The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory of SEBAL
2.2. SEBAL Implementation
2.3. Study Area and Flux Tower ETs for SEBAL Validation
2.4. SEBAL Input Data
2.5. Criteria for the SEBAL Results Validation
3. Results
3.1. Correction of the Terra MODIS Data
3.2. Validation of the Energy Balance Component of SEBAL
3.3. Valibration of SEBAL
3.4. Application of SEBAL
3.5. Comparison of the Monthly Data at the Three Flux Tower Locations
4. Conclusions
- (1)
- To fulfill gap-filling of MODIS LST, 76 ground measured LSTs were used for bias correction, and the R2 increased by 0.20 after correction. After that, both data were merged and interpolated using IDW method. If MODIS LSTs have few valid data on a particular day, the merged data were replaced using ground data.
- (2)
- In the time series of the energy balance equation component, the net radiation was overestimated by approximately 100 W/m2 compared to the results of preceding papers in the summer season. The other components, soil heat flux and sensible heat flux, were within a valid range, although the sensible heat flux of DMK is in a different range because of the effect of elevation.
- (3)
- When we applied solar radiation () instead of , the R2 of SEBAL model was improved by almost double in forest area, and also increased in rice paddy area from 0.52 to 0.77. This approach may be useful with almost cloudy weather condition except short spring and autumn periods of clear sky in a year.
- (4)
- The model results varied depending on land use type. In CFK, a rice paddy area, the total flux tower ET was 496.1 mm in 2012 and 467.8 mm in 2013, whereas, in SMK and DMK, which are both forest areas, the flux tower ET was approximately half of the amount at 311.7 and 243.5 mm, respectively, in 2012 and 293.8 and 255.8 mm, respectively, in 2013. SEBAL ET exhibited similar patterns with the flux tower ET: the ET of CFK is approximately twice as high as those of SMK and DMK.
- (5)
- The SEBAL results showed average R2 values of 0.53 (SMK), 0.78 (CFK), and 0.59 (DMK), and IOAs of 0.81 (SMK), 0.92 (CFK), and 0.86 (DMK), although we used some monthly data in the model application. The LST was the key factor besides satellite data to estimate daily temporal variability. On some days, the model calculated zero ETs. There are still many things to be improved. For example, the coefficient with 110 in Equation (8) should be calibrated with more data of measured .
- (6)
- During winter (particularly December), the NDVI of DMK tended to be lower than that of CFK. This result is apparently influenced by the elevation above sea level. DMK is located at an elevation of 689 m, and the temperature is colder than that at CFK, which is located at an elevation of 141 m. It is assumed that weather conditions caused by low temperature have a negative effect on vegetation vitality, such as the effects of snow and frost, leading to low NDVI values.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- MOLIT (Ministry of Land, Infrastructure and Transport). Comprehensive Water Resources Plan—Water Vision 2020; Ministry of Land, Infrastructure and Transport: Sejong-si, Korea, 2011. (In Korean)
- Bae, D.H.; Jung, I.W.; Chang, H. Long-term trend of precipitation and runoff in Korean river basins. Hydrol. Process. 2008, 22, 2644–2656. [Google Scholar] [CrossRef]
- Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Global Ecol. Biogeogr. 2011, 20, 1–18. [Google Scholar] [CrossRef]
- Liang, L.; Li, L.; Liu, Q. Temporal variation of reference evapotranspiration during 1961–2005 in the Taoer River basin of Northeast China. Agric. For. Meteorol. 2010, 150, 298–306. [Google Scholar]
- Xu, L.; Shi, Z.; Wang, Y.; Zhang, S.; Chu, X.; Yu, P.; Xiong, W.; Zuo, H.; Wang, Y. Spatiotemporal variation and driving forces of reference evapotranspiration in Jing River basin, Northwest China. Hydrol. Process. 2015, 29, 4846–4862. [Google Scholar]
- Bastiaanssen, W.; Thoreson, B.; Clark, B.; Davids, G. Discussion of “application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska” by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and Derrel L. Martin. J. Irrig. Drain. Eng. 2010, 136, 282–283. [Google Scholar]
- Tang, R.; Li, Z.-L.; Chen, K.-S.; Jia, Y.; Li, C.; Sun, X. Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. Agric. For. Meteorol. 2013, 174, 28–42. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Roerink, G.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Su, Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 2003, 94, 321–340. [Google Scholar] [CrossRef]
- Nishida, K.; Nemani, R.R.; Running, S.W.; Glassy, J.M. An operational remote sensing algorithm of land surface evaporation. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Ahmad, M.D.; Biggs, T.; Turral, H.; Scott, C. Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India. Water Sci. Technol. 2006, 53, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Hong, S.-h.; Hendrickx, J.M.; Borchers, B. Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30 m) to MODIS (250 m) scale. J. Hydrol. 2009, 370, 122–138. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P.; Li, Z.L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Ruhoff, A.L.; Paz, A.R.; Collischonn, W.; Aragao, L.E.; Rocha, H.R.; Malhi, Y.S. A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in Brazilian tropical savannas. Remote Sens. 2012, 4, 703–725. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.-L. Evaluation of two end-member-based models for regional land surface evapotranspiration estimation from MODIS data. Agric. For. Meteorol. 2015, 202, 69–82. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R. A Landsat-based energy balance and evapotranspiration model in western US water rights regulation and planning. Irrig. Drain. Syst. 2005, 19, 251–268. [Google Scholar] [CrossRef]
- Tasumi, M.; Trezza, R.; Allen, R.G.; Wright, J.L. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid US. Irrig. Drain. Syst. 2005, 19, 355–376. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G. Satellite-based ET mapping to assess variation in ET with timing of crop development. Agric. Water Manag. 2007, 88, 54–62. [Google Scholar] [CrossRef]
- Yoo, J.W. The estimation of evapotranspiration with SEBAL model in the Geumgang upper basin, Korea. J. Geogr. 2003, 41, 127–150. [Google Scholar]
- Ha, R.; Shin, H.J.; Lee, M.S.; Kim, S.J. Estimation of spatial evapotranspiration using satellite images and SEBAL model. J. Korean Soc. Civ. Eng. 2010, 30, 233–242. [Google Scholar]
- Im, J.S. Applicability Evaluation of SEBAL Using Multi-Temporal Satellite Images and Observed Evapotranspiration Data: Focused on Wansuk River Basin. Master’s Thesis, Seoul National University, Seoul, Korea, 2013. [Google Scholar]
- Lee, Y.G.; Kim, S.H.; Ahn, S.R.; Choi, M.H.; Lim, K.S.; Kim, S.J. Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model for Yongdam Dam watershed. J. Korean Assoc. Geogr. Inf. Stud. 2015, 18, 90–104. [Google Scholar] [CrossRef]
- Lee, Y.G.; Jung, C.G.; Ahn, S.R.; Kim, S.J. Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area. J. Korea Water Resour. Assoc. 2016, 49, 227–239. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Morse, A.; Tasumi, M.; Allen, R.G.; Kramber, W.J. Application of the SEBAL Methodology for Estimating Consumptive Use of Water and Streamflow Depletion in the Bear River Basin of Idaho through Remote Sensing; Idaho Department of Water Resources, University of Idaho: Moscow, ID, USA, 2000. [Google Scholar]
- Papadavid, G.; Hadjimitsis, D.G.; Toulios, L.; Michaelides, S. A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions. Water Resour. Manag. 2013, 27, 3493–3506. [Google Scholar] [CrossRef]
- Crago, R.D. Conservation and variability of the evaporative fraction during the daytime. J. Hydrol. 1996, 180, 173–194. [Google Scholar] [CrossRef]
- De Castro Teixeira, A.; Bastiaanssen, W.; Ahmad, M.D.; Moura, M.; Bos, M. Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil. J. Hydrol. 2008, 362, 110–127. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- De Bruin, H.; Stricker, J. Evaporation of grass under non-restricted soil moisture conditions. Hydrol. Sci. J. 2000, 45, 391–406. [Google Scholar] [CrossRef]
- Kotoda, K. Estimation of river basin evapotranspiration from consideration of topographies and land use conditions. IAHS Publ. 1989, 177, 271–281. [Google Scholar]
- Singh, R.K.; Irmak, A.; Irmak, S.; Martin, D.L. Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska. J. Irrig. Drain. Eng. 2008, 134, 273–285. [Google Scholar] [CrossRef]
- Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated calibration of the metric-landsat evapotranspiration process. J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Baik, J.; Choi, M. Evaluation of remotely sensed actual evapotranspiration products from coms and MODIS at two different flux tower sites in Korea. Int. J. Remote Sens. 2015, 36, 375–402. [Google Scholar] [CrossRef]
- Byun, K.; Liaqat, U.W.; Choi, M. Dual-model approaches for evapotranspiration analyses over homo-and heterogeneous land surface conditions. Agric. For. Meteorol. 2014, 197, 169–187. [Google Scholar] [CrossRef]
- Kim, Y.; Chae, H.; Lim, K. Evapotranspiration estimation by the eddy-covariance method in the yongdam dam experimental basin. In Proceedings of the KSCE Conference and Civil Expo, Chonnam National University, Gwangjoo, Korea, 24–26 October 2012; pp. 841–844.
- Kwon, H.-J.; Park, S.-B.; Kang, M.-S.; Yoo, J.-I.; Yuan, R.; Kim, J. Quality control and assurance of eddy covariance data at the two KoFlux sites. Korean J. Agric. For. Meteorol. 2007, 9, 260–267. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Annual Climatological Report; Korea Meteorological Administration: Seoul, Korea, 2015.
- Alcamo, J.; Döll, P.; Kaspar, F.; Siebert, S. Global Change and Global Scenarios of Water Use and Availability: An Application of Watergap 1.0; Center for Environmental Systems Research, University of Kassel: Kassel, Germany, 1997. [Google Scholar]
- Droogers, P.; Aerts, J. Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins. Phys. Chem. Earth Parts A/B/C 2005, 30, 339–346. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the SWAT model on a large Rwer basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Van Liew, M.; Arnold, J.; Garbrecht, J. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R.; Waters, R.; Bastiaanssen, W. Surface Energy Balance Algorithm for Land (SEBAL)–Advanced Training and Users Manual; Idaho Department of Water Resources, University of Idaho: Moscow, ID, USA, 2002. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 2002. [Google Scholar]
- Ahrens, C.D. Meteorology Today: An Introduction to Weather, Climate, and the Environment; Cengage Learning: Belmont, CA, USA, 2012. [Google Scholar]
- Kwon, H.H.; Lall, U.; Kim, S.J. The unusual 2013–15 drought in S. Korea in the context of a multi-century precipitation record: Inferences from a nonstationary, multivariate, Bayesian copula model. Geophys. Res. Lett. 2016, 43, 8534–8544. [Google Scholar] [CrossRef]
Site | Seolmacheon (SMK) | Cheongmicheon (CFK) | Doekyusan (DMK) |
---|---|---|---|
Latitude (N) | 37°56′20″ | 37°09′35″ | 36°51′53″ |
Longitude (E) | 126°57′17″ | 127°39′10″ | 127°43′02″ |
Elevation (m) | 293 | 141 | 689 |
Mean annual temperature (°C) | 11.5 | 11.5 | 11.5 |
Mean annual precipitation (mm) | 1332 | 1107 | 1362 |
Mean annual wind speed (m/s) | 1.89 | 1.97 | 1.77 |
Land use | Mixed forest | Rice paddy | Mixed forest |
Site a | SEBAL | Number of Data | Flux ET | SEBAL ET | R2 | NSE | IOA | RMSE (mm/day) | RMSE% (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Sum | Avg. | Sum | Avg. | ||||||||
SMK | 341 | 311.7 | 0.89 | 838.2 | 2.46 | 0.26 | −4.91 | 0.48 | 2.10 | 239.19 | |
309 | 178.9 | 0.58 | 0.53 | 0.41 | 0.82 | 0.67 | 77.66 | ||||
CFK | 349 | 496.1 | 1.41 | 786.7 | 2.25 | 0.52 | −0.34 | 0.77 | 1.46 | 103.68 | |
331 | 338.8 | 1.02 | 0.77 | 0.67 | 0.92 | 0.73 | 49.80 | ||||
DMK | 211 | 243.5 | 0.83 | 233.1 | 0.89 | 0.22 | −1.54 | 0.58 | 1.03 | 124.47 | |
262 | 177.4 | 0.55 | 0.53 | 0.41 | 0.84 | 0.57 | 72.19 |
Site a | Year | Number of Data | Flux ET | SEBAL ET | R2 | NSE | IOA | RMSE (mm/day) | RMSE% (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Sum | Avg. | Sum | Avg. | ||||||||
SMK | 2012 | 349 | 311.7 | 0.89 | 192.4 | 0.55 | 0.53 | 0.36 | 0.81 | 0.69 | 77.66 |
2013 | 348 | 293.8 | 0.80 | 174.2 | 0.50 | 0.54 | 0.33 | 0.81 | 0.60 | 74.91 | |
Avg. | - | 302.8 | 0.85 | 183.3 | 0.53 | 0.53 | 0.34 | 0.81 | 0.65 | 76.29 | |
CFK | 2012 | 349 | 496.1 | 1.41 | 388.4 | 1.11 | 0.77 | 0.69 | 0.92 | 0.70 | 49.80 |
2013 | 348 | 467.8 | 1.28 | 354.6 | 1.02 | 0.80 | 0.73 | 0.93 | 0.61 | 47.71 | |
Avg. | - | 482.0 | 1.35 | 371.5 | 1.07 | 0.78 | 0.71 | 0.92 | 0.66 | 48.75 | |
DMK | 2012 | 290 | 243.5 | 0.83 | 204.4 | 0.59 | 0.52 | 0.33 | 0.84 | 0.60 | 72.19 |
2013 | 300 | 255.8 | 0.81 | 204.3 | 0.59 | 0.65 | 0.59 | 0.88 | 0.56 | 68.71 | |
Avg. | - | 249.7 | 0.82 | 204.4 | 0.59 | 0.59 | 0.46 | 0.86 | 0.58 | 70.45 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Kim, S. The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sens. 2016, 8, 983. https://doi.org/10.3390/rs8120983
Lee Y, Kim S. The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sensing. 2016; 8(12):983. https://doi.org/10.3390/rs8120983
Chicago/Turabian StyleLee, Yonggwan, and Seongjoon Kim. 2016. "The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data" Remote Sensing 8, no. 12: 983. https://doi.org/10.3390/rs8120983
APA StyleLee, Y., & Kim, S. (2016). The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sensing, 8(12), 983. https://doi.org/10.3390/rs8120983