Association of Vitamin D Status with Chronic Disease Risk Factors and Cognitive Dysfunction in 50–70 Year Old Adults
Abstract
:1. Introduction
2. Methods
2.1. Subject Characteristics
2.2. Study Design
2.3. Procedures
2.3.1. Questionnaires
2.3.2. Descriptive Data
2.3.3. Pulse Wave Analysis (Central Blood Pressure and Arterial Stiffness)
2.3.4. Body Composition
2.3.5. Blood Draws
2.3.6. Cognitive Function
2.4. Statistical Analyses
3. Results
3.1. Demographics and Body Composition
3.2. Vitamin D Status, and Physical Activity Levels
3.3. Total Caloric and Macronutrient Intakes
3.4. Central Hemodynamics
3.5. Dietary and Supplemental Vitamin D Intake
3.6. Sun Exposure
3.7. Cognitive Function
3.8. Serum Vitamin D and Chronic Risk Factors
3.9. Serum Vitamin D Levels/Vitamin D Status
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Forrest, K.Y.; Stuhldreher, W.L. Prevalence and correlates of vitamin D deficiency in US adults. Nutr. Res. 2011, 31, 48–54. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, H.F. Evolution of our understanding of vitamin D. Nutr. Rev. 2008, 66, S73–S87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F. The Vitamin D Solution: A 3-Step Strategy to Cure Our Most Common Health Problem; Penguin Group: New York, NY, USA, 2010. [Google Scholar]
- Lagunova, Z.; Porojnicu, A.C.; Lindberg, F.; Hexeberg, S.; Moan, J. The dependency of vitamin D status on body mass index, gender, age and season. Anticancer Res. 2009, 29, 3713–3720. [Google Scholar] [CrossRef]
- Engelsen, O. The relationship between ultraviolet radiation exposure and vitamin D status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D status: Measurement, interpretation, and clinical application. Ann. Epidemiol. 2009, 19, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F. The vitamin D deficiency pandemic and consequences for nonskeletal health: Mechanisms of action. Mol. Aspects Med. 2008, 29, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, K.C.; Chu, A.; Go, V.L.; Saad, M.F. Hypovitaminosis D is associated with insulin resistance and ß cell dysfunction. Am. J. Clin. Nutr. 2004, 79, 820–825. [Google Scholar] [CrossRef]
- Garcia-Bailo, B.; El-Sohemy, A.; Haddad, P.S.; Arora, P.; BenZaied, F.; Karmali, M.; Badawi, A. Vitamins D, C, and E in the prevention of type 2 diabetes mellitus: Modulation of inflammation and oxidative stress. Biologics 2011, 5, 7–19. [Google Scholar]
- Need, A.G.; O’Loughlin, P.D.; Horowitz, M.; Nordin, B.E. Relationship between fasting serum glucose, age, body mass index and serum 25 hydroxyvitamin D in postmenopausal women. Clin. Endocrinol. 2005, 62, 738–741. [Google Scholar] [CrossRef]
- Pittas, A.G.; Harris, S.S.; Stark, P.C.; Dawson-Hughes, B. The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 2007, 30, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C. Molecular mechanism of vitamin D in the cardiovascular system. J. Investig. Med. 2011, 59, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, C.D. Regulation of renin expression and blood pressure by vitamin D3. J. Clin. Investig. 2002, 110, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Wolf, M.; Pan, D.; Zadshir, A.; Tareen, N.; Thadhani, R.; Felsenfeld, A.; Levine, B.; Mehrotra, R.; Norris, K. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: Data from the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2007, 167, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Tomaschitz, A.; März, W.; Drechsler, C.; Ritz, E.; Zittermann, A.; Cavalier, E.; Pieber, T.R.; Lappe, J.M.; Grant, W.B.; Holick, M.F. Vitamin D, cardiovascular disease and mortality. Clin. Endocrinol. 2011, 75, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Annweiler, C.; Karras, S.N.; Anagnostis, P.; Beauchet, O. Vitamin D supplements: A novel therapeutic approach for Alzheimer patients. Front. Pharmacol. 2014, 5, 6. [Google Scholar] [CrossRef]
- Bonotis, K.; Krikki, E.; Holeva, V.; Aggouridaki, C.; Costa, V.; Baloyannis, S. Systemic immune aberrations in Alzheimer’s disease patients. J. Neuroimmunol. 2008, 193, 183–187. [Google Scholar] [CrossRef]
- Gezen-Ak, D.; Yilmazer, S.; Dursun, E. Why vitamin D in Alzheimer’s disease? The hypothesis. J. Alzheimers. Dis. 2014, 40, 257–269. [Google Scholar] [CrossRef]
- Goodwill, A.M.; Szoeke, C. A systematic review and meta-analysis of the effect of low vitamin D on cognition. J. Am. Geriatr. Soc. 2017, 65, 2161–2168. [Google Scholar] [CrossRef]
- Guerreiro, R.J.; Santana, I.; Bras, J.M.; Santiago, B.; Paiva, A.; Oliveira, C. Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener 2007, 4, 406–412. [Google Scholar] [CrossRef]
- Schlogl, M.; Holick, M.F. Vitamin D and neurocognitive function. Clin. Interv. Aging 2014, 9, 559–568. [Google Scholar] [PubMed] [Green Version]
- Medical History Questionnaire. Available online: http://www.aahf.info/pdf/Medical_Questionnaire.doc (accessed on 5 October 2013).
- Patient History Questionnaire. University of Florida Health. Available online: https://ufhealthjax.org/forms/patient-history-questionnaire.pdf (accessed on 10 November 2013).
- Taylor, C.; Lamparello, B.; Kruczek, K.; Anderson, E.J.; Hubbard, J.; Misra, M. Validation of a Food Frequency Questionnaire for Calcium and Vitamin D Intake in Adolescent girls with Anorexia Nervosa. J. Am. Diet. Assoc. 2009, 109, 479–485. [Google Scholar] [CrossRef] [PubMed]
- FoodWorks. Nutrient Analysis Software: The Professional’s Choice. Available online: http://nutritionco.com/FoodWorks.htm (accessed on 5 February 2013).
- Woods, S.G.; Knehans, A.; Arnold, S.; Dionne, C.; Hoffman, L.; Turner, P.; Baldwin, J. The associations between diet and physical activity with body composition and walking a timed distance in adults with Prader–Willi syndrome. Food Nutr. Res. 2018, 18, 62. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, H.E.; Vieth, R.; Cole, D.E.; Scillitani, A.; Modoni, S.; Frusciante, V.; Ritrovato, G.; Chiodini, I.; Minisola, S.; Carnevale, V. Sun exposure questionnaire predicts circulating 25-hydroxyvitamin D concentrations in Caucasian hospital workers in southern Italy. J. Steroid. Biochem. Mol. Biol. 2010, 121, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjorstrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Hagstromer, M.; Oja, P.; Sjostrom, M. The international physical activity questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Mini-Mental State Examination. Psychological Assessment Resources. Available online: https://www.parinc.com/Products/Pkey/238 (accessed on 20 January 2013).
- Tombaugh, T.N.; McIntyre, N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc. 1992, 40, 922–935. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, M.F.; Pauca, A.; Xiang, X.J. Pulse wave analysis. Br. J. Clin. Pharmacol. 2001, 51, 507–522. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Chung, M.; Balk, E.M.; Brendel, M.; Ip, S.; Lau, J.; Lee, J.; Lichtenstein, A.; Patel, K.; Raman, G.; Tatsioni, A.; et al. Vitamin D and Calcium: A Systematic Review of Health Outcomes (Update); Prepared by the Southern California Evidence-based Practice Center under Contract No. 290-2012-00006-I.; Southern California Evidence-based Practice Center: Santa Monica, CA, USA, 2014. [Google Scholar]
- Rice, V.J.; Lindsay, G.; Overby, C.; Jeter, A.; Alfred, P.E.; Boykin, G.L.; De Vilbiss, C.; Bateman, R. Automated Neuropsychological Assessment Metrics (ANAM) Traumatic Brain Injury (TBI): Human Factors Assessment. Available online: http://www.vistalifesciences.com (accessed on 20 January 2013).
- Thacher, T.D.; Clarke, B.L. Vitamin D Insufficiency. Mayo Clin. Proc. 2011, 86, 50–60. [Google Scholar] [CrossRef]
- Brock, K.; Huang, W.Y.; Fraser, D.R.; Ke, L.; Tseng, M.; Stolzenberg-Solomon, R.; Peters, U.; Ahn, J.; Purdue, M.; Mason, R.S.; et al. Low vitamin D status is associated with physical inactivity, obesity and low vitamin D intake in a large US sample of healthy middle-aged men and women. J. Steroid. Biochem. Mol. Biol. 2010, 121, 462–466. [Google Scholar] [CrossRef] [Green Version]
- Konradsen, S.; Ag, H.; Lindberg, F.; Hexeberg, S.; Jorde, R. Serum 1, 25-dihydroxy vitamin D is inversely associated with body mass index. Eur. J. Nutr. 2008, 47, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, E.; Navia, B.; López-Sobaler, A.M.; Ortega, R.M. Vitamin D in overweight/obese women and its relationship with dietetic and anthropometric variables. Obesity 2009, 17, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Carrelli, A.; Bucovsky, M.; Horst, R.; Cremers, S.; Zhang, C.; Bessler, M.; Schrope, B.; Evanko, J.; Blanco, J.; Silverberg, S.J.; et al. Vitamin D Storage in Adipose Tissue of Obese and Normal Weight Women. J. Bone Miner. Res. 2017, 32, 237–242. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Berry, D.J.; Lu, C.; Tikkanen, E.; Pilz, S.; Hiraki, L.T.; Cooper, J.D.; Dastani, Z.; Li, R.; Houston, D.K.; et al. Causal relationship between obesity and vitamin D status: Bi-directional Mendelian randomization analyses of multiple cohorts. PLoS Med. 2013, 10, e1001383. [Google Scholar] [CrossRef] [PubMed]
- Aguirre Castaneda, R.; Nader, N.; Weaver, A.; Singh, R.; Kumar, S. Response to vitamin D3 supplementation in obese and non-obese Caucasian adolescents. Horm. Res. Pediatr. 2012, 78, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.C.; Sai, A.; Templin, T.; Smith, L. Dose response to vitamin D supplementation in postmenopausal women: A randomized trial. Ann. Intern. Med. 2012, 156, 425–437. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Yalamanchili, V.; Smith, L.M. The effect of vitamin D supplementation on serum 25(OH)D in thin and obese women. J. Steroid. Biochem. Mol. Biol. 2013, 136, 195–200. [Google Scholar] [CrossRef]
- Lee, P.; Greenfield, J.R.; Seibel, M.J.; Eisman, J.A.; Center, J.R. Adequacy of vitamin D replacement in severe deficiency is dependent on body mass index. Am. J. Med. 2009, 122, 1056–1060. [Google Scholar] [CrossRef]
- Gunta, S.S.; Thadhani, R.I.; Mak, R.H. The effect of vitamin D status on risk factors for cardiovascular disease. Nat. Rev. Nephrol. 2013, 9, 337–347. [Google Scholar] [CrossRef]
- llán-Gómez, F.; Gonzálvez-Ortega, M.; Orea-Soler, I.; Alcaraz-Tafalla, M.S.; Aragón-Alonso, A.; Pascual-Díaz, M.; Pérez-Paredes, M.; Lozano-Almela, M.L. Obesity and inflammation: Change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes. Surg. 2012, 22, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Vinh quoc Lu’o’ng, K.; Nguyen, L.T. The beneficial role of vitamin D in obesity: Possible genetic and cell signaling mechanisms. Nutr. J. 2013, 12, 89. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J. Steroid. Biochem. Mol. Biol. 2018, 175, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Rosner, B.; Willett, W.W.; Sacks, F.M. Cholestrol-lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr. 1999, 69, 30–42. [Google Scholar] [CrossRef] [PubMed]
- McEniery, C.M.; Cockcroft, J.R.; Roman, M.J.; Franklin, S.S.; Wilkinson, I.B. Central blood pressure: Current evidence and clinical importance. Eur. Heart J. 2014, 35, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C. Vitamin D regulation of the renin-angiotensin system. J. Cell Biochem. 2003, 88, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, C.; Montero-Odasso, M.; Llewellyn, D.J.; Richard-Devantoy, S.; Duque, G.; Beauchet, O. Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J. Alzheimers. Dis. 2013, 37, 147–171. [Google Scholar] [CrossRef]
- Annweiler, C.; Beauchet, O. Vitamin D in older adults: The need to specify standard values with respect to cognition. Front. Aging Neurosci. 2014, 6, 72. [Google Scholar] [CrossRef]
Variables | Groups | p | |||
---|---|---|---|---|---|
Total | Low PA (n = 10) | Moderate PA (n = 33) | High PA (n = 29) | ||
Age | 60.9 (50–70.8) | 61.6 (51.8–66.0) | 60.9 (50.6–69.3) | 60.9 (50.9–70.8) | 0.88 |
Height | 165.0 (146.0–191.0) | 164.0 (146.0–170.5) | 165.0 (151.0–184.5) | 162.5 (150.0–191.0) | 0.18 |
Weight | 76.25 (49.5–126.9) | 84.4 (49.5–146.5) | 77.7 (55.7–123.6) | 67.1 (49.9–97.5) | 0.13 |
BMI | 25.75 (19.4–50.2) | 30.6 (21.6–50.2) | 26.0 (20.5–40.7) | 25.3 (19.4–31.6) | 0.03 δ |
WC | 37.75 (28.5–57.0) | 42.0 (32.5–57.0) | 38.5 (31.5–50.0) | 37.0 (28.5–44.0) | 0.03 δ |
%BF ¶ | 37.6 (17.2–56.5) | 47.2 (34.1–56.5) | 39.4 (17.2–55.5) | 33.9 (18.2–45.8) | 0.001 * |
A/G Ratio ¶ | 1.01 (0.64–1.50) | 0.97 (0.73–1.02) | 1.02 (0.65–1.39) | 1.04 (0.64–1.50) | 0.64 |
Variables | Total(n = 72) | Groups | p | ||
---|---|---|---|---|---|
Low PA (n = 10) | Moderate PA (n = 33) | High PA (n = 29) | |||
T Chol | 190.5 (127–318) | 192 (153–231) | 188 (127–267) | 191 (158–318) | 0.90 |
TG | 103 (42–835) | 94 (43–252) | 120 (51–272) | 85 (42–219) | 0.07 |
HDL ¶ | 63 (29–113) | 63 (37–98) | 59 (38–100) | 69 (40–113) | 0.07 |
LDL | 104 (49–232) | 101 (74–144) | 105 (49–177) | 108 (51–232) | 0.66 |
GLU | 90 (75–307) | 90 (78–139) | 88 (81–130) | 91 (75–152) | 0.61 |
VIT D | 29.8 (7.6–57.7) | 20.8 (10.1–36.4) | 29.3 (17.8–57.7) | 32.4 (7.6–53.1) | 0.04 # |
Variables | Total(n = 72) | Groups | p | ||
---|---|---|---|---|---|
Low PA (n = 10) | Moderate PA (n = 33) | High PA (n = 29) | |||
Kcals | 1747.5 (667.6–3628) | 1232 (970.5–2063) | 1759 (667.6–3133) | 1832 (1115–3628) | 0.004 # |
% Kcal Fat ¶ | 33.76 (14.23–56.96) | 34.88 (20.81–47.72) | 33.10 (14.23–56.96) | 33.98 (14.93–50.54) | 0.65 |
% Kcal PRO ¶ | 16.95 (6.10–29.78) | 17.38 (11.15–25.39) | 17.01 (6.10–29.78) | 16.63 (10.37–28.59) | 0.95 |
% Kcal CHO ¶ | 48.61 (23.83–74.04) | 43.88 (26.98–54.05) | 49.24 (23.83–65.67) | 47.17 (33.56–74.04) | 0.62 |
Variables | Total (n = 72) | Groups | p | ||
---|---|---|---|---|---|
Low PA (n = 10) | Moderate PA (n = 33) | High PA (n = 29) | |||
Vit D (IU) | 38.44 (0.0–616) | 17.88 (3–85.76) | 45.28 (0.0–321.24) | 38.48 (0.0–616) | 0.56 |
Vit D (Supp) ¶ | 450 (0.0–10,000) | 400 (0–10,000) | 700 (0–6500) | 600 (0–3500) | 0.69 |
Total (25(OH)D) | Group 1 (Deficient) | Group 2 (Insufficient) | Group 3 (Sufficient) | p | ra | |
---|---|---|---|---|---|---|
n | 72 | 9 | 27 | 36 | ||
ANAM Tests | ||||||
Simple Reaction Time | 216.53 (54.38–275.33) | 194.66 (54.38–275.33) | 215.61 (159.82–268.88) | 226.48 (161.41–262.01) | 0.119 | 0.07 |
Code Sub Learning ¶ | 37.14 (19.13–58.69) | 36.10 (25.32–48.18) | 36.83 (25.53–52.80) | 37.90 (19.13–58.69) | 0.860 | −0.14 |
Proced React Time ¶ | 97.17 (62.79–124.39) | 87.89 (72.39–124.39) | 97.97 (62.79–115.95) | 96.36 (69.73–116.03) | 0.993 | 0.03 |
Math Processing ¶ | 25.33 (9.17–41.04) | 26.19 (13.51–41.04) | 25.94 (13.09–34.78) | 24.79 (9.17–39.71) | 0.837 | 0.02 |
Match to Sample ¶ | 28.31 (8.95–50.16) | 23.98 (14.31–41.55) | 28.91 (17.93–50.16) | 27.12 (8.95–40.93) | 0.203 | −0.10 |
2-Choice React Time | 125.19 (2.91–161.22) | 121.24 (105.35–149.94) | 123.93 (73.39–150.65) | 126.54 (2.91–161.22) | 0.937 | −0.10 |
Code Sub Delayed ¶ | 32.57 (12.54–60.72) | 29.63 (23.97–39.28) | 40.94 (12.54–60.72) | 32.14 (14.82–57.15) | 0.271 | 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, J.; Ferguson, S.L.; Freitas, E.; Miller, R.; Bemben, D.; Knehans, A.; Bemben, M. Association of Vitamin D Status with Chronic Disease Risk Factors and Cognitive Dysfunction in 50–70 Year Old Adults. Nutrients 2019, 11, 141. https://doi.org/10.3390/nu11010141
Kaur J, Ferguson SL, Freitas E, Miller R, Bemben D, Knehans A, Bemben M. Association of Vitamin D Status with Chronic Disease Risk Factors and Cognitive Dysfunction in 50–70 Year Old Adults. Nutrients. 2019; 11(1):141. https://doi.org/10.3390/nu11010141
Chicago/Turabian StyleKaur, Japneet, Steven L. Ferguson, Eduardo Freitas, Ryan Miller, Debra Bemben, Allen Knehans, and Michael Bemben. 2019. "Association of Vitamin D Status with Chronic Disease Risk Factors and Cognitive Dysfunction in 50–70 Year Old Adults" Nutrients 11, no. 1: 141. https://doi.org/10.3390/nu11010141
APA StyleKaur, J., Ferguson, S. L., Freitas, E., Miller, R., Bemben, D., Knehans, A., & Bemben, M. (2019). Association of Vitamin D Status with Chronic Disease Risk Factors and Cognitive Dysfunction in 50–70 Year Old Adults. Nutrients, 11(1), 141. https://doi.org/10.3390/nu11010141