Nutrient Intake and Physical Exercise Significantly Impact Physical Performance, Body Composition, Blood Lipids, Oxidative Stress, and Inflammation in Male Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Design
2.2. Functional Capacity Assessment
2.3. Anthropometric Assessments
2.4. Dietary and Exercise Interventions
2.5. Blood Collection and Analysis
2.6. Statistical Analysis
3. Results
3.1. Physical Performance Data
3.2. Anthropometric Data
3.3. Biochemical Data
4. Discussion
4.1. Physical Performance Findings
4.2. Anthropometric Findings
4.3. Biochemical Findings
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AOPP | Advanced Oxidation Protein Products |
DF | Daniel Fast |
DXA | Dual-Energy X-ray Absorptiometry |
+E | Exercise-Trained |
MDA | Malondialdehyde |
TAG | Triglycerides |
WD | Western Diet |
References
- Trepanowski, J.F.; Canale, R.E.; Marshall, K.E.; Kabir, M.M.; Bloomer, R.J. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: A summary of available findings. Nutr. J. 2011, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Trepanowski, J.F.; Varady, K.A. Veganism is a viable alternative to conventional diet therapy for improving blood lipids and glycemic control. Crit. Rev. Food Sci. Nutr. 2015, 55, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Bloomer, R.J.; Kabir, M.M.; Canale, R.E.; Trepanowski, J.F.; Marshall, K.E.; Farney, T.M.; Hammond, K.G. Effect of a 21 day Daniel Fast on metabolic and cardiovascular disease risk factors in men and women. Lipids Health Dis. 2010, 9. [Google Scholar] [CrossRef] [PubMed]
- Bloomer, R.J.; Kabir, M.M.; Trepanowski, J.F.; Canale, R.E.; Farney, T.M. A 21 day Daniel Fast improves selected biomarkers of antioxidant status and oxidative stress in men and women. Nutr. Metab. 2011, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepanowski, J.F.; Bloomer, R.J. The impact of religious fasting on human health. Nutr. J. 2010, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepanowski, J.F.; Kabir, M.M.; Alleman, R.J.; Bloomer, R.J. A 21-day Daniel fast with or without krill oil supplementation improves anthropometric parameters and the cardiometabolic profile in men and women. Nutr. Metab. 2012, 9, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.E. A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells. Mol. Biol. Cell 2000, 11, 1859–1874. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.; Bradwell, S.N.; Gibala, M.J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliakim, A.; Moromisato, M.; Moromisato, D.Y.; Cooper, D.M. Functional and Muscle Size Response to 5 Days of Treadmill Training in Young Rats. Pediatr. Exerc. Sci. 1997, 9, 324–330. [Google Scholar] [CrossRef]
- McClenton, L.S.; Brown, L.E.; Coburn, J.W.; Kersey, R.D. The effect of short-term VertiMax vs. depth jump training on vertical jump performance. J. Strength Cond. Res. 2008, 22, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Copp, S.W.; Davis, R.T.; Poole, D. C.; Musch, T.I. Reproducibility of endurance capacity and Vo2peak in male Sprague-Dawley rats. J. Appl. Physiol. 2009, 106, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Koch, L.G.; Meredith, T.A.; Fraker, T.D.; Metting, P.J.; Britton, S.L. Heritability of treadmill running endurance in rats. Am. J. Physiol. 1998, 275, R1455–R1460. [Google Scholar] [CrossRef] [PubMed]
- Lightfoot, J.T.; Turner, M.J.; Knab, A.K.; Jedlicka, A.E.; Oshimura, T.; Marzec, J.; Gladwell, W.; Leamy, L.J.; Kleeberger, S.R. Quantitative trait loci associated with maximal exercise endurance in mice. J. Appl. Physiol. 2007, 103, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, H.L. Rats’ activity: Influence of light-dark cycle, food presentation and deprivation. Physiol. Behav. 1971, 7, 455–459. [Google Scholar] [CrossRef]
- Huang, T.; Chang, F.; Lin, S.; Liu, S.; Hsieh, S.S.; Yang, R. Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. J. Bone Miner. Metab. 2008, 26, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Jentzsch, A.M.; Bachmann, H.; Fürst, P.; Biesalski, H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996, 20, 251–256. [Google Scholar] [CrossRef]
- Dolinsky, V.W.; Jones, K.E.; Sidhu, R.S.; Haykowsky, M.; Czubryt, M.P.; Gordon, T.; Dyck, J.R. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. J. Physiol. 2012, 590, 2783–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Bruce, C.R.; Spriet, L.L.; Hawley, J.A. Interaction of diet and training on endurance performance in rats. Exp. Physiol. 2001, 86, 499–508. [Google Scholar] [PubMed]
- Mazzeo, R.S.; Horvath, S.M. Effects of training on weight, food intake, and body composition in aging rats. Am. J. Clin. Nutr. 1986, 44, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Helge, J.W.; Richter, E.A.; Kiens, B. Interaction of training and diet on metabolism and endurance during exercise in man. J. Physiol. 1996, 492, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.J.; Knight, N.S.; Cochlin, L.E.; McAleese, S.; Deacon, R.M.; Rawlins, J.N.; Clarke, K. Deterioration of physical performance and cognitive function in rats with short-term high-fat feeding. FASEB J. 2009, 23, 4353–4360. [Google Scholar] [CrossRef] [PubMed]
- Okano, G.; Sato, Y.; Murata, Y. Effect of elevated blood FFA levels on endurance performance after a single fat meal ingestion. Med. Sci. Sports Exerc. 1998, 30, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Starling, R.D.; Trappe, T.A.; Parcell, A.C.; Kerr, C.G.; Fink, W.J.; Costill, D.L. Effects of diet on muscle triglyceride and endurance performance. J. Appl. Physiol. 1997, 82, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Ekkekakis, P.; Lind, E. Exercise does not feel the same when you are overweight: The impact of self-selected and imposed intensity on affect and exertion. Int. J. Obes. 2006, 30, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Norman, A.C.; Drinkard, B.; McDuffie, J.R.; Ghorbani, S.; Yanoff, L.B.; Yanovski, J.A. Influence of excess adiposity on exercise fitness and performance in overweight children and adolescents. Pediatrics 2006, 115, e690–e696. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Hayashi, T.; Toyoda, T.; Hamada, T.; Shimizu, Y.; Hirata, M.; Ebihara, K.; Masuzaki, H.; Hosoda, K.; Fushiki, T. High-fat diet impairs the effects of a single bout of endurance exercise on glucose transport and insulin sensitivity in rat skeletal muscle. Metabolism 2007, 56, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Wahren, J.; Felig, P.; Ahlborg, G.; Jorfeldt, L. Glucose metabolism during leg exercise in man. J. Clin. Investig. 1971, 50, 2715–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowlands, D.S.; Hopkins, W.G. Effect of high-fat, high-carbohydrate, and high-protein meals on metabolism and performance during endurance cycling. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 318–335. [Google Scholar] [CrossRef] [PubMed]
- Foskett, A.; Williams, C.; Boobis, L.; Tsintzas, K. Carbohydrate availability and muscle energy metabolism during intermittent running. Med. Sci. Sports Exerc. 2008, 40, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Helge, J.W.; Ayre, K.; Chaunchaiyakul, S.; Hulbert, A.J.; Kiens, B.; Storlien, L.H. Endurance in high-fat-fed rats: Effects of carbohydrate content and fatty acid profile. J. Appl. Physiol. 1998, 85, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F.; Coggan, A.R.; Hemmert, M.K.; Ivy, J.L. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J. Appl. Physiol. 1986, 61, 165–172. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, H.; Sucher, K.; Cisar, C.; Butterfield, G. Pre-exercise carbohydrate meals: Application of glycemic index. Med. Sci. Sports Exerc. 1999, 31, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Brotherhood, J.; Brand, J. Carbohydrate feeding before exercise: Effect of glycemic index. Int. J. Sports Med. 1991, 12, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Brage, S.; Besson, H.; Sharp, S.; Wareham, N.J. Time spent being sedentary and weight gain in healthy adults: Reverse or bidirectional causality? Am. J. Clin. Nutr. 2008, 88, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.F.; Wang, D.; Stracher, A. The accessibility of the thiol groups on G- and F-actin of rabbit muscle. Biochem. J. 1990, 266, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldhaber, J.I.; Qayyum, M.S. Oxygen free radicals and excitation-contraction coupling. Antiox. Redox Signal. 2000, 2, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Haycock, J.W.; Jones, P.; Harris, J.B.; Mantle, D. Differential susceptibility of human skeletal muscle proteins to free radical induced oxidative damage: A histochemical, immunocytochemical and electron microscopical study in vitro. Acta Neuropathol. 1996, 92, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Alleman, R.J.; Harvey, I.C.; Farney, T.M.; Bloomer, R.J. Both a traditional and modified Daniel Fast improve the cardio-metabolic profile in men and women. Lipids Health Dis. 2013, 12, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Huang, P.; Chen, C. Interleukin-1-beta, interleukin-10, and tumor necrosis factor-alpha in Chinese patients with ankylosing spondylitis. Mid. Taiwan J. Med. 2009, 14, 10–15. [Google Scholar]
- Besedovsky, H.; del Rey, A.; Sorkin, E.; Dinarello, C.A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 1986, 233, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Coppack, S.W. Pro-inflammatory cytokines and adipose tissue. Proc. Nutr. Soc. 2001, 60, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhdar, N.; Denguezli, M.; Zaouali, M.; Zbidi, A.; Tabka, Z.; Bouassida, A. Diet and diet combined with chronic aerobic exercise decreases body fat mass and alters plasma and adipose tissue inflammatory markers in obese women. Inflammation 2013, 36, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Markovitch, D.; Betts, J.A.; Mazzatti, D.; Turner, J.; Tyrrell, R.M. Time course of changes in inflammatory markers during a 6-mo exercise intervention in sedentary middle-aged men: A randomized-controlled trial. J. Appl. Physiol. 2010, 108, 769–779. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Western Diet | Daniel Fast | ||
---|---|---|---|---|
gm% | kcal% | g% | kcal% | |
Protein | 20 | 17 | 15 | 15 |
Carbohydrate | 50 | 43 | 58 | 59 |
Fat | 21 | 40 | 11 | 25 |
Fiber | 5 | 0 | 13 | 1 |
Total | 100 | 100 | ||
kcal/g | 4.7 | 3.9 | ||
Casein | 195 | 780 | 0 | 0 |
Soy Protein | 0 | 0 | 170 | 680 |
DL-Methionine | 3 | 12 | 3 | 12 |
Corn Starch | 50 | 200 | 0 | 0 |
Corn Starch-Hi Maize 260 (70% Amylose and 30% Amylopectin) | 0 | 0 | 533.5 | 2134 |
Maltodextrin 10 | 100 | 400 | 150 | 600 |
Sucrose | 341 | 1364 | 0 | 0 |
Cellulose, BW200 | 50 | 0 | 100 | 0 |
Inulin | 0 | 0 | 50 | 50 |
Milk Fat, Anhydrous | 200 | 1800 | 0 | 0 |
Corn Oil | 10 | 90 | 0 | 0 |
Flaxseed Oil | 0 | 0 | 130 | 1170 |
Ethoxyquin | 0.04 | 0 | 0.04 | 0 |
Mineral Mix S1001 | 35 | 0 | 35 | 0 |
Calcium Carbonate | 4 | 0 | 4 | 0 |
Vitamin Mix V1001 | 10 | 40 | 10 | 40 |
Choline Carbonate | 2 | 0 | 2 | 0 |
Ascorbic Acid Phosphate, 33% active | 0 | 0 | 0.41 | 0 |
Cholesterol | 1.5 | 0 | 0 | 0 |
Total | 1001.54 | 4686 | 1187.95 | 4686 |
Saturated g/kg | 122.6 | 7.8 | ||
Monunsaturated g/kg | 60.2 | 19.7 | ||
Polyunsaturated g/kg | 13.5 | 77.7 | ||
Cholesterol mg/kg | 2048 | 0 | ||
Saturated %Fat | 62.4 | 7.4 | ||
Monunsaturated %Fat | 30.7 | 18.7 | ||
Polyunsaturated %Fat | 6.9 | 73.9 | ||
Ascorbic Acid mg/kg | 0 | 114 |
Western Diet + Exercise (WD+E) | Western Diet (WD) | Daniel Fast + Exercise (DF+E) | Daniel Fast (DF) | |
---|---|---|---|---|
Pre-Intervention (Baseline) | 35.5 ± 3.5 | 28.7 ± 3.3 | 29.3 ± 2.8 | 33.6 ± 4.1 |
Post-Intervention ** | 48.3 ± 1.9 *,† | 24.4 ± 1.5 | 52.9 ± 1.9 *,† | 28.8 ± 1.1 |
Western Diet + Exercise | Western Diet | Daniel Fast + Exercise | Daniel Fast | |
---|---|---|---|---|
Body Mass (g) Pre-Intervention | 186.5 ± 3.3 | 187.0 ± 4.5 | 192.6 ± 2.7 | 185 ± 4.8 |
Body Mass (g) Post-Intervention | 516.8 ± 10.7 | 571.1 ± 14.7 | 478.7 ± 11.3 | 496.8 ± 13.5 |
Fat Mass (g) Post-Intervention | 161.6 ± 8.0 | 195.5 ± 8.4 | 100.73 ± 7.4 | 124.45 ± 9.8 |
Lean Mass (g) Post-Intervention | 366.0 ± 9.2 | 386.8 ± 6.7 | 391.4 ± 8.8 | 376.5 ± 7.8 |
% Fat Post-Intervention | 30.6 ± 1.3 | 33.5 ± 1.0 | 20.3 ± 1.3 | 24.6 ± 1.4 |
Variable | Western Diet + Exercise | Western Diet | Daniel Fast + Exercise | Daniel Fast |
---|---|---|---|---|
IL-4 | 37 ± 9.6 | 25.9 ± 7.8 | 36.3 ± 9.6 | 27.1 ± 9.6 |
IL-1β | 174.5 ± 59.5 | 120.9 ± 55.1 | 31.4 ± 59.5 | 72.3 ± 65.2 |
IL-10 | 126.5 ± 36.7 | 95.5 ± 34 | 40.4 ± 34 | 63.4 ± 34 |
TNF-α | 14.3 ± 5.1 | 13.8 ± 4.1 | 14.6 ± 3.6 | 12.6 ± 4.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bloomer, R.J.; Schriefer, J.H.M.; Gunnels, T.A.; Lee, S.-R.; Sable, H.J.; Van der Merwe, M.; Buddington, R.K.; Buddington, K.K. Nutrient Intake and Physical Exercise Significantly Impact Physical Performance, Body Composition, Blood Lipids, Oxidative Stress, and Inflammation in Male Rats. Nutrients 2018, 10, 1109. https://doi.org/10.3390/nu10081109
Bloomer RJ, Schriefer JHM, Gunnels TA, Lee S-R, Sable HJ, Van der Merwe M, Buddington RK, Buddington KK. Nutrient Intake and Physical Exercise Significantly Impact Physical Performance, Body Composition, Blood Lipids, Oxidative Stress, and Inflammation in Male Rats. Nutrients. 2018; 10(8):1109. https://doi.org/10.3390/nu10081109
Chicago/Turabian StyleBloomer, Richard J., John Henry M. Schriefer, Trint A. Gunnels, Sang-Rok Lee, Helen J. Sable, Marie Van der Merwe, Randal K. Buddington, and Karyl K. Buddington. 2018. "Nutrient Intake and Physical Exercise Significantly Impact Physical Performance, Body Composition, Blood Lipids, Oxidative Stress, and Inflammation in Male Rats" Nutrients 10, no. 8: 1109. https://doi.org/10.3390/nu10081109
APA StyleBloomer, R. J., Schriefer, J. H. M., Gunnels, T. A., Lee, S. -R., Sable, H. J., Van der Merwe, M., Buddington, R. K., & Buddington, K. K. (2018). Nutrient Intake and Physical Exercise Significantly Impact Physical Performance, Body Composition, Blood Lipids, Oxidative Stress, and Inflammation in Male Rats. Nutrients, 10(8), 1109. https://doi.org/10.3390/nu10081109