Monitoring of Non-Linear Ground Movement in an Open Pit Iron Mine Based on an Integration of Advanced DInSAR Techniques Using TerraSAR-X Data
Abstract
:1. Introduction
2. The Study Area
3. Satellite Dataset
4. Methodological Approach
4.1. DInSAR Time-Series (DTS) Analysis
4.2. Persistent Scatterer Interferometry (PSI) Analysis
5. Data Processing
6. Results and Discussions
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
DTS | DInSAR Time-Series |
PSI | Persistent Scatterer Interferometry |
GBR | Ground-Based Radar |
IPTA | Interferometry Point Target Analysis |
SBAS | Small Baseline Subset |
MCF | Minimum Cost Flow |
SVD | Singular Value Decomposition |
LoS | Line-of-Sight |
References
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential SAR interferometry. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, D.M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Peltzer, G.; Rosen, P.A. Surface displacement of the 17 Eureka valley, California, earthquake observed by SAR interferometry. Science 1995, 268, 1333–1336. [Google Scholar] [CrossRef] [PubMed]
- Rosen, P.; Werner, C.; Fielding, E.; Hensley, S.; Buckley, S.; Vincent, P. A seismic creep along the San Andreas fault northwest of Park field, CA measured by radar interferometry. Geophys. Res. Lett. 1998, 25, 825–828. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Tosi, L.; Bitelli, G.; Spreckels, V. Land subsidence monitoring with differential SAR interferometry. Photogramm. Eng. Remote Sens. 2001, 67, 1261–1270. [Google Scholar]
- Usai, S. A least-squares approach for long-term monitoring of deformations with differential SAR interferometry. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS’02), Toronto, ON, Canada, 24–28 June 2002; pp. 1247–1250.
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Schmidt, D.A.; Bürgmann, R. Time-dependent land uplift and subsidence in the Santa Clara valley, California from a large InSAR data set. J. Geophys. Res. 2003, 108, 2416–2429. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Crosetto, M.; Crippa, B.; Biescas, E. Early detection and in-depth analysis of deformation phenomena by radar interferometry. Eng. Geol. 2005, 79, 81–91. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2003), Toulouse, France, 21–25 July 2003; Volume 7, pp. 4362–4364.
- Hopper, A.; Bekaert, D.; Spaans, K.; Arikan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR™. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Iglesias, R.; Mallorqui, J.J.; Monells, D.; López-Martínez, C.; Fabregas, X.; Aguasca, A.; Gill, J.A.; Corominas, J. PSI deformation map retrieval by means of temporal sublook coherence on reduced sets of SAR images. Remote Sens. 2015, 7, 530–563. [Google Scholar] [CrossRef] [Green Version]
- Colesanti, C.; Mouelic, S.L.; Bennani, M.; Raucoules, D.; Carnec, C.; Ferretti, A. Detection of mining related ground instabilities using the Permanent Scatterers technique: A case study in the east of France. Int. J. Remote Sens. 2005, 26, 201–207. [Google Scholar] [CrossRef]
- Herrera, G.; Tomás, R.; Lopez-Sanchez, J.M.; Delgado, J.; Mallorqui, J.J.; Duque, S.; Mulas, J. Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Eng. Geol. 2007, 90, 148–159. [Google Scholar] [CrossRef]
- Perski, Z.; Hanssen, R.; Wojcik, A.; Wojciechowski, T. InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Eng. Geol. 2009, 106, 58–67. [Google Scholar] [CrossRef]
- Ng, A.-H.M.; Ge, L.; Yan, Y.; Li, X.; Chang, H.-C.; Zhang, K.; Rizos, C. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia. Eng. Geol. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Wegmüller, U.; Walter, D.; Spreckels, V.; Werner, C.L. Nonuniform ground motion monitoring with TerraSAR-X persistent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2010, 48, 895–904. [Google Scholar] [CrossRef]
- Herrera, G.; Tomas, R.; Vicente, F.; Lopez-Sanches, J.M.; Mallorquí, J.J.; Mulas, J. Mapping ground movements in open pit mining areas using differential SAR interferometry. Int. J. Rock Mech. Min. Sci. 2010, 47, 1114–1125. [Google Scholar] [CrossRef]
- Hartwig, M.E.; Paradella, W.R.; Mura, J.C. Detection and monitoring of surface motions in active mine in the Amazon region, using persistent scatterer interferometry with TerraSAR-X satellite Data. Remote Sens. 2013, 5, 4719–4734. [Google Scholar] [CrossRef]
- Mura, J.C.; Paradella, W.R.; Gama, F.F.; Santos, A.R. Monitoring of surface deformation in open pit mine using DInSAR time-series: A case study in the N5W Iron Mine (Carajás, Brazil) using TerraSAR-X data. Proc. SPIE 2014. [Google Scholar] [CrossRef]
- Paradella, W.R.; Ferretti, A.; Mura, J.C.; Colombo, D.; Gama, F.F.; Tamburini, A.; Santos, R.A.; Novalli, F.; Galo, M.; Camargo, P.O.; et al. Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng. Geol. 2015, 193, 61–78. [Google Scholar] [CrossRef]
- Paradella, W.R.; Silva, M.F.F.; Rosa, N.A.; Kushigbor, C.A. A geobotanical approach to the tropical rain forest environment of the Carajás Mineral Province (Amazon region, Brazil), based on digital TM-Landsat and DEM data. Int. J. Remote Sens. 1994, 15, 1633–1648. [Google Scholar] [CrossRef]
- Daynes, W. 2013-Vale Brazil—Carajás Iron Ore Mine, Business Excellence, Simply ore Simply ore-inspiring. Available online: http://www.republicofmining.com/2013/01/31/vale-brazil-carajas-iron-ore-mine-by-will-daynes-business-excellence-january-30-2013 (accessed on 02 December 2015).
- BVP. Lithostructural and Lithogeomechanical Mapping of the N5W Mine; BVP Internal Report for Vale Mining Company: Belo Horizonte, Brazil, 2011. (In Portuguese) [Google Scholar]
- Bieniawski, Z.T. Engineering Rock Mass Classifications; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Vale, Sociedade Anônima. Geotechnical Evaluation for the Cracks Area in the Raymundo Mascarenhas Road and Cut Slopes of the N5W Pit, N5W Iron Mine; Vale´s Internal Report; Vale, Sociedade Anônima: Belo Horizonte, Brazil, 2012. (In Portuguese) [Google Scholar]
- Paradella, W.R.; Cheng, P. Using Geoeye-1 stereo data in mining application: Automatic DEM generation. Geoinformatics 2013, 16, 10–12. [Google Scholar]
- Hanssen, R. Radar Interferometry; Kluwer: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Werner, L.C.; Wegmueller, U.; Strozzi, T. Deformation time-series of the lost-hills oil field using a multi-baseline interferometric SAR inversion algorithm with finite difference smoothing constraints. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 3–7 December 2012.
- Golub, G.; Loan, C. Matrix Computations; John Hopkins University Press: Baltimore, MD, USA, 1989. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Constantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–820. [Google Scholar] [CrossRef]
Pair | Date | Bperp (m) | Days | Pair | Date | Bperp (m) | Days |
---|---|---|---|---|---|---|---|
1 | 20 March 2012 | −90.29 | −199 | 18 | 23 September 2012 | 141.48 | −11 |
2 | 31 March 2012 | −247.08 | −187 | 19 | 4 October 2012 | - | 0 |
3 | 11 April 2012 | −304.35 | −176 | 20 | 15 October 2012 | 193.19 | 11 |
4 | 22 April 2012 | 240.80 | −165 | 21 | 26 October 2012 | 182.55 | 22 |
5 | 3 May 2012 | −282.70 | −154 | 22 | 6 November 2012 | −365.24 | 33 |
6 | 14 May 2012 | −67.05 | −143 | 23 | 17 November 2012 | 52.94 | 44 |
7 | 25 May 2012 | −132.00 | −132 | 24 | 28 November 2012 | −62.38 | 55 |
8 | 5 June 2012 | −172.43 | −121 | 25 | 9 December 2012 | −114.12 | 66 |
9 | 16 June 2012 | −391.40 | −110 | 26 | 20 December 2012 | 55.93 | 77 |
10 | 27 June 2012 | 315.25 | −99 | 27 | 11 January 2013 | −143.35 | 99 |
11 | 8 July 2012 | −165.18 | −88 | 28 | 22 January 2013 | −275.16 | 110 |
12 | 19 July 2012 | −326.51 | −77 | 29 | 2 February 2013 | −97.73 | 121 |
13 | 30 July 2012 | 110.54 | −66 | 30 | 18 March 2013 | −96.69 | 165 |
14 | 10 August 2012 | 224.56 | −55 | 31 | 29 March 2013 | 123.33 | 176 |
15 | 21 August 2012 | −284.61 | −44 | 32 | 9 April 2013 | 165.84 | 187 |
16 | 1 September 2012 | −242.91 | −33 | 33 | 20 April 2013 | 25.34 | 198 |
17 | 12 September 2012 | −317.49 | −22 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mura, J.C.; Paradella, W.R.; Gama, F.F.; Silva, G.G.; Galo, M.; Camargo, P.O.; Silva, A.Q.; Silva, A. Monitoring of Non-Linear Ground Movement in an Open Pit Iron Mine Based on an Integration of Advanced DInSAR Techniques Using TerraSAR-X Data. Remote Sens. 2016, 8, 409. https://doi.org/10.3390/rs8050409
Mura JC, Paradella WR, Gama FF, Silva GG, Galo M, Camargo PO, Silva AQ, Silva A. Monitoring of Non-Linear Ground Movement in an Open Pit Iron Mine Based on an Integration of Advanced DInSAR Techniques Using TerraSAR-X Data. Remote Sensing. 2016; 8(5):409. https://doi.org/10.3390/rs8050409
Chicago/Turabian StyleMura, José Claudio, Waldir R. Paradella, Fabio F. Gama, Guilherme G. Silva, Mauricio Galo, Paulo O. Camargo, Arnaldo Q. Silva, and Aristotelina Silva. 2016. "Monitoring of Non-Linear Ground Movement in an Open Pit Iron Mine Based on an Integration of Advanced DInSAR Techniques Using TerraSAR-X Data" Remote Sensing 8, no. 5: 409. https://doi.org/10.3390/rs8050409
APA StyleMura, J. C., Paradella, W. R., Gama, F. F., Silva, G. G., Galo, M., Camargo, P. O., Silva, A. Q., & Silva, A. (2016). Monitoring of Non-Linear Ground Movement in an Open Pit Iron Mine Based on an Integration of Advanced DInSAR Techniques Using TerraSAR-X Data. Remote Sensing, 8(5), 409. https://doi.org/10.3390/rs8050409