Association of Handgrip Strength with Dietary Intake in the Korean Population: Findings Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Resources
2.2. Measures
2.3. Handgrip Strength
2.4. Dietary Intake
2.5. Statistical Methods
3. Results
3.1. Demographic and Clinical Characteristics of Study Subjects
3.2. Handgrip Strength, Laboratory Values, and Nutritional Intake of Study Subjects
3.3. Associations between Handgrip Strength and Nutritional Intakes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cesari, M.; Kritchevsky, S.B.; Penninx, B.W.; Nicklas, B.J.; Simonsick, E.M.; Newman, A.B.; Tylavsky, F.A.; Brach, J.S.; Satterfield, S.; Bauer, D.C.; et al. Prognostic value of usual gait speed in well-functioning older people—Results from the Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2005, 53, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- De Souza Vasconcelos, K.S.; Dias, J.D.; de Carvalho Bastone, A.; Vieira, R.A.; de Souza Andrade, A.C.; Perracini, M.R.; Guerra, R.O.; Dias, R.C. Handgrip strength cutoff points to identify mobility limitation in community-dwelling older people and associated factors. J. Nutr. Health Aging 2016, 20, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Weiss, A.; Buchman, A.S.; Bennett, D.A.; Giladi, N.; Hausdorff, J.M. Association between performance on Timed up and go subtasks and mild cognitive impairment: Further insights into the links between cognitive and motor function. J. Am. Geriatr. Soc. 2014, 62, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Park, M.S.; Kim, T.N.; Ryu, J.Y.; Hong, H.C.; Yoo, H.J.; Baik, S.H.; Jones, G.; Choi, K.M. Associations of low muscle mass and the metabolic syndrome in Caucasian and Asian middle-aged and older adults. J. Nutr. Health Aging 2016, 20, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, T.; Volpato, S.; Ferrucci, L.; Heikkinen, E.; Fried, L.P.; Guralnik, J.M. Handgrip strength and cause-specific and total mortality in older disabled women: Exploring the mechanism. J. Am. Geriatr. Soc. 2003, 51, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Pohlhausen, S.; Uhlig, K.; Kiesswetter, E.; Diekmann, R.; Heseker, H.; Volkert, D.; Stehle, P.; Lesser, S. Energy and protein intake, anthropometrics, and disease burden in elderly home-care receivers—A cross-sectional study in Germany (ErnSIPP study). J. Nutr. Health Aging 2016, 20, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; Liu, Y.H.; Zhang, Y.; Xu, Q.; Yu, X.M.; Yang, X.Y.; Liu, Z.; Li, H.Z.; Li, F.; Xue, C.Y. Handgrip strength as a predictor of nutritional status in Chinese elderly inpatients at hospital admission. Biomed. Environ. Sci. 2017, 30, 802–810. [Google Scholar] [PubMed]
- Fanelli Kuczmarski, M.; Pohlig, R.T.; Stave Shupe, E.; Zonderman, A.B.; Evans, M.K. Dietary protein intake and overall diet quality are associated with handgrip strength in African American and white adults. J. Nutr. Health Aging 2018, 22, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Mithal, A.; Binjour, J.P.; Boonen, S.; Burckhardt, P.; Degens, H.; Fuleihan, G.E.H.; Josse, R.; Lips, P.; Morales Torres, J.; Rizzoli, R.; et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 2013, 24, 1555–1566. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Leidy, H. Dietary protein and muscle in older person. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Schoenborn, C.A.; Vickerie, J.L.; Barnes, P.M. Cigarette Smoking Behavior of Adults: United States, 1997–1998; US Department of Health & Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Atlanta, GA, USA, 2003; p. 331.
- Bradstock, K.; Forman, M.R.; Binkin, N.J.; Gentry, E.M.; Hogelin, G.C.; Williamson, D.F.; Trowbridge, F.L. Alcohol use and health behavior lifestyles among U.S. women: The behavioral risk factor surveys. Addict. Behav. 1988, 13, 61–71. [Google Scholar] [CrossRef]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.C.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports. Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardized approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.R.; Jeon, Y.J.; Kim, M.C.; Jeong, T.; Koo, W.R. Reference values for hand grip strength in the South Korean population. PLoS ONE 2018, 13, e0195485. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare. The Korean Nutrition Society, Dietary Reference Intakes for Koreans 2015. Available online: http://www.kns.or.kr/FileRoom/FileRoom_view.asp?idx=79&BoardID=Kdr (accessed on 1 June 2018).
- Norman, K.; Stobaus, N.; Gonzalez, M.C.; Parker, H.; Kearns, V.; O’Sullivan, T.A. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Flood, A.; Chung, A.; Parker, H.; Kearns, V.; O’Sullivan, T.A. The use of hand grip strength as a predictor of nutrition status in hospital patients. Clin. Nutr. 2014, 33, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Ochi, E.; Tsuchiya, Y. Eicosahexanoic acid (EPA) and docosahexanoic acid (DHA) in muscle damage and function. Nutrients 2018, 10, 552. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, A.S.; Smith, H.J.; Drake, J.L.; Tisdale, M.J. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res. 2001, 61, 3604–3609. [Google Scholar] [PubMed]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Amara, C.E.; Shankland, E.G.; Jubrias, S.A.; Marcinek, D.J.; Kushmerick, M.J.; Conley, K.E. Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 1057–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, R.A.; Garcia-Smith, R.; Bisoffi, M.; Conn, C.A.; Trujillo, K.A. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells. Lipids Health Dis. 2012, 11, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marina, A.; von Frankenberg, A.D.; Suvag, S.; Callahan, H.S.; Kratz, M.; Richards, T.L.; Utzschneider, K.M. Effects of Dietary Fat and Saturated Fat Content on Liver Fat and Markers of Oxidative Stress in Overweight/Obese Men and Women under Weight-Stable Conditions. Nutrients 2014, 6, 4678–4690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodacki, C.L.; Rodacki, A.L.; Pereira, G.; Naliwaiko, K.; Coelho, I.; Pequito, D.; Pequito, D.; Fernandes, L.C. Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 2012, 95, 428–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Giannoulis, M.G.; Sonksen, P.H.; Umpleby, M.; Breen, L.; Pentecost, C.; Whyte, M.; McMillan, C.V.; Bradley, C.; Martin, F.C. The effects of growth hormone and/or testosterone in healthy elderly men: A randomized controlled trial. J. Clin. Endocrinol. Metab. 2006, 91, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Baker, W.L.; Karan, S.; Kenny, A.M. Effect of dehydroepiandrosterone on muscle strength and physical function in older adults: A systematic review. J. Am. Geriatr. Soc. 2011, 59, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Ábrigo, J.; Elorza, A.A.; Riedel, C.A.; Vilos, C.; Simon, F.; Cabrera, D.; Estrada, L.; Cabello-Verrugio, C. Role of oxidative stress as key regulator of muscle wasting during cachexia. Oxid. Med. Cell. Longev. 2018, 2063179. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Morton, A.B.; Ahn, B.; Smuder, A.J. Redox control of skeletal muscle atrophy. Free Radic. Biol. Med. 2016, 98, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.J.; Dudash, H.J.; Docherty, M.; Geronilla, K.B.; Baker, B.A.; Haff, G.G.; Cutlip, R.G.; Always, S.E. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp. Gerontol. 2016, 45, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Bobeuf, F.; Labonte, M.; Khalil, A.; Dionne, I.J. Effects of resistance training combined with antioxidant supplementation on fat-free mass and insulin sensitivity in healthy elderly subjects. Diabetes Res. Clin. Pract. 2010, 87, e1–e3. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Isken, F.; Klaus, S.; Petzke, K.J.; Loddenkemper, C.; Pfeiffer, A.F.; Weickert, M.O. Impairment of fat oxidation under high- vs. low-glycemic index diet occurs before the development of an obese phenotype. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E287–E295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Kerr, D.A.; Meng, X.; Devine, A.; Solah, V.; Binns, C.W.; Prince, R.L. Two-year whey protein supplementation did not enhance muscle mass and physical function in well-nourished healthy older postmenopausal women. J. Nutr. 2015, 145, 2520–2526. [Google Scholar] [CrossRef] [PubMed]
- Alem’an-Mateo, H.; Carreon, V.R.; Macias, L.; Astiazaran-Garcia, H.; Gallegos-Aguilar, A.C.; Enriquez, J.R. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: A single-blind randomized clinical trial. Clin. Interv. Aging 2014, 9, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Hughes, V.A.; Frontera, W.R.; Roubenoff, R.; Evans, W.J.; Singh, M.A. Longitudinal changes in body composition in older men and women: Role of body weight change and physical activity. Am. J. Clin. Nutr. 2002, 76, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Gunther, C.M.; Burger, A.; Rickert, M.; Crispin, A.; Schulz, C.U. Grip strength in healthy Caucasian adults: Reference values. J. Hand Surg. Am. 2008, 33, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Rural Development Administration, National Institute of Agricultural Sciences. Food Composition Table; Rural Development Administration, National Institute of Agricultural Sciences: Wanju, Korea, 2011. [Google Scholar]
- Jung, H.J.; Lee, S.E.; Kim, D.; Noh, H.; Song, S.; Kang, M. Development and feasibility of a web-based program ‘Diet Evaluation System (DES)’ in urban and community nutrition survey in Korea. Korean J. Health Promot. 2013, 13, 107–115. (In Korean) [Google Scholar]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed]
- Whitton, C.; Ho, J.C.Y.; Tay, Z.; Rebello, S.A.; Lu, Y.; Ong, C.N.; van Dam, R.M. Relative Validity and Reproducibility of a Food Frequency Questionnaire for Assessing Dietary Intakes in a Multi-Ethnic Asian Population Using 24-h Dietary Recalls and Biomarkers. Nutrients 2017, 9, 1059. [Google Scholar] [CrossRef] [PubMed]
Variables | Men (n = 706) | Women (n = 847) | Total (n = 1553) |
---|---|---|---|
Demographics | |||
Age (years) | 70.1 ± 6.3 | 70.0 ± 6.6 | 70.1 ± 6.4 |
Low household income (%) * | 33.7 ± 2.5 | 43.4 ± 2.3 | 39.0 ± 2.0 |
Presence of spouse (%) * | 87.7 ± 1.6 | 56.8 ± 2.1 | 70.9 ± 1.6 |
Education ≥ 10 years (%) * | 46.1 ± 4.3 | 20.6 ± 2.8 | 32.4 ± 2.8 |
Current medical history | |||
Hypertension (%) | 52.7 ± 2.3 | 46.4 ± 2.0 | 49.3 ± 1.5 |
Diabetes mellitus (%) | 20.0 ± 1.8 | 19.2 ± 1.7 | 19.6 ± 1.3 |
Dyslipidemia (%) * | 18.7 ± 1.8 | 31.1 ± 2.1 | 25.4 ± 1.3 |
CVA (%) | 3.8 ± 0.7 | 2.0 ± 0.5 | 2.9 ± 0.5 |
MI & angina (%) | 8.2 ± 1.1 | 5.3 ± 0.9 | 6.7 ± 0.6 |
Osteoarthritis (%) * | 9.5 ± 1.3 | 31.2 ± 1.6 | 21.2 ± 1.1 |
Osteoporosis (%) * | 1.3 ± 0.5 | 31.5 ± 1.9 | 17.7 ± 1.1 |
Anthropometric measurements | |||
BMI (kg/m2) * | 23.8 ± 0.1 | 24.5 ± 0.1 | 24.2 ± 0.1 |
AC (cm) * | 86.6 ± 0.4 | 84.6 ± 0.4 | 85.6 ± 0.3 |
Systolic BP (mm Hg) * | 126.1 ± 0.7 | 128.2 ± 0.7 | 127.2 ± 0.5 |
Health behaviors | |||
Current smoking (%) * | 19.8 ± 1.8 | 3.6 ± 1.2 | 11.0 ± 1.2 |
Dringking (%) * | 61.9 ± 2.2 | 20.0 ± 1.6 | 39.2 ± 1.6 |
Physical inactivity (%) * | 55.1 ± 2.2 | 67.3 ± 2.4 | 61.7 ± 1.7 |
Variable | Men (n = 706) | p | Women (n = 847) | p | ||
---|---|---|---|---|---|---|
Age 60–64 (n = 173) | Age ≥65 (n = 533) | Age 60–64 (n = 242) | Age ≥65 (n = 605) | |||
Handgrip strength (kg) | 40.1 ± 0.6 | 34.2 ± 0.4 | <0.001 | 23.9 ± 0.3 | 20.1 ± 0.2 | <0.001 |
Lowest quintile | 27.2 ± 0.3 | 19.0 ± 0.5 | 15.6 ± 0.5 | 14.0 ± 0.2 | ||
Second quintile | 30.8 ± 0.4 | 25.7 ± 0.2 | 19.3 ± 0.1 | 19.2 ± 0.1 | ||
Middle quintile | 35.8 ± 0.3 | 31.3 ± 0.2 | 22.9 ± 0.1 | 22.6 ± 0.1 | ||
Fourth quintile | 40.9 ± 0.2 | 36.6 ± 0.1 | 26.1 ± 0.1 | 26.2 ± 0.1 | ||
Fifth quintile | 47.6 ± 0.7 | 43.0 ± 0.4 | 29.6 ± 0.3 | 29.2 ± 0.2 | ||
Laboratory profiles | ||||||
Hemoglobin (g/dL) | 15.1 ± 0.1 | 14.5 ± 0.1 | <0.001 | 13.3 ± 0.1 | 12.9 ± 0.1 | <0.001 |
AST (IU/L) | 24.8 ± 1.2 | 24.3 ± 0.6 | >0.05 | 24.7 ± 0.9 | 23.4 ± 0.5 | >0.05 |
ALT (IU/L) | 23.5 ± 0.8 | 21.7 ± 0.7 | >0.05 | 24.1 ± 1.4 | 19.0 ± 0.6 | <0.01 |
BUN (mg/dL) | 15.9 ± 0.4 | 17.3 ± 0.3 | <0.01 | 15.4 ± 0.3 | 16.4 ± 0.3 | <0.05 |
Creatinine (mg/dL) | 0.95 ± 0.01 | 1.02 ± 0.01 | <0.001 | 0.72 ± 0.01 | 0.79 ± 0.01 | <0.001 |
Fasting glucose (mg/dL) | 112.6 ± 2.6 | 110.2 ± 1.5 | >0.05 | 102.9 ± 1.6 | 104.9 ± 1.0 | >0.05 |
HbA1c (%) | 5.93 ± 0.06 | 6.02 ± 0.05 | >0.05 | 5.94 ± 0.05 | 6.00 ± 0.03 | >0.05 |
Total cholesterol (mg/dL) | 193.6 ± 3.5 | 181.1 ± 1.9 | <0.01 | 202.7 ± 2.6 | 190.1 ± 1.6 | <0.001 |
Triglycerides (mg/dL) | 181.4 ± 16.9 | 138.6 ± 4.1 | <0.05 | 141.3 ± 7.3 | 142.2 ± 4.3 | >0.05 |
High-sensitivity CRP (mg/L) | 1.52 ± 0.23 | 1.6 ± 0.1 | >0.05 | 1.20 ± 0.16 | 1.48 ± 0.15 | >0.05 |
Uric acid (mg/dL) | 5.6 ± 0.1 | 5.6 ± 0.1 | >0.05 | 4.1 ± 0.1 | 4.6 ± 0.1 | >0.05 |
Nutritional intakes | ||||||
Total energy (Cal/day) | 2234.3 ± 74.0 | 1935.0 ± 38.3 | <0.001 | 1646.6 ± 46.5 | 1365.4 ± 26.4 | <0.001 |
Protein/weight (g/kg/day) | 1.18 ± 0.06 | 0.96 ± 0.02 | <0.01 | 1.01 ± 0.05 | 0.78 ± 0.02 | <0.001 |
PUFA (g/day) | 10.9 ± 0.7 | 8.3 ± 0.4 | <0.01 | 8.4 ± 0.5 | 6.1 ± 0.2 | <0.001 |
Fiber (g/day) | 28.3 ± 1.3 | 25.2 ± 0.6 | <0.05 | 23.0 ± 0.8 | 19.8 ± 0.6 | <0.01 |
Calcium (mg/day) | 589.3 ± 30.5 | 452.5 ± 15.2 | <0.001 | 421.9 ± 16.3 | 330.5 ± 8.7 | <0.001 |
Fe (mg/day) | 21.0 ± 1.7 | 17.6 ± 0.5 | <0.05 | 16.7 ± 1.1 | 12.6 ± 0.3 | <0.01 |
Potassium (mg/day) | 3514.5 ± 142.2 | 2992.8 ± 87.8 | <0.01 | 2954.1 ± 96.4 | 2327.9 ± 64.6 | <0.001 |
Vitamin A (µgRE/day) | 793.1 ± 64.1 | 669.3 ± 37.0 | >0.05 | 576.3 ± 40.4 | 468.7 ± 23.4 | <0.05 |
Carotene (µg/day) | 3966.2 ± 361.2 | 3540.4 ± 210.2 | >0.05 | 2882.5 ± 217.1 | 2449.9 ± 136.8 | >0.05 |
Thiamine (mg/day) | 2.3 ± 0.1 | 1.9 ± 0.0 | <0.01 | 1.7 ± 0.1 | 1.4 ± 0.04 | <0.001 |
Niacin (mg/day) | 17.6 ± 1.0 | 14.2 ± 0.4 | <0.01 | 13.9 ± 0.6 | 10.0 ± 0.2 | <0.001 |
Vitamin C (mg/day) | 126.1 ± 12.1 | 110.6 ± 6.6 | >0.05 | 149.2 ± 11.4 | 99.4 ± 5.5 | <0.001 |
Variables | HGS | Hb | AST | ALT | BUN | Cr | FPG | HbA1c | TC | TG | hs-CRP | UA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HGS | 0.502 * | 0.042 | 0.130 * | −0.004 | 0.239 * | 0.052 † | −0.019 | −0.059 † | 0.032 | −0.044 | 0.296 * | |
Total energy | 0.411 * | 0.256 * | 0.004 | 0.032 | −0.022 | 0.050 | −0.016 | −0.057 | −0.001 | 0.030 | −0.003 | 0.112 * |
Protein/weight | 0.217 * | 0.109 * | −0.037 | −0.033 | −0.018 | −0.029 | −0.073 * | −0.085 * | 0.020 | −0.048 | −0.002 | −0.016 |
PUFA | 0.269 * | 0.127 * | −0.038 | 0.031 | 0.011 | 0.018 | −0.017 | −0.022 | −0.028 | −0.017 | −0.041 | 0.048 |
Fiber | 0.272 * | 0.166 * | −0.019 | 0.030 | 0.001 | −0.007 | 0.001 | −0.017 | −0.004 | 0.007 | −0.039 | 0.041 |
Calcium | 0.296 * | 0.190 * | −0.026 | 0.049 | −0.011 | 0.019 | 0.000 | −0.019 | 0.036 | 0.004 | −0.033 | 0.053 † |
Fe | 0.222 * | 0.149 * | −0.014 | 0.014 | −0.011 | 0.002 | −0.008 | −0.042 | 0.013 | 0.006 | −0.016 | 0.038 |
Potassium | 0.300 * | 0.166 * | −0.033 | 0.028 | −0.023 | −0.002 | −0.044 | −0.043 | 0.037 | 0.019 | −0.042 | 0.066 † |
Vitamin A | 0.159 * | 0.104 * | 0.018 | 0.042 | −0.003 | −0.012 | 0.029 | 0.012 | −0.003 | −0.007 | −0.037 | −0.015 |
Carotene | 0.141 * | 0.100 * | 0.022 | 0.039 | −0.001 | −0.008 | 0.040 | 0.019 | −0.017 | −0.003 | −0.033 | −0.012 |
Thiamine | 0.364 * | 0.213 * | −0.032 | 0.034 | −0.016 | 0.003 | −0.028 | −0.055 † | 0.012 | 0.003 | −0.007 | 0.061 † |
Niacin | 0.343 * | 0.196 * | −0.029 | 0.016 | −0.002 | 0.004 | −0.048 | −0.058 † | 0.014 | −0.005 | −0.030 | 0.067 † |
Vitamin C | 0.098 * | 0.056 † | −0.026 | 0.028 | −0.059 † | −0.046 | −0.076 * | −0.090 * | 0.061 † | −0.023 | −0.026 | −0.014 |
Variable | Women | Men | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unadjusted | Adjusted for Age | Unadjusted | Adjusted for Age | |||||||||
β | SE | p | β | SE | p | β | SE | p | β | SE | p | |
Age | −0.348 | 0.024 | <0.001 | −0.630 | 0.049 | <0.001 | ||||||
Low household income | −2.416 | 0.346 | <0.001 | −0.902 | 0.329 | 0.006 | −4.381 | 0.611 | <0.001 | −1.458 | 0.663 | 0.028 |
Presence of spouse | 1.560 | 0.383 | <0.001 | 0.392 | 0.329 | 0.234 | 2.570 | 0.940 | 0.007 | −1.414 | 0.869 | 0.104 |
Education < 10 year | −2.152 | 0.417 | <0.001 | −0.862 | 0.389 | 0.027 | −3.510 | 0.587 | <0.001 | −2.594 | 0.505 | <0.001 |
Hypertension | −1.155 | 0.363 | 0.002 | −0.095 | 0.333 | 0.776 | 0.670 | 0.701 | 0.340 | 0.236 | 0.579 | 0.400 |
DM | −1.256 | 0.502 | 0.013 | −0.265 | 0.470 | 0.574 | −0.785 | 0.703 | 0.265 | −0.839 | 0.654 | 0.200 |
Dyslipidemia | −1.200 | 0.388 | 0.002 | −0.478 | 0.336 | 0.156 | −3.685 | 0.704 | <0.001 | −2.578 | 0.671 | <0.001 |
BMI (kg/m2) | 0.165 | 0.059 | 0.006 | 0.147 | 0.049 | 0.003 | 0.758 | 0.117 | <0.001 | 0.555 | 0.98 | <0.001 |
Current smoking | 1.019 | 1.369 | 0.457 | 0.797 | 0.897 | 0.375 | 0.319 | 0.856 | 0.710 | −0.254 | 0.735 | 0.730 |
Drinking | −1.138 | 0.485 | 0.019 | −0.307 | 0.404 | 0.448 | −2.961 | 0.713 | <0.001 | −1.174 | 0.592 | 0.048 |
Physical inactivity | −1.548 | 0.353 | <0.001 | −0.557 | 0.360 | 0.122 | −2.831 | 0.605 | <0.001 | −1.556 | 0.560 | 0.001 |
Total energy (Cal/day) | 0.002 | 0.000 | <0.001 | 0.001 | 0.000 | 0.002 | 0.002 | 0.000 | <0.001 | 0.001 | 0.000 | 0.011 |
Protein/weight (g/kg/day) | 1.706 | 0.364 | <0.001 | 0.405 | 0.317 | 0.203 | 1.787 | 0.636 | 0.005 | 0.334 | 0.498 | 0.502 |
PUFA (g/day) | 0.216 | 0.026 | <0.001 | 0.124 | 0.024 | <0.001 | 0.200 | 0.051 | <0.001 | 0.128 | 0.043 | 0.003 |
Fiber (g/day) | 0.087 | 0.014 | <0.001 | 0.043 | 0.013 | 0.001 | 0.122 | 0.022 | <0.001 | 0.073 | 0.019 | <0.001 |
Calcium (mg/day) | 0.004 | 0.001 | <0.001 | 0.001 | 0.001 | 0.156 | 0.005 | 0.001 | <0.001 | 0.003 | 0.001 | 0.004 |
Fe (mg/day) | 0.069 | 0.026 | 0.007 | 0.025 | 0.012 | 0.039 | 0.066 | 0.038 | 0.085 | 0.024 | 0.028 | 0.388 |
Potassium (mg/day) | 0.001 | 0.000 | <0.001 | 0.001 | 0.000 | 0.005 | 0.001 | 0.000 | <0.001 | 0.001 | 0.000 | <0.001 |
Vitamin A (µgRE/day) | 0.001 | 0.000 | 0.010 | 0.001 | 0.000 | 0.290 | 0.001 | 0.000 | <0.048 | 0.000 | 0.000 | 0.297 |
Carotene (µg/day) | 0.001 | 0.000 | 0.037 | 0.001 | 0.000 | 0.340 | 0.001 | 0.000 | 0.107 | 0.000 | 0.000 | 0.340 |
Thiamine (mg/day) | 1.689 | 0.241 | <0.001 | 0.785 | 0.219 | <0.001 | 1.673 | 0.342 | <0.001 | 0.565 | 0.321 | 0.079 |
Niacin (mg/day) | 0.194 | 0.033 | 0.001 | 0.081 | 0.028 | 0.003 | 0.207 | 0.061 | 0.001 | 0.099 | 0.054 | 0.065 |
Vitamin C (mg/day) | 0.009 | 0.001 | <0.001 | 0.005 | 0.001 | <0.001 | 0.010 | 0.003 | 0.002 | 0.007 | 0.003 | 0.007 |
Nutritional Intake | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
β | SE | 95% CI | p | β | SE | 95% CI | p | |
PUFA (g/day) | 0.027 | 0.054 | −0.080, 0.133 | 0.624 | 0.083 | 0.029 | 0.025, 0.141 | 0.005 |
Dietary fiber (g/day) | 0.071 | 0.023 | 0.026, 0.116 | 0.002 | 0.019 | 0.016 | −0.012, 0.049 | 0.235 |
Calcium (mg/day) | 0.001 | 0.001 | −0.001, 0.003 | 0.244 | −0.001 | 0.001 | −0.003, 0.001 | 0.396 |
Fe (mg/day) | 0.013 | 0.022 | −0.030, 0.057 | 0.546 | 0.004 | 0.010 | −0.015, 0.023 | 0.681 |
Potassium (mg/day) | 0.0001 | 0.000 | 0.000, 0.001 | 0.026 | 0.000 | 0.000 | 0.000, 0.589 | 0.556 |
Thiamine (mg/day) | −0.142 | 0.447 | −1.020, 0.736 | 0.751 | 0.657 | 0.372 | −0.073, 1.388 | 0.078 |
Niacin (mg/day) | 0.041 | 0.088 | −0.131, 0.214 | 0.636 | 0.025 | 0.036 | −0.046, 0.096 | 0.491 |
Vitamin C (mg/day) | 0.006 | 0.002 | 0.001, 0.011 | 0.013 | 0.003 | 0.001 | 0.001, 0.005 | 0.022 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tak, Y.J.; Lee, J.G.; Yi, Y.H.; Kim, Y.J.; Lee, S.; Cho, B.M.; Cho, Y.H. Association of Handgrip Strength with Dietary Intake in the Korean Population: Findings Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016. Nutrients 2018, 10, 1180. https://doi.org/10.3390/nu10091180
Tak YJ, Lee JG, Yi YH, Kim YJ, Lee S, Cho BM, Cho YH. Association of Handgrip Strength with Dietary Intake in the Korean Population: Findings Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016. Nutrients. 2018; 10(9):1180. https://doi.org/10.3390/nu10091180
Chicago/Turabian StyleTak, Young Jin, Jeong Gyu Lee, Yu Hyeon Yi, Yun Jin Kim, Sangyeoup Lee, Byung Mann Cho, and Young Hye Cho. 2018. "Association of Handgrip Strength with Dietary Intake in the Korean Population: Findings Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016" Nutrients 10, no. 9: 1180. https://doi.org/10.3390/nu10091180
APA StyleTak, Y. J., Lee, J. G., Yi, Y. H., Kim, Y. J., Lee, S., Cho, B. M., & Cho, Y. H. (2018). Association of Handgrip Strength with Dietary Intake in the Korean Population: Findings Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016. Nutrients, 10(9), 1180. https://doi.org/10.3390/nu10091180