 112–124. [Google Scholar] [CrossRef]
- National Information Standards Organization (NISO). Where to Start? Advice on Creating a Metadata Schema. Available online: http://www.niso.org/apps/group_public/download.php/5271/N800R1_Where_to_start_advice_on_creating_a_metadata_schema.pdf (accessed on 27 August 2013).
- Bhatti, A.M.; Rudnquist, D.; Schalles, J.; Ramirez, L.; Nasu, S. A comparison between above-water surface and subsurface spectral reflectances collected over inland waters. Geocarto Int. 2009, 24, 133–114. [Google Scholar] [CrossRef]
- Dekker, A.; Brando, V.; Anstee, J.; Botha, H.; Park, Y.J.; Daniel, P.; Malthus, T.; Phinn, S.; Roelfsema, C.; Leiper, I.; et al. A comparison of spectral measurement methods for substratum and benthic features in seagrass and coral reef environments. In Proceedings of the 2010 Art, Science and Applications of Reflectance Spectroscopy Symposium, Boulder, CO, USA, 23–25 February 2010.
- Fogwill, F. Field Guide for the GER3700, Version 3.0. 2005. Available online: http://fsf.nerc.ac.uk/resources/guides/pdf_guides/3700_guide_v3_rocky.pdf (accessed on 3 January 2014).
- Roelfsema, C.; Marshall, J.; Hochberg, E.; Phinn, S.; Goldizen, A.; Joyce, K. Underwater Spectrometer System 2006 (UWSS04). Available online: http://ww2.gpem.uq.edu.au/CRSSIS/publications/UW%20Spec%20Manual%2029August06.pdf (accessed on 6 January 2014).
- Mac Arthur, A. Field Guide for the GER1500—Single Beam Mode Radiance/Irradiance Measurements, Version 1.0. 2006. Available online: http://fsf.nerc.ac.uk/resources/guides/pdf_guides/1500_sb-Rad-Irrad-guide_v1_toughbook.pdf (accessed on 3 January 2014).
- Mac Arthur, A. Field Guide for the ASD Field Spec Pro—White Reference Mode. 2007. Available online: http://fsf.nerc.ac.uk/resources/guides/pdf_guides/asd_guide_v2_wr.pdf (accessed on 3 January 2014).
- Mac Arthur, A. Field Guide for the GER1500 with Underwater Housing, Version 2. 2007. Available online: http://fsf.nerc.ac.uk/resources/guides/pdf_guides/1500_uw-guide_v2_toughbook.pdf (accessed on 3 January 2014).
- Phinn, S.; Scarth, P.; Gill, T.; Roelfsema, C.; Stanford, M. Field Spectrometer & Radiometer Guide, Version 7. 2007. Available online: http://ww2.gpem.uq.edu.au/CRSSIS/publications/CRSSIS_Field_Spectrometry_Guide_010508.pdf (accessed on 3 January 2014).
- Pfitzner, K.; Bartolo, R.; Carr, G.; Esparon, A.; Bollhoefer, A. (2011). Standards for Reflectance Spectral Measurement of Temporal Vegetation Plots. Available online: http://www.environment.gov.au/system/files/resources/bf8002d0-2582-48a1-820f-8e79d056faed/files/ssr195.pdf (accessed on 3 January 2014).
- Carnegie Institute for Science. Spectranomics Protocol: Leaf Spectroscopy (350–2500 nm). 2010. Available online: http://spectranomics.stanford.edu/technical_information.attachment/103 (accessed on 6 January 2014).
- Analytical Spectral Devices (ASD). ASD Support Central. 2012. Available online: http://support.asdi.com/Document/Documents.aspx (accessed on 5 January 2013).
- Analytical Spectral Devices (ASD). Field Spec Hi-Res Spectroradiometer. 2013. Available online: http://www.asdi.com/products/fieldspec-spectroradiometers/fieldspec-4-hi-res (accessed on 5 January 2014).
- NERC Field Spectroscopy Facility. Introduction to Field Spectroscopy. 2014. Available online: http://fsf.nerc.ac.uk/resources/general/IntroToFS_CourseFlyer2014.pdf (accessed on 12 June 2014).
- Federal Geographic Data Committee (FGDC). Content Standard for Digital Geospatial Metadata: Extensions for Remote Sensing Metadata. 2002. Available online: http://www.fgdc.gov/standards/projects/FGDC-standards-projects/csdgm_rs_ex/MetadataRemoteSensingExtens.pdf (accessed on 24 August 2013). [Google Scholar]
- The Spatial Information Council (ANZLIC). ANZLIC Metadata Profile Version 1.1. 2007. Available online: http://spatial.gov.au/sites/default/files/legacy/osdm.gov.au/Metadata/ANZLIC%2BMetadata%2BProfile/default.html (accessed on 27 August 2013). [Google Scholar]
- ABCD Task Group. An Introduction to the ABCD Schema v2.0. 2013. Available online: http://wiki.tdwg.org/twiki/bin/view/ABCD/AbcdIntroduction (accessed on 3 September 2013).
- Darwin Core Task Group. Darwin Core. 2013. Available online: http://rs.tdwg.org/dwc/ (accessed on 1 September 2013).
- Dublin Core® Metadata Initiative (DCMI). DCMI Home: Dublin Core Metadata Initiative. Available online: http://dublincore.org/ (accessed on 1 September 2013).
- The KNowledge Network for BioComplexity (KNB). Available online: https://knb.ecoinformatics.org/index.jsp (accessed on 8 January 2014).
- Jiménez, M.; González, M.; Amaro, A.; Fernández-Renau, A. Field Spectroscopy Metadata System Based on ISO and OGC Standards. ISPRS Int. J. Geoinform. 2014, 3, 1003–1022. [Google Scholar] [CrossRef]
- Greenberg, J. NISO/DCMI Webinar [Presentation slides]. 2012. Available online: http://www.slideshare.net/BaltimoreNISO/metadata-for-managing-scientific-research-data (accessed on 7 January 2014).
- National Information Standards Organization (NISO). Understanding Metadata 2004. Available online: http://www.niso.org/publications/press/UnderstandingMetadata.pdf (accessed on 7 January 2014).
- Duval, E.; Hodgins, W.; Sutton, S.; Weibel, S.L. Metadata principles and practicalities. D-Lib Mag. 2002, 8. [Google Scholar] [CrossRef]
- Infrastructure for Spatial Information in the European Community (INSPIRE). INSPIRE Metadata Implementing Rules: Technical Guidelines Based on ENISO 19915 and ENISO 19119. 2009. Available online: http://inspire.jrc.ec.europa.eu/documents/Metadata/INSPIRE_MD_IR_and_ISO_v1_2_20100616.pdf (accessed on 17 May 2010).
- Australian National Data Service (ANDS). Metadata. 2011. Available online: http://ands.org.au/guides/metadata-awareness.html (accessed on 7 January 2014).
- International Organization for Standardization (ISO). ISO/WD 19159 Geographic Information—Calibration and Validation of Remote Sensing Imagery Sensors and Data; ISO/TC 211: Geneva, Switzerland, 2011. [Google Scholar]
- Malthus, T. Agenda for the “Bio-optical data: Best practice and legacy datasets” workshop. Brisbane, Australia, 12–18 June 2012.
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Milton, E.J.; Schaepman, M.E.; Anderson, K.; Kneubühler, M.; Fox, N. Progress in Field Spectroscopy. Remote Sens. Environ. 2009, 113, 92–109. [Google Scholar] [CrossRef]
- Duggin, M.J. Factors limiting the discrimination and quantification of terrestrial features using remotely sensed radiance. Int. J. Remote Sens. 1985, 6, 3–27. [Google Scholar] [CrossRef]
- McCoy, R.M. Field Methods in Remote Sensing; The Guilford Press: New York, NY, USA, 2005. [Google Scholar]
- Syn, S.Y.; Spring, M.B. Can a system make novice users experts? Analysis of metadata created by novices and experts with varying levels of assistance. Int. J. Metadata Semant. Ontol. 2008, 3, 122–131. [Google Scholar] [CrossRef]
- Malta, M.C.; Baptista, A.A. State of the art on methodologies for the development of a metadata application profile. Int. J. Metadata Semant. Ontol. 2012, 8, 332–341. [Google Scholar] [CrossRef]
- Davies, J.; Harris, S.; Crichton, C.; Shukla, A.; Gibbons, J. Metadata standards for semantic interoperability in electronic government. In Proceedings of the 2nd International Conference on Theory and Practice of Electronic Governance, Cairo, Egypt, 1–4 December 2008.
- Federal Geographic Data Committee (FGDC). Shoreline Metadata Profile of the Content Standards for Digital Geospatial Metadata. 2001. Available online: http://www.fgdc.gov/standards/projects/FGDC-standards-projects/metadata/shoreline-metadata/sp_endorsed.pdf (accessed on 24 August 2013). [Google Scholar]
- Guenther, R. Metadata Standards at the Library of Congress. 2007. Available online: http://www.oscars.org/science-technology/council/projects/metadata-symposium/media/dmpms_07_guenther.pdf (accessed on 4 September 2014).
- Chao, T.C. Exploring the rhythms of scientific data use. In Proceedings of the 2012 iConference, Toronto, ON, Canada, 7–10 February 2012.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasaiah, B.A.; Bellman, C.; Jones, S.D.; Malthus, T.J.; Roelfsema, C. Towards an Interoperable Field Spectroscopy Metadata Standard with Extended Support for Marine Specific Applications. Remote Sens. 2015, 7, 15668-15701. https://doi.org/10.3390/rs71115668
Rasaiah BA, Bellman C, Jones SD, Malthus TJ, Roelfsema C. Towards an Interoperable Field Spectroscopy Metadata Standard with Extended Support for Marine Specific Applications. Remote Sensing. 2015; 7(11):15668-15701. https://doi.org/10.3390/rs71115668
Chicago/Turabian StyleRasaiah, Barbara A., Chris Bellman, Simon. D. Jones, Tim J. Malthus, and Chris Roelfsema. 2015. "Towards an Interoperable Field Spectroscopy Metadata Standard with Extended Support for Marine Specific Applications" Remote Sensing 7, no. 11: 15668-15701. https://doi.org/10.3390/rs71115668
APA StyleRasaiah, B. A., Bellman, C., Jones, S. D., Malthus, T. J., & Roelfsema, C. (2015). Towards an Interoperable Field Spectroscopy Metadata Standard with Extended Support for Marine Specific Applications. Remote Sensing, 7(11), 15668-15701. https://doi.org/10.3390/rs71115668