Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Assessment and Risk of Bias
3. Results
3.1. Search Strategy
3.2. Caffeine Supplementation
3.3. Outcome Variables
3.4. Quality Assessment and Risk of Bias
4. Discussion
4.1. Effects of Caffeine on Aerobic Performance
4.2. Effects of Caffeine on Anaerobic Performance
4.3. Effects of Caffeine on the Fatigue Index
5. Conclusions
Strengths, Limitations and Future Lines of Research
Author Contributions
Funding
Conflicts of Interest
References
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance performance: A systematic review. J. Strength Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gonzalez, L.M.; Sanchez-Oliver, A.J.; Mata, F.; Jodra, P.; Antonio, J.; Dominguez, R. Acute caffeine supplementation in combat sports: A systematic review. J. Int. Soc. Sports Nutr. 2018, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef] [PubMed]
- San Juan, A.F.; Lopez-Samanes, A.; Jodra, P.; Valenzuela, P.L.; Rueda, J.; Veiga-Herreros, P.; Perez-Lopez, A.; Dominguez, R. Caffeine supplementation improves anaerobic performance and neuromuscular efficiency and fatigue in Olympic-level boxers. Nutrients 2019, 11, 2120. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sports Med. 2019, 27, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; del Coso, J.; Urdampilleta, A.; León-Guereño, P.; Fernández-Lázaro, D. Caffeine supplementation and physical performance, muscle damage and perception of fatigue in soccer players: A systematic review. Nutrients 2019, 11, 440. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Glowka, N.; Grygiel, A. Dose-dependent effect of caffeine supplementation on judo-specific performance and training activity: A randomized placebo-controlled crossover trial. J. Int. Soc. Sports Nutr. 2019, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef]
- Goldstein, E.R.; Ziegenfuss, T.; Kalman, D.; Kreider, R.; Campbell, B.; Wilborn, C.; Taylor, L.; Willoughby, D.; Stout, J.; Graves, B.S.; et al. International society of sports nutrition position stand: caffeine and performance. J. Int. Soc. Sports Nutr. 2010, 7, 5. [Google Scholar] [CrossRef]
- Pasman, W.J.; van Baak, M.A.; Jeukendrup, A.E.; de Haan, A. The effect of different dosages of caffeine on endurance performance time. Int. J. Sports Med. 1995, 16, 225–230. [Google Scholar] [CrossRef]
- The National Collegiate Athletic Association. 2019–2020 NCAA Banned Substances; The National Collegiate Athletic Association: Indianapolis, IN, USA, 2019. [Google Scholar]
- Tallis, J.; Duncan, M.J.; James, R.S. What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance? Br. J. Pharmacol. 2015, 172, 3703–3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnopolsky, M.A. Effect of caffeine on the neuromuscular system—Potential as an ergogenic aid. Appl. Physiol. Nutr. Metab. 2008, 33, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, E.; Stojiljkovic, N.; Scanlan, A.T.; Dalbo, V.J.; Stankovic, R.; Antic, V.; Milanovic, Z. Acute caffeine supplementation promotes small to moderate improvements in performance tests indicative of in-game success in professional female basketball players. Appl. Physiol. Nutr. Metab. 2019, 44, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Laurent, D.; Schneider, K.E.; Prusaczyk, W.K.; Franklin, C.; Vogel, S.M.; Krssak, M.; Petersen, K.F.; Goforth, H.W.; Shulman, G.I. Effects of caffeine on muscle glycogen utilization and the neuroendocrine axis during exercise. J. Clin. Endocrinol. Metab. 2000, 85, 2170–2175. [Google Scholar] [CrossRef] [PubMed]
- Lindinger, M.I.; Willmets, R.G.; Hawke, T.J. Stimulation of Na+, K+-pump activity in skeletal muscle by methylxanthines: Evidence and proposed mechanisms. Acta Physiol. Scand. 1996, 156, 347–353. [Google Scholar] [CrossRef]
- Thibault, V.; Guillaume, M.; Berthelot, G.; El Helou, N.; Schaal, K.; Quinquis, L.; Nassif, H.; Tafflet, M.; Escolano, S.; Hermine, O. Women and men in sport performance: The gender gap has not evolved since 1983. J. Sports Sci. Med. 2010, 9, 214–223. [Google Scholar]
- Burke, L.M. Caffeine and Sports Performance. Appl. Physiol. Nutr. Metab. 2008, 33, 1319–1334. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American college of sports medicine joint position statement. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2019. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The influence of caffeine supplementation on resistance exercise: A review. Sports Med. 2019, 49, 17–30. [Google Scholar] [CrossRef]
- Salinero, J.J.; Lara, B.; Jimenez-Ormeno, E.; Romero-Moraleda, B.; Giraldez-Costas, V.; Baltazar-Martins, G.; del Coso, J. More research is necessary to establish the ergogenic effect of caffeine in female athletes. Nutrients 2019, 11, 1600. [Google Scholar] [CrossRef] [PubMed]
- Julian, R.; Hecksteden, A.; Fullagar, H.H.; Meyer, T. The effects of menstrual cycle phase on physical performance in female soccer players. PLoS ONE 2017, 12, e0173951. [Google Scholar] [CrossRef] [PubMed]
- Tounsi, M.; Jaafar, H.; Aloui, A.; Souissi, N. Soccer-related performance in eumenorrheic Tunisian high-level soccer players: Effects of menstrual cycle phase and moment of day. J. Sports Med. Phys. Fit. 2018, 58, 497–502. [Google Scholar]
- Dos, M.S.A.; Mascarin, N.C.; Foster, R.; de Jarmy di Bella, Z.I.; Vancini, R.L.; de Lira, C.A.B. Is muscular strength balance influenced by menstrual cycle in female soccer players? J. Sports Med. Phys. Fit. 2017, 57, 859–864. [Google Scholar]
- Ribeiro-Alves, M.A.; Trugo, L.C.; Donangelo, C.M. Use of oral contraceptives blunts the calciuric effect of caffeine in young adult women. J. Nutr. 2003, 133, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; O’Donnell, J.; Foskett, A.; Rutherfurd-Markwick, K. The influence of caffeine ingestion on strength and power performance in female team-sport players. J. Int. Soc. Sports Nutr. 2016, 13, 46. [Google Scholar] [CrossRef]
- Adan, A.; Prat, G.; Fabbri, M.; Sanchez-Turet, M. Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1698–1703. [Google Scholar] [CrossRef]
- Paton, C.; Costa, V.; Guglielmo, L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J. Sports Sci. 2015, 33, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Jebabli, N.; Ouerghi, N.; Bouabid, J.; Bettaib, R. Effect of caffeine on the repeated modified agility test from some cardiovascular factors, blood glucose and rating of perceived exertion in young people. Iran. J. Public. Health 2017, 46, 755–761. [Google Scholar]
- Suvi, S.; Timpmann, S.; Tamm, M.; Aedma, M.; Kreegipuu, K.; Ööpik, V. Effects of caffeine on endurance capacity and psychological state in young females and males exercising in the heat. Appl. Physiol. Nutr. Metab. 2016, 42, 68–76. [Google Scholar] [CrossRef]
- Nieman, D.C.; Goodman, C.L.; Capps, C.R.; Shue, Z.L.; Arnot, R. Influence of 2-weeks ingestion of high chlorogenic acid coffee on mood state, performance, and postexercise inflammation and oxidative stress: A randomized, placebo-controlled trial. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Wang, H.S.; Tung, K.; Chao, H.H. Effects of gender difference and caffeine supplementation on anaerobic muscle performance. Int. J. Sports Med. 2015, 36, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Chen, Y.C.; Tung, K.; Chao, H.H.; Wang, H.S. Effects of caffeine and sex on muscle performance and delayed onset muscle soreness after exercise-induced muscle damage: A double-blind randomized trial. J. Appl. Physiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Hamm, M.A.; Hurtado, A.K.; Cross, A.G.; Pineda, J.G.; Martin, A.Y.; Uribe, V.A.; Palmer, T.B. Effects of two pre-workout supplements on concentric and eccentric force production during lower body resistance exercise in males and females: A counterbalanced, double-blind, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2017, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Skinner, T.L.; Desbrow, B.; Arapova, J.; Schaumberg, M.A.; Osborne, J.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. Women experience the same ergogenic response to caffeine as men. Med. Sci. Sports Exerc. 2019, 51, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, B.H.; Hester, G.M.; Palmer, T.B.; Williams, K.; Pope, Z.K.; Sellers, J.H.; Conchola, E.C.; Woolsey, C.; Estrada, C. Effect of energy drink consumption on power and velocity of selected sport performance activities. J. Strength Cond. Res. 2018, 32, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Sabblah, S.; Dixon, D.; Bottoms, L. Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp. Exerc. Physiol. 2015, 11, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339. [Google Scholar] [CrossRef]
- O’Connor, D.; Green, S.; Higgins, J.P. Defining the review question and developing criteria for including studies. In Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 81–94. [Google Scholar]
- Green, S.; Higgins, J.P. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.0.2; The Cochrane Library; Wiley Online Library: Chichester, West Sussex, UK, 2009. [Google Scholar]
- Cappelletti, S.; Daria, P.; Sani, G.; Aromatario, M. Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef]
- Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef]
- Pickering, C.; Grgic, J. Caffeine and exercise: What next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef] [PubMed]
- Mansour, T.E. Phosphofructokinase activity in skeletal muscle extracts following administration of epinephrine. J. Biol. Chem. 1972, 247, 6059–6066. [Google Scholar] [PubMed]
- Tallis, J.; James, R.S.; Cox, V.M.; Duncan, M.J. The effect of a physiological concentration of caffeine on the endurance of maximally and submaximally stimulated mouse soleus muscle. J. Physiol. Sci. 2013, 63, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Constantini, N.W.; Dubnov, G.; Lebrun, C.M. The menstrual cycle and sport performance. Clin. Sports Med. 2005, 24, e51–e82. [Google Scholar] [CrossRef]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef]
- Sokmen, B.; Armstrong, L.E.; Kraemer, W.J.; Casa, D.J.; Dias, J.C.; Judelson, D.A.; Maresh, C.M. Caffeine use in sports: Considerations for the athlete. J. Strength Cond. Res. 2008, 22, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Yanovich, R.; Evans, R.; Israeli, E.; Constantini, N.; Sharvit, N.; Merkel, D.; Epstein, Y.; Moran, D.S. Differences in physical fitness of male and female recruits in gender-integrated army basic training. Med. Sci. Sports Exerc. 2008, 40, S654–S659. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- Astorino, T.A.; Rohmann, R.L.; Firth, K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur. J. Appl. Physiol. 2008, 102, 127–132. [Google Scholar] [CrossRef]
- Phillips, S.K.; Sanderson, A.G.; Birch, K.; Bruce, S.A.; Woledge, R.C. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J. Physiol. 1996, 496, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, R.; Niclos, B.B.; Rutherford, O.M. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J. Physiol. 1996, 493, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Botella, P.; Parra, A. Coffee increases state anxiety in males but not in females. Hum. Psychopharmacol. Clin. Exp. 2003, 18, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Temple, J.L.; Bulkley, A.M.; Briatico, L.; Dewey, A.M. Sex differences in reinforcing value of caffeinated beverages in adolescents. Behav. Pharmacol. 2009, 20, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Temple, J.L.; Dewey, A.M.; Briatico, L.N. Effects of acute caffeine administration on adolescents. Exp. Clin. Psychopharmacol. 2010, 18, 510–520. [Google Scholar] [CrossRef] [PubMed]
Author/s | Population | Intervention | Main Outcome Analyzed | Effect on Men vs. Women |
---|---|---|---|---|
Paton et al. (2015) [29] | Trained cyclists 10 Men (36 ± 10 years) 10 Women (25 ± 7 years) | 3–4 mg/kg in caffeinated gum During exercise (10-km point at 1st sprint) | • Time trial performance | • ↔ • ↔ • ↔ |
Suvi et al. (2016) [31] | Healthy active students 13 Men (24.9 ± 4.1) 10 Women (22.5 ± 2.0 years) | 6 mg/kg of gelatin in capsule in two doses 4 mg/kg 60 min before 2 mg/kg pre-test | • Time to exhaustion (minute) | • ↔ |
Nieman et al. (2017) [32] | Cyclists 10 Men (36.1 ± 3.3) Five Women (40.0 ± 4.5 years) | 474 mg of Turkish coffee (men: ≈6.7 mg/kg and women: ≈7.5 mg/kg) Each morning for two weeks | • Time trial performance | • ↔ |
Skinner et al. (2019) [36] | Endurance-trained cyclists and triathletes 16 Men (32.6 ± 8.3) 11 Women (29.7 ± 5.3 years) | 3 mg/kg in opaque capsules 90 min before | • Time trial performance | • ↔ |
Author/s | Population | Intervention | Main Outcome Analyzed | Effect on Men vs. Women |
---|---|---|---|---|
Chen et al. (2015) [33] | Elite collegiate athletes (tennis, basketball, soccer) 10 Men (20.10 ± 2.18 years) 10 Women (19.9 ± 0.99 years) | 6 mg/kg in capsules taken with 500 mL water 60 min before | • MVIC (Nm/kg) • SVIFP (s) • MVIC (Nm/kg) | • ↔ • ↔ • ↔ |
Paton et al. (2015) [29] | Trained cyclists 10 Men (36 ± 10 years) 10 Women (25 ± 7 years) | 3–4 mg/kg in caffeinated gum During exercise (10-km point at 1st sprint) | • 0.2-km sprints each 10-km of a 30-km cycling time trial | • ↑ in men |
Sabblah et al. (2015) [38] | Moderately active resistance-trained individuals 10 Men (24.4 ± 3.2 years) Eight Women (27.9 ± 6.13) | 5 mg/kg of dry anhydrous caffeine mixed with 300 mL water and a sugar- free peach squash solution 60 min before | • Bench press 1RM • Squat 1RM • Number of bench press reps to failure at 40% 1RM (total weight lifted) | • ↔ • ↔ • ↑ in men |
Jebabli et al. (2016) [30] | Healthy active students of Sports Sciences 10 Men (22.9 ± 1.46 years) Eight Women (21.8 ± 0.45 years) | 5 mg/kg (Undefined) 45 min before | • RMAT total time (s) • RMAT peak time (s) | • ↓ in men • ↔ |
Tinsley et al. (2017) [35] | Resistance-trained adults Nine Men (20.7 ± 2.8 years) 12 Women (21.5 ± 2.0 years) | Commercially available multi-ingredient pre-workout supplements 4.0 mg/kg for men 3.6 mg/kg for women 30 min before | • Maximal concentric force (N) • Maximal eccentric force (N) | • ↔ • ↔ |
Jacobson et al. (2018) [37] | Healthy active students 17 Men and 19 Women (19–26 years) | 240 mg of Energy drink shot (57 mL) 30 min before | • IFS peak velocity (m/s) • IFS average velocity (m/s) • CMJ power (W) • CMJ peak velocity (m/s) | • ↓ in men • ↓ in men • ↔ • ↔ |
Chen et al. (2019) [34] | Elite collegiate athletes (tennis, basketball, soccer) 10 Men (21.1 ± 2.1 years) 10 Women (20.4 ± 1.2 years) | 6 mg/kg in capsule taken with 500 mL water 24/48 h post-exercise | • MVIC (Nm/kg) • SVIFP (Tlim) (s) • MVIC post Tlim (Nm/kg) | • ↔ • ↔ • ↔ |
Author/s | Population | Intervention | Main Outcome Analyzed | Effect on Men vs. Women |
---|---|---|---|---|
Chen et al. (2015) [33] | Elite collegiate athletes (tennis, basketball, soccer) 10 Men (20.10 ± 2.18 years) 10 Women (19.9 ± 0.99 years) | 6 mg/kg in capsules taken with 500 mL water 60 min before | • Fatigue index (%) | • ↔ |
Jebabli et al. (2016) [30] | Healthy active students of Sports Sciences 10 Men (22.9 ± 1.46 years) Eight Women (21.8 ± 0.45 years) | 5 mg/kg (Undefined) 45 min before | • RMAT fatigue index (%) | • ↔ |
Chen et al. (2019) [34] | Elite collegiate athletes (tennis, basketball, soccer) 10 Men (21.1 ± 2.1 years) 10 Women (20.4 ± 1.2 years) | 6 mg/kg in capsule taken with 500 mL water 24/48 h post-exercise | • Fatigue index (%) | • ↔ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. https://doi.org/10.3390/nu11102313
Mielgo-Ayuso J, Marques-Jiménez D, Refoyo I, Del Coso J, León-Guereño P, Calleja-González J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients. 2019; 11(10):2313. https://doi.org/10.3390/nu11102313
Chicago/Turabian StyleMielgo-Ayuso, Juan, Diego Marques-Jiménez, Ignacio Refoyo, Juan Del Coso, Patxi León-Guereño, and Julio Calleja-González. 2019. "Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review" Nutrients 11, no. 10: 2313. https://doi.org/10.3390/nu11102313
APA StyleMielgo-Ayuso, J., Marques-Jiménez, D., Refoyo, I., Del Coso, J., León-Guereño, P., & Calleja-González, J. (2019). Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients, 11(10), 2313. https://doi.org/10.3390/nu11102313