Cross-Sectional Analysis of Overall Dietary Intake and Mediterranean Dietary Pattern in Patients with Crohn’s Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Recruitment
2.2. Eligibility Criteria
2.3. Ethics and Consent
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Demographic and Health
3.2. Macronutrient Intake
3.3. Vitamin Intake
3.4. Mineral Intake
3.5. P-MDS Adherence
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dutta, A.K.; Chacko, A. Influence of environmental factors on the onset and course of inflammatory bowel disease. World J. Gastroenterol. 2016, 22, 1088–1100. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.J.; Plummer, N.T. Part 1: The human gut microbiome in health and disease. Integr. Med. 2014, 13, 17–22. [Google Scholar]
- Limdi, J.K.; Aggarwal, D.; McLaughlin, J.T. Dietary practices and beliefs in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2016, 22, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Hartman, C.; Eliakim, R.; Shamir, R. Nutritional status and nutritional therapy in inflammatory bowel diseases. World J. Gastroenterol. 2009, 15, 2570–2578. [Google Scholar] [CrossRef] [PubMed]
- Vadan, R.; Gheorghe, L.S.; Constantinescu, A.; Gheorghe, C. The prevalence of malnutrition and the evolution of nutritional status in patients with moderate to severe forms of Crohn’s disease treated with infliximab. Clin. Nutr. 2011, 30, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Lomer, M.C. Dietary and nutritional considerations for inflammatory bowel disease. Proc. Nutr. Soc. 2011, 70, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, J.; Makharia, G.K.; Kalaivani, M.; Joshi, Y.K. Nutritional status of patients with Crohn’s disease. Indian J. Gastroenterol. 2008, 27, 195–200. [Google Scholar] [PubMed]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Lucendo, A.J.; De Rezende, L.C. Importance of nutrition in inflammatory bowel disease. World J. Gastroenterol. 2009, 15, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Fabisiak, N.; Fabisiak, A.; Watala, C.; Fichna, J. Fat-soluble vitamin deficiencies and inflammatory bowel disease: Systematic review and meta-analysis. J. Clin. Gastroenterol. 2017, 51, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Guglielmetti, S.; Fracassetti, D.; Taverniti, V.; Del Bo’, C.; Vendrame, S.; Klimis-Zacas, D.; Arioli, S.; Riso, P.; Porrini, M. Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink. J. Agric. Food Chem. 2013, 61, 8134–8140. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004, 70, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, N.; Kumar, D. Role of diet in the management of inflammatory bowel disease. World J. Gastroenterol. 2010, 16, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Riordan, A.M.; Ruxton, C.H.; Hunter, J.O. A review of associations between Crohn’s disease and consumption of sugars. Eur. J. Clin. Nutr. 1998, 52, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Liu, X.; Wang, W.; Zhang, D. Consumption of vegetables and fruit and the risk of inflammatory bowel disease: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2015, 27, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Hebert, J.R.; Rashvand, S.; Rashidkhani, B.; Hekmatdoost, A. Inflammatory potential of diet and risk of ulcerative colitis in a case-control study from Iran. Nutr. Cancer 2016, 68, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Tasson, L.; Canova, C.; Vettorato, M.G.; Savarino, E.; Zanotti, R. Influence of diet on the course of inflammatory bowel disease. Dig. Dis. Sci. 2017, 62, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R. Anti-inflammatory effects of the Mediterranean diet: The experience of the PREDIMED study. Proc. Nutr. Soc. 2010, 69, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Steck, S.; Shivappa, N.; Tabung, F.; Harmon, B.E.; Wirth, M.D.; Hurley, T.G.; Hebert, J.R. The dietary inflammatory index: A new tool for assessing diet quality based on inflammatory potential. Digest 2014, 49, 1–9. [Google Scholar]
- Giugliano, D.; Ceriello, A.; Esposito, K. The effects of diet on inflammation: Emphasis on the metabolic syndrome. J. Am. Coll. Cardiol. 2006, 48, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, V.; Begin, C.; Hudon, A.M.; Royer, M.M.; Corneau, L.; Dodin, S.; Lemieux, S. Gender differences in the long-term effects of a nutritional intervention program promoting the Mediterranean diet: Changes in dietary intakes, eating behaviors, anthropometric and metabolic variables. Nutr. J. 2014, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- ESHA Research. Food Processor Nutrition Analysis Software 11.3 X; ESHA Research: Salem, Oregon, 2018. [Google Scholar]
- Schroder, H.; Fito, M.; Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvado, J.; Lamuela-Raventos, R.M.; Ros, E.; Salaverria, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Health Canda; Statistics Canada. Canadian Community Health Survey, Cycle 2.2, Nutrition (2004)—Nutrient Intakes from Food, Provincial, Regional and National Summary Data Tables, Volume 1, 2 and 3. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-nutrition-surveillance/health-nutrition-surveys/canadian-community-health-survey-cchs/canadian-community-health-survey-cycle-2-2-nutrition-focus-food-nutrition-surveillance-health-canada.html#p1 (accessed on 3 January 2018).
- Health Canada, Office of Nutrition Policy and Promotion Health Products and Food Branch. Canadian Community Health Survey 2.2, Nutrition (2004): A Guide to Accessing and Interpreting the Data 2006. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-nutrition-surveillance/health-nutrition-surveys/canadian-community-health-survey-cchs/canadian-community-health-survey-cycle-2-2-nutrition-2004-guide-accessing-interpreting-data-health-canada-2006.html (accessed on 12 November 2018).
- Food and Nutrition Board: Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Available online: http://www.nap.edu/openbook.php?record_id=10490 (accessed on 12 November 2018).
- Academy of Nutrition and Dietetics. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. J. Acad. Nutr. Dietetics. 2014, 114, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Food and Nutrition Board: Institute of Medicine, Health Canada. Dietary Reference Intakes Tables. 2010. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/dietary-reference-intakes/tables.html (accessed on 12 November 2018).
- Aghdassi, E.; Wendland, B.E.; Steinhart, A.H.; Wolman, S.L.; Jeejeebhoy, K.; Allard, J.P. Antioxidant vitamin supplementation in Crohn’s disease decreases oxidative stress. A randomized controlled trial. Am. J. Gastroenterol. 2003, 98, 348–353. [Google Scholar] [PubMed]
- Siva, S.; Rubin, D.T.; Gulotta, G.; Wroblewski, K.; Pekow, J. Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2017, 23, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Principi, M.; Losurdo, G.; Iannone, A.; Contaldo, A.; Deflorio, V.; Ranaldo, N.; Pisani, A.; Ierardi, E.; Di Leo, A.; Barone, M. Differences in dietary habits between patients with inflammatory bowel disease in clinical remission and a healthy population. Ann. Gastroenterol. 2018, 31, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Aghdassi, E.; Wendland, B.E.; Stapleton, M.; Raman, M.; Allard, J.P. Adequacy of nutritional intake in a canadian population of patients with Crohn’s disease. J. Am. Diet. Assoc. 2007, 107, 1575–1580. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Sugioka, Y.; Tada, M.; Okano, T.; Mamoto, K.; Inui, K.; Habu, D.; Koike, T. Monounsaturated fatty acids might be key factors in the Mediterranean diet that suppress rheumatoid arthritis disease activity: The TOMORROW study. Clin. Nutr. 2018, 37, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, I.; Marafini, I.; Dinallo, V.; Di Fusco, D.; Troncone, E.; Zorzi, F.; Laudisi, F.; Monteleone, G. Sodium chloride-enriched diet enhanced inflammatory cytokine production and exacerbated experimental colitis in mice. J. Crohn’s Colitis 2017, 11, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Casas, R.; Sacanella, E.; Urpi-Sarda, M.; Corella, D.; Castaner, O.; Lamuela-Raventos, R.M.; Salas-Salvado, J.; Martinez-Gonzalez, M.A.; Ros, E.; Estruch, R. Long-term immunomodulatory effects of a Mediterranean diet in adults at high risk of cardiovascular disease in the PREvencion con DIeta MEDiterranea (PREDIMED) randomized controlled trial. J. Nutr. 2016, 146, 1684–1693. [Google Scholar] [CrossRef] [PubMed]
- Arpon, A.; Milagro, F.I.; Razquin, C.; Corella, D.; Estruch, R.; Fito, M.; Marti, A.; Martinez-Gonzalez, M.A.; Ros, E.; Salas-Salvado, J.; et al. Impact of consuming extra-virgin olive oil or nuts within a Mediterranean diet on DNA methylation in peripheral white blood cells within the PREDIMED-Navarra randomized controlled trial: A role for dietary lipids. Nutrients 2017, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, R.; Shively, C.A.; Appt, S.A.; Register, T.C.; Michalson, K.T.; Vitolins, M.Z.; Yadav, H. Gut microbiome composition in non-human primates consuming a western or Mediterranean diet. Front. Nutr. 2018, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Suskind, D.L.; Cohen, S.A.; Brittnacher, M.J.; Wahbeh, G.; Lee, D.; Shaffer, M.L.; Braly, K.; Hayden, H.S.; Klein, J.; Gold, B.; et al. Clinical and fecal microbial changes with diet therapy in active inflammatory bowel disease. J. Clin. Gastroenterol. 2018, 52, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Konijeti, G.G.; Kim, N.; Lewis, J.D.; Groven, S.; Chandrasekaran, A.; Grandhe, S.; Diamant, C.; Singh, E.; Oliveira, G.; Wang, X.; et al. Efficacy of the autoimmune protocol diet for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 2054–2060. [Google Scholar] [CrossRef] [PubMed]
- Craig, P.; Dieppe, P.; Macintryre, S.; Michie, S.; Nazareth, I.; Petticrew, M. Developing and evaluating complex interventions: The new Medical Research Council guidance. BMJ 2008, 337, a1655. [Google Scholar]
Female N = 34 | Male N = 33 | |
---|---|---|
Age in years (mean, SD) | 44.7 (14.4) | 49.7 (12.7) |
BMI (kg/m2; mean, SD) | 27.8 (6.1) | 26.7 (3.9) |
Anti-TNF n, (%) | 30 (88.2%) | 24 (72.7%) |
IMM n, (%) | 15 (44.1%) | 14 (42.4%) |
Previous bowel surgery n, (%) | 7 (20.6%) | 11 (33.3%) |
Macronutrient | DRI Acceptable Macronutrient Distribution Range (AMDR) and Adequate Intake (AI) [29] | Academy of Nutrition and Dietetics [30] | Crohn’s Patients (N = 67; Mean ± SE) | Representative Sample (N = 1547; Mean ± SE) [27] | ||
---|---|---|---|---|---|---|
M (N = 33) | F (N = 34) | M (N = 721) | F (N = 826) | |||
Total energy intake (kcal/d) | Male = 662 − (9.53 × age (y)) + PA × {(15.91 × weight (kg)) + (539.6 × height (m))}, Female/Women = 354 − (6.91 × age (y)) + PA × {(9.36 × weight (kg)) + (726 × height (m))} | 2358 (95.3) | 1881 (86.5) | 2346 (61) | 1730 (42) | |
Protein (% total energy) | 10–35% total energy | 18.3 (1.0) | 18.0 (0.7) | 17.0 (0.4) | 16.8 (0.3) | |
Carbohydrate (% total energy) | 45–65% total energy | 47.1 (1.5) | 48.1 (1.1) | 48.7 (0.9) | 48.5 (0.6) | |
Fiber (g/day) ^ | M: 30–38 F: 21–25 | 22.8 (1.4) * | 20.9 (1.6) * | 19.2 (0.6) | 13.9 (0.5) | |
Total fat (% total energy) | 20–35% total energy | 33.7 (1.2) | 34.3 (1.0) | 31.0 (0.8) | 32.4 (0.6) | |
PUFA (% total energy) | 5–10% total energy | 3–10% total energy | 4.5 (0.4) * | 3.9 (0.3) * | 5.6 (0.2) | 5.6 (0.1) |
Omega-6 (linoleic) | 5–10% total energy | 3–10% total energy | 3.3 (0.4) * | 2.8 (0.2) * | 4.5 (0.1) | 4.5 (0.2) |
Omega-3 (α-linolenic) | 0.6–1.2% total energy | 0.6–1.2% total energy | 0.6 (0.15) | 0.5 (0.09) * | 0.8 (0.04) | 0.8 (0.02) |
MUFA (% total energy) | No AI level | 15–20% total energy | 8.2 (0.6)* | 7.1 (0.5) * | 12.6 (0.4) | 12.8 (0.2) |
SFA (% total energy) | As low as possible | 7–10% of total energy <7% to reduce CVD risk 5–6% to lower lipids | 10.7 (0.4) | 11.1 (0.5) | 9.8 (0.2) | 10.7 (0.3) |
TransFA (% total energy) | As low as possible | <1% total energy | 0.4 (0.1) | 0.3 (0.1) | unavailable |
Vitamins | DRI Adequate Intake/day (AI) [31] | Crohn’s Patients (N = 67) | Representative Sample (N = 1547) [27] | |||||
---|---|---|---|---|---|---|---|---|
Males | Females | M (N = 33)% of DRI (M ± SD) | F (N = 34)% of DRI (M ± SD) | M (N = 33) Daily intake (M ± SE) | F (N = 34) Daily intake (M ± SE) | M (N = 721) Usual intake (M ± SE) | F (N = 826)Usual intake (M ± SE) | |
Vitamin A RAE μg | 900 | 700 | 69 (55)% | 97 (162)% | 609 (86) | 682 (195) | 667 (33) | 577 (28) |
Vitamin D μg @ | 15–20 | 21 (20)% | 16 (17)% | 3 (0.5) ** | 2.5 (0.4) ** | 5.9 (0.3) | 5.0 (0.3) | |
Vitamin E α-tocopherol mg | 15 | 48 (59)% | 32 (28)% | 5 (1.5) | 7.1 (0.7) | n/a | n/a | |
Vitamin K μg | 120 | 90 | 52 (46)% * | 106 (101)% * | 61 (9.7) | 97 (15.7) | n/a | n/a |
Vitamin C mg (N = 1484) Vitamin C smokers mg (N = 679) | 90 125 | 75 110 | 121 (78)% | 108 (84)% | 106 (12) ** | 82 (11) ** | 143 (8) 92 (7) | 113 (4) 102 (8) |
Thiamin, B1 mg | 1.2 | 1.1 | 115 (60)% * | 82 (41)% * | 1.4 (0.12) ** | 0.9 (0.08) ** | 2.0 (0.07) | 1.4 (0.04) |
Riboflavin, B2 mg | 1.3 | 1.1 | 141 (67)% | 113 (52)% | 1.8 (0.15) | 1.3 (0.10) ** | 2.1 (0.07) | 1.6 (0.05) |
Niacin, B3 NE | 16 | 14 | 212 (113)% * | 161 (76)% * | 34 (2) ** | 23 (2) ** | 46 (2) | 32 (1) |
Pantothenic Acid, B5 mg | 5 | 87 (46)% | 68 (35)% | 4.4 (0.4) | 3.4 (0.3) | n/a | n/a | |
Pyridoxine, B6 mg t | 1.3–1.7 | 1.3–1.5 | 119 (64)% * | 86 (45)% * | 1.8 (1.0) | 1.2 (0.7) ** | 2.1 (0.1) | 1.6 (0.1) |
Biotin, B7 mg | 30 | 47 (42)% * | 25 (19)% * | 14 (2.2) | 8 (1.0) | n/a | n/a | |
Folate, B9 DFE μg | 400 | 72 (32)% | 61 (59)% | 287 (34) ** | 244 (33) | 488 (15) | 325 (41) | |
Cobalamin, B12 μg | 2.4 | 177 (123)% | 130 (109)% | 4.2 (0.5) | 3.1 (0.5) | 4.9 (0.3) | 3.5 (0.2) | |
Choline mg ^ | 550 | 425 | 43 (26)% | 39 (23)% | 229 (25) | 165 (17) | n/a | n/a |
Minerals | DRI Adequate Intake/Day (AI) [31] | Crohn’s Patients, (N = 67) | Representative Sample (N = 1547) [27] | |||||
---|---|---|---|---|---|---|---|---|
Males | Females | M (N = 33) % of DRI (M ± SD) | F (N = 34) % of DRI (M ± SD) | M (N = 33) Daily intake (M ± SE) | F (N = 34) Daily intake (M ± SE) | M (N = 721) Usual intake2 (M ± SE) | F (N = 826) Usual intake2 (M ± SE) | |
Calcium mg/d @ | 1000–1200 | 87 (49)% | 73 (42)% | 906 (97) | 785 (76) | 890 (38) | 799 (35) | |
Chromium μg/d t | 35–30 | 25–20 | 18 (50)% | 8 (6)% | 5.8 (3.1) | 1.7 (0.3) | n/a | n/a |
Copper μg/d | 900 | 110 (63)% | 93 (69)% | 989 (99) | 837 (106) | n/a | n/a | |
Iron mg/d^ | 8 | 8–18 | 187 (102)% * | 118 (86)% * | 17 (1.6) | 13 (1.1) | 16 (0.5) | 11 (0.3) |
Magnesium mg/d # | 400–420 | 310–320 | 63 (33)% | 60 (34)% | 256 (23) ** | 191 (19) ** | 352 (9) | 274 (7) |
Manganese mg/d | 2.3 | 1.8 | 197 (306)% | 114 (64)% | 4.5 (1.2) | 2.1 (0.2) | n/a | n/a |
Phosphorus mg/d | 700 | 144 (68)% * | 111 (54)% * | 1030 (79) ** | 777 (65) ** | 1500 (44) | 1152 (33) | |
Selenium μg/d | 55 | 151 (81)% | 134 (78)% | 83 (7.8) | 74 (7.4) | n/a | n/a | |
Zinc mg/d | 11 | 8 | 83 (38)% | 72% (34) | 9 (0.7) ** | 6 (0.5) ** | 13 (0.5) | 10 (0.3) |
Potassium mg/d | 4700 | 54 (30)% | 44 (31)% | 2532 (246) ** | 1880 (157) ** | 3355 (103) | 2657 (62) | |
Sodium mg/d | 1200–1500 + | 169 (74)% * | 135 (51)% * | 3880 (296) | 3101 (203) ** | 3543 (120) | 2550 (75) |
P-MDS Adherence Criteria [26] | Canada Food Guide 1-Serving Size and P-MDS Answers | Canada Food Guide Servings (Median ± IQR) | Percent Meeting P-MDS Criteria n (%) | ||
---|---|---|---|---|---|
Male | Female | Male | Female | ||
Olive oil as main culinary fat |
| n/a | n/a | 2 (6) | 0 (0) |
≥4 tbsp olive oil per day |
| n/a | n/a | 0 (0) | 0 (0) |
≥5 servings vegetables with ≥2 servings as raw leafy vegetables per day |
| total 1.0 (0.4–1.7) leafy 0.0 (0.0–0.5) | total 1.9 (1.0–3.0) leafy 0.5 (0–1.0) | 0 (0) | 1 (3) |
≥3 servings fruit and unsweetened fruit juice per day |
| 1.8 (1.3–3.3) | 1.4 (0.9–2.6) | 9 (27) | 7 (21) |
<2 servings of red meat, hamburger, or processed meat such as ham, sausage, etc. per day |
| 1.7 (1.0–2.0) | 0.7 (0.3–1.5) | 23 (70) | 28 (82) |
<1 serving of butter, hydrogenated margarine or cream per day |
| n/a | n/a | 27 (82) | 27 (79) |
<1 sugar sweetened beverage per day |
| n/a | n/a | 31 (94) | 27 (79) |
≥3 servings beans, peas, lentils per week |
| 0.0 (0.0–0.0) | 0.0 (0.0–0.2) | 3 (9) | 3 (9) |
≥3 servings fish and/or shellfish per week |
| fish 0.0 (0.0–0.0) seafood 0.0 (0.0–0.0) | fish 0.0 (0.0–3.1) seafood 0.0 (0.0–0.0) | 7 (21) | 11 (32) |
Eat <3 times a week baked goods, sweets, pastries or candy |
| n/a | n/a | 19 (58) | 19 (56) |
≥3 servings nuts per week |
| 0.0 (0.0–5.4) | 0.4 (0.0–2.6) | 12 (36) | 8 (24) |
Choose chicken, turkey or rabbit more often than veal, pork, hamburger or sausage |
| n/a | n/a | 12 (36) | 18 (53) |
Consume sofrito sauce ≥2 times per week |
| n/a | n/a | 4 (12) | 11 (32) |
Total mean MDS Score (possible score out of 13) | 4.5 (1.1) | 4.7 (1.8) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, L.; Almutairdi, A.; Shommu, N.; Fedorak, R.; Ghosh, S.; Reimer, R.A.; Panaccione, R.; Raman, M. Cross-Sectional Analysis of Overall Dietary Intake and Mediterranean Dietary Pattern in Patients with Crohn’s Disease. Nutrients 2018, 10, 1761. https://doi.org/10.3390/nu10111761
Taylor L, Almutairdi A, Shommu N, Fedorak R, Ghosh S, Reimer RA, Panaccione R, Raman M. Cross-Sectional Analysis of Overall Dietary Intake and Mediterranean Dietary Pattern in Patients with Crohn’s Disease. Nutrients. 2018; 10(11):1761. https://doi.org/10.3390/nu10111761
Chicago/Turabian StyleTaylor, Lorian, Abdulelah Almutairdi, Nusrat Shommu, Richard Fedorak, Subrata Ghosh, Raylene A. Reimer, Remo Panaccione, and Maitreyi Raman. 2018. "Cross-Sectional Analysis of Overall Dietary Intake and Mediterranean Dietary Pattern in Patients with Crohn’s Disease" Nutrients 10, no. 11: 1761. https://doi.org/10.3390/nu10111761
APA StyleTaylor, L., Almutairdi, A., Shommu, N., Fedorak, R., Ghosh, S., Reimer, R. A., Panaccione, R., & Raman, M. (2018). Cross-Sectional Analysis of Overall Dietary Intake and Mediterranean Dietary Pattern in Patients with Crohn’s Disease. Nutrients, 10(11), 1761. https://doi.org/10.3390/nu10111761