A Narrative Review of The Role of Foods as Dietary Sources of Vitamin D of Ethnic Minority Populations with Darker Skin: The Underestimated Challenge
Abstract
:1. Introduction
2. Vitamin D Status and Vitamin D Intake of Ethnic Minority Populations
2.1. Methods
2.2. Vitamin D Status of Ethnic Minority Populations
2.3. Vitamin D Status in Different Seasons of Ethnic Minority Populations
2.4. Vitamin D Intake of Ethnic Minority Populations
2.5. Vitamin D Status Response to Vitamin D Supplementation of Ethnic Minority Populations
2.6. Vitamin D Synthesis from Sunlight Exposure of Ethnic Minority Populations
3. Current Strategies and Limitations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holick, M.F. Ultraviolet B Radiation: The Vitamin D Connection. Adv. Exp. Med. Biol. 2017, 996, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Chimeh, F.; Lu, Z.R.; Mathieu, J.; Person, K.S.; Zhang, A.Q.; Kohn, N.; Martinello, S.; Berkowitz, R.; Holick, M.F. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch. Biochem. Biophys. 2007, 460, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seamans, K.M.; Cashman, K.D. Existing and potentially novel functional markers of vitamin D status: A systematic review. Am. J. Clin. Nutr. 2009, 89, S1997–S2008. [Google Scholar] [CrossRef]
- Scientific Advisory Committee on Nutrition (SACN). Vitamin D and Health. 2016. Available online: https://www.gov.uk/government/groups/scientific-advisory-committee-on-nutrition (accessed on 19 April 2016).
- Results from Year 1, 2, 3 and 4 (Combined) of the Rolling Programme (2008/2009-2011/2012). 2008/2009-2011/2012. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/310995/NDNS_Y1_to_4_UK_report.pdf. (accessed on 12 December 2016).
- Van Schoor, N.M.; Lips, P. Worldwide vitamin D status. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Clemens, T.L.; Henderson, S.L.; Adams, J.S.; Holick, M.F. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet 1982, 1, 74–76. [Google Scholar] [CrossRef]
- Prentice, A. Nutritional rickets around the world. J. Steroid Biochem. Mol. Biol. 2013, 136, 201–206. [Google Scholar] [CrossRef]
- Holick, M.F. Environmental-Factors That Influence the Cutaneous Production of Vitamin-D. Am. J. Clin. Nutr. 1995, 61, 638s–645s. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, F.A.; Itkonen, S.T.; Ohman, T.; Skaffari, E.; Saarnio, E.M.; Erkkola, M.; Cashman, K.D.; Lamberg-Allardt, C. Vitamin D intake, serum 25-hydroxyvitamin D status and response to moderate vitamin D3 supplementation: A randomised controlled trial in East African and Finnish women. Br. J. Nutr. 2018, 119, 431–441. [Google Scholar] [CrossRef]
- Aloia, J.F.; Patel, M.; Dimaano, R.; Li-Ng, M.; Talwar, S.A.; Mikhail, M.; Pollack, S.; Yeh, J.K. Vitamin D intake to attain a desired serum 25-hydroxyvitamin D concentration. Am. J. Clin. Nutr. 2008, 87, 1952–1958. [Google Scholar] [CrossRef]
- Black, L.J.; Burrows, S.A.; Jacoby, P.; Oddy, W.H.; Beilin, L.J.; Chan She Ping-Delfos, W.; Marshall, C.E.; Holt, P.G.; Hart, P.H.; Mori, T.A. Vitamin D status and predictors of serum 25-hydroxyvitamin D concentrations in Western Australian adolescents. Br. J. Nutr. 2014, 112, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- Cauley, J.A.; Danielson, M.E.; Boudreau, R.; Barbour, K.E.; Horwitz, M.J.; Bauer, D.C.; Ensrud, K.E.; Manson, J.E.; Wactawski-Wende, J.; Shikany, J.M.; et al. Serum 25-hydroxyvitamin D and clinical fracture risk in a multiethnic cohort of women: The Women’s Health Initiative (WHI). J. Bone Miner. Res. 2011, 26, 2378–2388. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.L.; Hart, K.H.; Macdonald, H.M.; Horton, K.; Kang’ombe, A.R.; Berry, J.L.; Lanham-New, S.A. Vitamin D deficiency in UK South Asian Women of childbearing age: A comparative longitudinal investigation with UK Caucasian women. Osteoporos Int. 2013, 24, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.C.; Jindal, P.S.; Smith, L.M. Vitamin D supplementation in young White and African American women. J. Bone Miner. Res. 2014, 29, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.C.; Peacock, M.; Yalamanchili, V.; Smith, L.M. Effects of vitamin D supplementation in older African American women. J. Clin. Endocrinol. Metab. 2013, 98, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.C.; Sai, A.; Templin, T., 2nd; Smith, L. Dose response to vitamin D supplementation in postmenopausal women: A randomized trial. Ann. Intern. Med. 2012, 156, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, P.; Campbell, D.M.; Knox, S.; Horgan, G.W.; Hoad, G.; Boulton, E.; McNeill, G.; Wallace, A.M. Vitamin D in pregnancy at high latitude in Scotland. Br. J. Nutr. 2013, 109, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.E.; Falch, J.A.; Sogaard, A.J.; Haug, E. Vitamin D deficiency and secondary hyperparathyroidism and the association with bone mineral density in persons with Pakistani and Norwegian background living in Oslo, Norway, The Oslo Health Study. Bone 2004, 35, 412–417. [Google Scholar] [CrossRef]
- Nerhus, M.; Berg, A.O.; Dahl, S.R.; Holvik, K.; Gardsjord, E.S.; Weibell, M.A.; Bjella, T.D.; Andreassen, O.A.; Melle, I. Vitamin D status in psychotic disorder patients and healthy controls—The influence of ethnic background. Psychiatry Res. 2015, 230, 616–621. [Google Scholar] [CrossRef]
- Sacheck, J.M.; Van Rompay, M.I.; Chomitz, V.R.; Economos, C.D.; Eliasziw, M.; Goodman, E.; Gordon, C.M.; Holick, M.F. Impact of Three Doses of Vitamin D3 on Serum 25(OH)D Deficiency and Insufficiency in At-Risk Schoolchildren. J. Clin. Endocrinol. Metab. 2017, 102, 4496–4505. [Google Scholar] [CrossRef]
- Schleicher, R.L.; Sternberg, M.R.; Lacher, D.A.; Sempos, C.T.; Looker, A.C.; Durazo-Arvizu, R.A.; Yetley, E.A.; Chaudhary-Webb, M.; Maw, K.L.; Pfeiffer, C.M.; et al. The vitamin D status of the US population from 1988 to 2010 using standardized serum concentrations of 25-hydroxyvitamin D shows recent modest increases. Am. J. Clin. Nutr. 2016, 104, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Tripkovic, L.; Wilson, L.R.; Hart, K.; Johnsen, S.; de Lusignan, S.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Elliott, R.; et al. Daily supplementation with 15 μg vitamin D-2 compared with vitamin D-3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: A 12-wk randomized, placebo-controlled food-fortification trial. Am. J. Clin. Nutr. 2017, 106, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Van der Meer, I.M.; Boeke, A.J.; Lips, P.; Grootjans-Geerts, I.; Wuister, J.D.; Deville, W.L.; Wielders, J.P.; Bouter, L.M.; Middelkoop, B.J. Fatty fish and supplements are the greatest modifiable contributors to the serum 25-hydroxyvitamin D concentration in a multiethnic population. Clin. Endocrinol. (Oxf.) 2008, 68, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.L.; Greer, F.R. Section on Breastfeeding and Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008, 122, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The Vitamin D Deficiency Pandemic: A Forgotten Hormone Important for Health. Public Health Rev. 2010, 32, 267–283. [Google Scholar] [CrossRef]
- Hypponen, E.; Power, C. Hypovitaminosis D in British adults at age 45 y: Nationwide cohort study of dietary and lifestyle predictors. Am. J. Clin. Nutr. 2007, 85, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Thacher, T.D.; Fischer, P.R.; Strand, M.A.; Pettifor, J.M. Nutritional rickets around the world: Causes and future directions. Ann. Trop. Paediatr. 2006, 26, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.D.; Hogler, W.; Craig, M.E.; Verge, C.F.; Walker, J.L.; Piper, A.C.; Woodhead, H.J.; Cowell, C.T.; Ambler, G.R. The re-emerging burden of rickets: A decade of experience from Sydney. Arch. Dis. Child. 2006, 91, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Spiro, A.; Buttriss, J.L. Vitamin D: An overview of vitamin D status and intake in Europe. Nutr. Bull. 2014, 39, 322–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef]
- Kiely, M.; Black, L.J. Dietary strategies to maintain adequacy of circulating 25-hydroxyvitamin D concentrations. Scand. J. Clin. Lab. Investig. Suppl. 2012, 243, 14–23. [Google Scholar] [CrossRef]
- Vermeulen, E.; Stronks, K.; Visser, M.; Brouwer, I.A.; Snijder, M.B.; Mocking, R.J.T.; Derks, E.M.; Schene, A.H.; Nicolaou, M. Dietary pattern derived by reduced rank regression and depressive symptoms in a multi-ethnic population: The HELIUS study. Eur. J. Clin. Nutr. 2017, 71, 987–994. [Google Scholar] [CrossRef]
- Cashman, K.D.; Kiely, M. Tackling inadequate vitamin D intakes within the population: Fortification of dairy products with vitamin D may not be enough. Endocrine 2016, 51, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The cutaneous photosynthesis of previtamin D3: A unique photoendocrine system. J. Investig. Dermatol. 1981, 77, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Novotny, R.; Krueger, D.; Kawahara, T.; Daida, Y.G.; Lensmeyer, G.; Hollis, B.W.; Drezner, M.K. Low vitamin D status despite abundant sun exposure. J. Clin. Endocrinol. Metab. 2007, 92, 2130–2135. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Walther, B. Natural vitamin D content in animal products. Adv. Nutr. 2013, 4, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.H.; Piironen, V.I.; Uusirauva, E.J.; Koivistoinen, P.E. Vitamin-D Contents in Edible Mushrooms. J. Agric. Food Chem. 1994, 42, 2449–2453. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, T.C.; Zhang, A.; Persons, K.S.; Kohn, N.; Berkowitz, R.; Martinello, S.; Holick, M.F. An evaluation of the vitamin D3 content in fish: Is the vitamin D content adequate to satisfy the dietary requirement for vitamin D? J. Steroid Biochem. Mol. Biol. 2007, 103, 642–644. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Kliem, K.E.; Lovegrove, J.A.; Givens, D.I. Effect of production system, supermarket and purchase date on the vitamin D content of eggs at retail. Food Chem. 2017, 221, 1021–1025. [Google Scholar] [CrossRef] [Green Version]
- Black, L.J.; Seamans, K.M.; Cashman, K.D.; Kiely, M. An updated systematic review and meta-analysis of the efficacy of vitamin D food fortification. J. Nutr. 2012, 142, 1102–1108. [Google Scholar] [CrossRef]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, Regional, and National Consumption of Sugar-Sweetened Beverages, Fruit Juices, and Milk: A Systematic Assessment of Beverage Intake in 187 Countries. PLoS ONE 2015, 10, e0124845. [Google Scholar] [CrossRef]
- Babu, U.S.; Calvo, M.S. Modern India and the vitamin D dilemma: Evidence for the need of a national food fortification program. Mol. Nutr. Food Res. 2010, 54, 1134–1147. [Google Scholar] [CrossRef] [PubMed]
Study/Country | Study Design | Ethnic Minority Population a, n | Study Participants, Age, BMI | Season | Vitamin D Intake (µg/day) | 25(OH)D Concentration (nmol/L) | ||
---|---|---|---|---|---|---|---|---|
Mean | SD/95% CI | Mean | SD/95% CI | |||||
Adebayo et al., 2018/Finland [10] | Randomised controlled trial | East African, n = 47 | Women, 41 years, 29.4 kg/m2 | Winter | 11.3 | 5.1 | 52.2 | 14.0 |
Finnish, n = 69 | Women, 33 years, 23.8 kg/m2 | Winter | 8.4 | 4.1 | 60.5 | 16.6 | ||
Aloia et al. 2008/US [11] | Randomised controlled trial | Black, n = 62 | Men and women, 18–65 years, 27.3 kg/m2 | 2.0 | NA | 39.7 | NA | |
White, n = 76 | Men and women, 18–65 years, 26.8 kg/m2 | 2.1 | NA | 5738.0 | Reference | |||
Black et al., 2014/Australia [12] | Prospective cohort study (Western Australian Preganancy Cohort Study) | Caucasian (classified if both parents were Caucasian), n = 887 | Male and Female, 14–17 year, 21.4–23.0 kg/m2 | All seasons | ||||
Non-Caucasian (classified if at least one parent was of an alternate ethnicity), n = 158 | Male and Female, 14–17 years, 21.4–23.0 kg/m2 | All seasons | −15.2 | −19.1, −11.3 b | ||||
Cauley et al., 2011/US [13] | Case control study nested witthin the prospecitve cohort sudy of WHI-OS | White, n = 780 | Postmenopausal women, 66 years, 27.5 kg/m2 | All seasons | 60.8 | 24.0 | ||
Black, n = 758 | Postmenopausal women, 62 years, 30.5 kg/m2 | All seasons | 43.7 | 21.5 | ||||
Hispanic, n = 382 | Postmenopausal women, 63 years, 29.0 kg/m2 | All seasons | 53.0 | 21.0 | ||||
Asian, n = 224 | Postmenopausal women, 65 years, 24.7 kg/m2 | All seasons | 62.3 | 24.3 | ||||
American Indian, n = 88 | Postmenopausal women, 63 years, 29.5 kg/m2 | All seasons | 50.0 | 25.5 | ||||
Darling et al., 2013/UK [14] | Longitudinal study | Caucasian, n = 128 | Premenopausal women, 38 years, 26 kg/m2 | Summer | 2.4 | 2.0 | 72.1 | 26.1 |
South Asian, n = 43 | Summer | 2.2 | 1.8 | 26.2 | 9.9 | |||
Caucasian, n = 97 | Autumn | 2.1 | 1.5 | 59.5 | 25.6 | |||
South Asian, n = 24 | Autumn | 2.0 | 1.4 | 20.9 | 11.8 | |||
Caucasian, n = 80 | Winter | 2.6 | 1.8 | 44.5 | 18.0 | |||
South Asian, n = 26 | Winter | 2.0 | 2.0 | 19.7 | 10.6 | |||
Gallagher et al., 2012 and 2013/US [16,17] | Randomised controlled trial | Caucasian, n = 79 | Spring | 2.5 | 1.9 | 53.2 | 23.9 | |
South Asian, n = 24 | Spring | 1.6 | 1.1 | 22.1 | 11.3 | |||
Black, n = 110 | Women, 67 years, 32.7 kg/m2 | All seasons | 33.0 | NA | ||||
Gallagher et al., 2014/US [15] | Randomised controlled trial | White, n = 163 | Women, 67 years, 30.2 kg/m2 | All seasons | 39.0 | NA | ||
Black, n = 79 | Women, 35 years, 32.5 kg/m2 | All seasons | 37.4 | 30.7, 43.9 | ||||
White, n = 119 | Women, 33 years, 28.8 kg/m2 | All seasons | 31.0 | 23.0, 39.2 | ||||
Haggarty et al., 2013/UK [18] | Prospective cohort study | Caucasians, n = 1205 | Pregnant women, 31 years, NA | Winter | 3.7 | 3.5, 3.9 | 34.4 | 31.8, 37.2 |
Spring | 3.8 | 3.6, 4.1 | 39.7 | 36.7, 42.9 | ||||
Summer | 3.9 | 3.6, 4.2 | 53.1 | 50.0, 56.7 | ||||
Autumn | 4.0 | 3.7, 4.4 | 33.7 | 30.6, 37.2 | ||||
Non-Caucasians (African, Asian and Indian), n = 42 | Pregnant women, 39 years, NA | All seasons | 17.1 | NA | ||||
Meyer et al., 2004/Norway [19] | Prospective cohort study (Oslo Health Study) | Born in Norway, n = 866 | Men and women, adults, NA | All seasons | 74.8 | 23.7 | ||
Born in Pakistan, n = 176 | Men and women, adults, NA | All seasons | 25.0 | 13.6 | ||||
Nerhus et al., 2015/Norway [20] | Prospective cohort study (Thematically Organized Psychosis Study) | Ethnic minority (Turkey, Africa and Latin-America), n = 40 | Men and women, 28 years, 26.1 kg/m2 | Winter | 29.5 | 16.3 | ||
Norwegians, n = 102 | Men and women, 28 years, 24.6 kg/m2 | Winter | 50.4 | 19.1 | ||||
Schleicher et al., 2016/US [22] | Cross-sectional: NHANES (2009-2010) | Mexican American, n = 1388 | Men and women, ≥12 years, NA | All seasons | 53.9 | 52.2, 55.5 | ||
Non-hispanic Black, n = 1229 | Men and women, ≥12 years, NA | All seasons | 46.0 | 41.6, 50.5 | ||||
Non-hispanic White, n = 3174 | Men and women, ≥12 years, NA | All seasons | 75.0 | 72.5, 77.4 | ||||
Sacheck et al., 2017/US [21] | Randomised controlled trial | White, n = 244 | Boy and girl, 11 years, 21.5 kg/m2 | Winter | 61.9 | NA | ||
Black, n = 85 | Winter | 44.7 | NA | |||||
Hispanic or Latino, n = 135 | Winter | 51.9 | NA | |||||
Asian, n = 53 | Winter | 46.9 | NA | |||||
Tripkovic et al., 2017/UK [23] | Randomised controlled trial | South Asian, n = 90 | Women, 43 years, 24.0 kg/m2 | Winter | 27.7 | NA | ||
White, n = 245 | 60.3 | NA | ||||||
van der Meer et al., 2008/The Netherlands [24] | Cross-sectional | Lightest skin Western, n = 110 | Men and women, 18–65 years, 25.3–28.7 kg/m2 | All seasons | 58.0 | 49.0, 68.0 | ||
Turkish and North African, n = 223 | Men and women, 18–65 years, 25.3–28.8 kg/m2 | All seasons | 33.0 | 28.0, 39.0 | ||||
Asian and Mid/South African (darkest skin types), n = 280 | Men and women, 18–65 years, 25.3–28.9 kg/m2 | All seasons | 29.0 | 25.0, 34.0 |
Study/Country | Study Duration | Ethnic Minority Population a, n | Study Participants, Age, BMI | Season | Vitamin D Supplementation | 25(OH) D Concentration nmol/L | |||
---|---|---|---|---|---|---|---|---|---|
Baseline | Endpoint | ||||||||
Mean | SD/95% CI | Mean | SD/95% CI | ||||||
Adebayo et al. 2018/Finland [10] | 5-month | East African, n = 47 | Women, 41 years, 29.4 kg/m2 | Winter | 10 µg/ day | 52.2 | 14.0 | +10.0 | +19.2% |
20 µg/ day | +17.1 | +32.7% | |||||||
Finnish, n = 69 | Women, 33 years, 23.8 kg/m2 | Winter | 10 µg/ day | 60.5 | 16.6 | +8.5 | +14.1% | ||
20 µg/ day | +10.7 | +17.7% | |||||||
Aloia et al. 2008/US [11] | 6-month | Black, n = 62 | Men and women, 18–65 years, 27.3 kg/m2 | Winter | 97.9 (21.0) µg over 3 visits | 39.7 | NA | ||
White, n = 76 | Men and women, 18–65 years, 26.8 kg/m2 | Winter | 76.0 (28.4) µg over 3 visits | 57.8 | NA | ||||
Gallagher et al. 2012 & 2013/US [16,17] | 1-year | Black, n = 110 | Women, 67 years, 32.7 kg/m2 | All seasons | 10–120 µg/day | 33.0 | NA | 125.0 | NA |
White, n = 163 | Women, 67 years, 30.2 kg/m2 | All seasons | 10–120 µg/ day | 39.0 | NA | 117 | NA | ||
Gallagher et al. 2014/US [15] | 1-year | Black, n = 79 | Women, 35 years, 32.5 kg/m2 | All seasons | 60 µg/ day | 37.4 | 30.7, 43.9 | 97.6 | 90.4, 104.8 |
White, n = 119 | Women, 33 years, 28.8 kg/m2 | All seasons | 31.0 | 23.0, 39.2 | 107.8 | 95.4, 120.1 | |||
Sacheck et al. 2017/US [21] | 1-year | White, n = 244 | Boy and girl, 11 years, 21.5 kg/m2 | Winter | 50 µg/ day | 61.9 | NA | ||
Black, n = 85 | Winter | 50 µg/ day | 44.7 | NA | +54.4 | 7.0 | |||
Hispanic or Latino, n = 135 | Winter | 50 µg/ day | 51.9 | NA | |||||
Asian, n = 53 | Winter | 50 µg/ day | 46.9 | NA | +35.0 | 5.4 | |||
Tripkovic et al. 2017/UK [23] | 12-week | South Asian, n = 90 | Women, 43 years, 24.0 kg/m2 | Winter | 27.7 | NA | 60.1 | 49.7, 70.5 b | |
White, n = 245 | 60.3 | NA | 87.9 | 82.3, 93.5 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Lovegrove, J.A.; Givens, D.I. A Narrative Review of The Role of Foods as Dietary Sources of Vitamin D of Ethnic Minority Populations with Darker Skin: The Underestimated Challenge. Nutrients 2019, 11, 81. https://doi.org/10.3390/nu11010081
Guo J, Lovegrove JA, Givens DI. A Narrative Review of The Role of Foods as Dietary Sources of Vitamin D of Ethnic Minority Populations with Darker Skin: The Underestimated Challenge. Nutrients. 2019; 11(1):81. https://doi.org/10.3390/nu11010081
Chicago/Turabian StyleGuo, Jing, Julie A. Lovegrove, and David I. Givens. 2019. "A Narrative Review of The Role of Foods as Dietary Sources of Vitamin D of Ethnic Minority Populations with Darker Skin: The Underestimated Challenge" Nutrients 11, no. 1: 81. https://doi.org/10.3390/nu11010081
APA StyleGuo, J., Lovegrove, J. A., & Givens, D. I. (2019). A Narrative Review of The Role of Foods as Dietary Sources of Vitamin D of Ethnic Minority Populations with Darker Skin: The Underestimated Challenge. Nutrients, 11(1), 81. https://doi.org/10.3390/nu11010081