Baru Almonds Increase the Activity of Glutathione Peroxidase in Overweight and Obese Women: A Randomized, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Subjects
2.3. Dietary Intervention and Compliance
2.4. Blood Sampling and Laboratory Methods
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Savini, I.; Catani, M.V.; Evangelista, D.; Gasperi, V.; Avigliano, L. Obesity-associated oxidative stress: Strategies finalized to improve redox state. Int. J. Mol. Sci. 2013, 14, 10497–10538. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Ishida, N.; Uchiyama, K.; Yamaguchi, K.; Itoh, Y.; Shichiri, M.; Yoshida, Y.; Hagihara, Y.; Naito, Y.; Yoshikawa, T.; et al. Fatty liver induced by free radicals and lipid peroxidation. Free Radic Res. 2012, 46, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Hulsmans, M.; Van Dooren, E.; Holvoet, P. Mitochondrial reactive oxygen species and risk of atherosclerosis. Curr. Atheroscler. Rep. 2012, 14, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Sfar, S.; Boussoffara, R.; Sfar, M.T.; Kerkeni, A. Antioxidant enzymes activities in obese Tunisian children. Nutr. J. 2013, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Bondia-Pons, I.; Ryan, L.; Martinez, J.A. Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem. 2012, 68, 701–711. [Google Scholar] [CrossRef]
- Souza, R.G.; Gomes, A.C.; Naves, M.M.; Mota, J.F. Nuts and legume seeds for cardiovascular risk reduction: Scientific evidence and mechanisms of action. Nutr. Rev. 2015, 73, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Marinou, K.A.; Georgopoulou, K.; Agrogiannis, G.; Karatzas, T.; Iliopoulos, D.; Papalois, A.; Chatziioannou, A.; Magiatis, P.; Halabalaki, M.; Tsantila, N.; et al. Differential effect of Pistacia vera extracts on experimental atherosclerosis in the rabbit animal model: An experimental study. Lipids Health Dis. 2010, 9, 73. [Google Scholar] [CrossRef]
- Alturfan, A.A.; Emekli-Alturfan, E.; Uslu, E. Consumption of pistachio nuts beneficially affected blood lipids and total antioxidant activity in rats fed a high-cholesterol diet. Folia Biol. 2009, 55, 132–136. [Google Scholar]
- Stockler-Pinto, M.B.; Mafra, D.; Farage, N.E.; Boaventura, G.T.; Cozzolino, S.M. Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition 2010, 26, 1065–1069. [Google Scholar] [CrossRef]
- Cominetti, C.; de Bortoli, M.C.; Garrido, A.B., Jr.; Cozzolino, S.M. Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women. Nutr. Res. 2012, 32, 403–407. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.Y.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Lemos, M.R.B.; Siqueira, E.M.A.; Arruda, S.F.; Zambiazi, R.C. The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts (Dipteryx alata Vog.). Food Res. Intern. 2012, 48, 592–597. [Google Scholar] [CrossRef]
- Siqueira, E.M.A.; Marin, A.M.F.; Cunha, M.S.B.; Fustinoni, A.M.; Sant’Ana, L.P.; Arruda, S.F. Consumption of baru seeds (Dipteryx alata Vog.), a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Res. Int. 2012, 45, 427–433. [Google Scholar] [CrossRef]
- Fernandes, D.C.; Freitas, J.B.; Czeder, L.P.; Naves, M.M. Nutritional composition and protein value of the baru (Dipteryx alata Vog.) almond from the Brazilian Savanna. J. Sci. Food Agric. 2010, 90, 1650–1655. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.G.M.; Gomes, A.C.; de Castro, I.A.; Mota, J.F. A baru almond-enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: A randomized, placebo-controlled trial. Nutrition 2018, 55–56, 154–160. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food-Based Dietary Guidelines. Dietary Guidelines for the Brazilian Population—Brazil; Food and Agriculture Organization: Rome, Italy, 2014. [Google Scholar]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Fisher-Wellman, K.H.; Bloomer, R.J. Lack of effect of a high-calorie dextrose or maltodextrin meal on postprandial oxidative stress in healthy young men. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Jenab, M.; Sabaté, J.; Slimani, N.; Ferrari, P.; Mazuir, M.; Casagrande, C.; Deharveng, G.; Tjønneland, A.; Olsen, A.; Overvad, K.; et al. Consumption and portion sizes of tree nuts, peanuts andseeds in the European prospective investigation into cancer and nutrition (epic) cohorts from 10 European countries. Br. J. Nutr. 2006, 96, S12–S23. [Google Scholar] [CrossRef]
- Bento, A.P.; Cominetti, C.; Simões Filho, A.; Naves, M.M. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: A randomized, controlled, crossover study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1330–1336. [Google Scholar] [CrossRef]
- Botelho, P.B.; Guimaraes, J.P.; Mariano, K.R.; Afonso MD, S.; Koike, M.K.; Lottenberg AM, P.; Castro, I.A. Effect of echium oil combined with phytosterols on biomarkers of atherosclerosis in LDLr-knockout mice: Echium oil is a potential alternative to marine oils for use in functional foods. Eur. J. Lipid Sci. Technol. 2015, 117, 1561–1568. [Google Scholar] [CrossRef]
- Antunes, M.V.; Lazzaretti, C.; Gamaro, G.D.; Linden, R. Preanalytical and validation studies for the determination of malondialdehyde in human plasma through high performance liquid chromatography after derivatization with 2.4-dinitrophenylhydrazine. Braz. J. Pharm. Sci. 2008, 44, 279–287. [Google Scholar]
- Thomson, C.D.; Chisholm, A.; McLachlan, S.K.; Campbell, J.M. Brazil nuts: An effective way to improve selenium status. Am. J. Clin. Nutr. 2008, 87, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, C.V.; Sales, M.M.; Rosa, T.S.; Lewis, J.E.; de Andrade, R.V.; Simões, H.G. The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Stockler-Pinto, M.B.; Lobo, J.; Moraes, C.; Leal, V.O.; Farage, N.E.; Rocha, A.V.; Boaventura, G.T.; Cozzolino, S.M.; Malm, O.; Mafra, D. Effect of Brazil Nut Supplementation on Plasma Levels of Selenium in Hemodialysis Patients: 12 Months of Follow-up. J. Ren. Nutr. 2012, 22, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Mendes, I.K.S.; Matsuura, C.; Aguila, M.B.; Daleprane, J.B.; Martins, M.A.; Mury, W.V.; Brunini, T.M.C. Weight loss enhances hepatic antioxidant status in a NAFLD model induced by high fat. Appl. Physiol. Nutr. Metab. 2018, 43, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Fetherolf, M.M.; Boyd, S.D.; Taylor, A.B.; Kim, H.J.; Wohlschlegel, J.A.; Blackburn, N.J.; Hart, P.J.; Winge, D.R.; Winkler, D.D. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J. Biol. Chem. 2017, 292, 12025–12040. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.D. Low dietary copper increases fecal free radical production, fecal water alkaline phosphatase activity and cytotoxicity in healthy men. J. Nutr. 2003, 133, 522–527. [Google Scholar] [CrossRef]
- Bügel, S.; Harper, A.; Rock, E.; O’Connor, J.M.; Bonham, M.P.; Strain, J.J. Effect of copper supplementation on indices of copper status and certain CVD risk markers in young healthy women. Br. J. Nutr. 2005, 94, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, C.; López-Jurado, M.; Aranda, P.; Llopis, J. Plasma levels of copper, manganese and selenium in an adult population in southern Spain: Influence of age, obesity and lifestyle factors. Sci. Total Environ. 2010, 408, 1014–1020. [Google Scholar] [CrossRef]
- De Luis, D.A.; Pacheco, D.; Izaola, O.; Terroba, M.C.; Cuellar, L.; Cabezas, G. Micronutrient status in morbidly obese women before bariatric surgery. Surg. Obes. Relat. Dis. 2013, 9, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Sauberlich, H.E. Laboratory Tests for the Assessment of Nutritional Status; CRC Press: Boca Raton, FL, USA, 1999; p. 313. [Google Scholar]
- Mataix, J.; López-Frías, M.; Martínez de Victoria, E.; López-Jurado, M.; Aranda, P.; Llopis, J. Factors associated with obesity in an adult Mediterranean population: Influence on plasma lipid profile. J. Am. Coll. Nutr. 2005, 24, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Glade, M.J.; Meguid, M.M. A glance at…antioxidant and antiinflammatory properties of dietary cobalt. Nutrition 2018, 46, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Casas-Agustench, P.; López-Uriarte, P.; Bulló, M.; Ros, E.; Cabré-Vila, J.J.; Salas-Salvadó, J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Arós, F. Effects of a Mediterranean style diet on cardiovascular risk factors. A randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef] [PubMed]
PLA (n = 22) | BARU (n = 24) | P | |
---|---|---|---|
Body Mass Index (kg/m2) | 33.3 ± 4.6 | 32.5 ± 4.3 | 0.73 |
Waist circumference (cm) | 97.5 ± 10.4 | 94.6 ± 12.6 | 0.39 |
Fat mass (kg) | 39.7 ± 8.2 | 39.9 ± 9.7 | 0.86 |
Lean mass (kg) | 41.3 ± 6.7 | 40.8 ± 6.4 | 0.78 |
Body Fat (%) | 48.8 ± 4.4 | 49.0 ± 5.1 | 0.45 |
Android fat (%) | 54.3 ± 3.3 | 55.0 ± 4.0 | 0.49 |
Gynoid fat (%) | 53.9 ± 5.3 | 54.5 ± 5.5 | 0.70 |
Android fat/Gynoid fat | 1.0 ± 0.08 | 1.0 ± 0.08 | 0.77 |
PLA (n = 22) | BARU (n = 24) | Effect of Intervention | ||||||
---|---|---|---|---|---|---|---|---|
Baseline | Week 8 | Baseline | Week 8 | Pa | Time P | Diet P | Time × Diet P | |
Energy (kcal) | 1575.66 ± 187.40 | 1604.60 ± 215.55 | 1713.48 ± 432.96 | 1742.71 ± 340.07 | 0.10 | 0.27 | 0.23 | 0.32 |
PTN (g) | 78.15 ± 15.32 | 82.51 ± 12.75 | 84.34 ± 15.25 | 81.60 ±16.23 | 0.63 | 0.63 | 0.43 | 0.18 |
CHO (g) | 212.12 ± 22.13 | 222.68 ± 18.79 | 218.04 ± 17.39 | 208.38 ± 15.78 * | 0.69 | <0.01 | 0.27 | 0.53 |
FAT (g) | 45.61 ± 6.43 | 42.65 ± 7.82 | 55.99 ± 5.96 | 64.75 ± 6.23 | 0.57 | 0.89 | 0.03 | 0.35 |
SFA (g) | 22.95 ± 6.95 | 26.03 ± 5.98 | 28.55 ± 8.75 | 30.57 ± 6.35 | 0.03 | 0.05 | 0.46 | 0.48 |
MUFA (g) | 16.95 ± 3.23 | 16.19 ± 2.17 | 25.36 ± 4.59 | 30.34 ± 3.13 * | 0.49 | 0.01 | 0.02 | 0.05 |
PUFA (g) | 9.12 ± 0.13 | 12.03 ± 0.28 | 16.37 ± 0.54 | 22.71 ± 0.46 * | 0.36 | <0.01 | <0.01 | 0.24 |
Fiber (g) | 16.77 ± 5.18 | 16.04 ± 5.92 | 17.61 ± 7.93 | 20.53 ± 4.77 | 0.72 | 0.76 | 0.03 | 0.12 |
PLA (n = 22) | BARU (n = 24) | Effect of Intervention | ||||||
---|---|---|---|---|---|---|---|---|
Baseline | Week 8 | Baseline | Week 8 | Pa | Time P | Diet P | Time × Diet P | |
Uric acid (mg/dL) | 4.2 ± 1.5 | 4.1 ± 1.1 | 3.8 ± 0.8 | 3.6 ± 0.2 | 0.20 | 0.76 | 0.17 | 0.20 |
γGT (UI/L) | 41.2 ± 24.8 | 32.4 ± 20.9 | 29.1 ± 19.2 | 25.0 ± 15.7 * | 0.55 | 0.02 | 0.66 | 0.40 |
AST (UI/L) | 23.4 ± 6.8 | 26.3 ± 10.3 | 21.7 ± 14.3 | 23.4 ± 17.9 | 0.95 | 0.01 | 0.50 | 0.61 |
ALT (UI/L) | 25.0 ± 11.3 | 23.6 ± 9.8 | 23.1 ± 16.8 | 20.6 ± 11.2 | 0.75 | 0.46 | 0.28 | 0.99 |
Urea nitrogen (mg/dL) | 29.6 ± 7.0 | 22.7 ± 5.7 | 26.9 ± 5.1 | 23.0 ± 5.6 * | 0.15 | <0.01 | 0.42 | 0.10 |
Creatinine (mg/dL) | 0.80 ± 0.08 | 0.68 ± 0.13 | 0.78 ± 0.12 | 0.76 ± 0.14 | 0.42 | 0.73 | 0.48 | 0.08 |
CAT (U/mg) | 7.9 ± 2.0 | 7.3 ± 1.9 | 8.2 ± 1.8 | 8.1 ± 2.7 | 0.90 | 0.49 | 0.43 | 0.49 |
GPx (U/mg) | 0.42 ± 0.12 | 0.35 ± 0.10 | 0.32 ± 0.11 | 0.40 ± 0.1 * | 0.33 | 0.30 | 0.76 | <0.01 |
SOD (U/mg) | 6.1 ± 1.6 | 5.7 ± 1.8 | 4.7 ± 1.6 | 6.0 ± 1.6 * | 0.76 | <0.01 | 0.33 | 0.84 |
MDA (nmol/mL) | 0.97 ± 0.11 | 0.97 ± 0.14 | 0.99 ± 0.15 | 0.93 ± 0.25 | 0.20 | 0.39 | 0.34 | 0.45 |
IL-6 (pg/mL) | 1.4 ± 0.44 | 0.82 ± 0.16 | 0.69 ± 0.09 | 0.68 ± 0.09 | 0.14 | 0.14 | 0.42 | 0.45 |
IL-10 (pg/mL) | 3.8 ± 0.6 | 4.4 ± 0.7 | 4.0 ± 0.5 | 4.1 ± 0.5 | 0.53 | 0.89 | 0.42 | 0.68 |
ADP (µg/mL) | 36.5 ± 5.2 | 40.2 ± 7.4 | 43.3 ± 8.1 | 43.5 ± 7.1 | 0.73 | 0.69 | 0.97 | 0.59 |
Insulin (U/mL) | 12.8 ± 4.4 | 7.9 ± 0.9 | 7.7 ± 1.3 | 7.1 ± 0.9 | 0.22 | 0.49 | 0.28 | 0.06 |
TNF-α (pg/mL) | 2.6 ± 0.26 | 2.0 ± 0.1 | 2.1 ± 0.1 | 2.2 ± 0.1 | 0.07 | 0.16 | 0.53 | 0.09 |
PLA (n = 22) | BARU (n = 24) | Effect of Intervention | ||||||
---|---|---|---|---|---|---|---|---|
Baseline | Week 8 | Baseline | Week 8 | Pa | Time P | Diet P | Time × Diet P | |
Zn (µg/L) | 36.0 ± 5.6 | 35.6 ± 5.9 | 32.7 ± 5.2 | 32.6 ± 4.1 | 0.33 | 0.82 | 0.01 | 0.90 |
Ca (µg/L) | 1.8 ± 2.6 | 1.8 ± 2.6 | 1.8 ± 2.6 | 1.8 ± 2.6 | 0.70 | 0.56 | 0.67 | 0.36 |
Fe (µg/L) | 22.4 ± 7.8 | 19.2 ± 9.9 | 22.5 ± 2.2 | 18.6 ± 1.1 | 0.76 | 0.21 | 0.95 | 0.89 |
P (µg/L) | 1.1 ± 4.2 | 1.1 ± 2.5 | 1.0 ± 1.6 | 1.1 ± 2.2 | 0.31 | 0.67 | 0.29 | 0.50 |
Mg (µg/L) | 1.5 ± 1.8 | 1.5 ± 1.5 | 1.4 ± 2.0 | 1.4 ± 1.9 | 0.07 | 0.66 | 0.07 | 0.42 |
Co (µg/L) | 0.58 ± 0.10 | 0.47 ± 0.12 | 0.47 ± 0.11 | 0.45 ± 0.14 | 0.02 | <0.01 | 0.02 | <0.01 |
Cu (µg/L) | 15.2 ± 4.4 | 14.5 ± 3.6 | 12.8 ± 2.9 | 13.8 ± 0.03 | 0.03 | 0.76 | 0.11 | 0.03 |
Mn (µg/L) | 24.4 ± 1.5 | 22.0 ± 2.7 | 35.8 ± 6.2 | 24.9 ± 3.1 | 0.45 | 0.85 | 0.37 | 0.51 |
Se (µg/L) | 62.6 ± 23.9 | 66.3 ± 26.3 | 60.0 ± 18.8 | 58.9 ± 12.2 | 0.34 | 0.71 | 0.33 | 0.50 |
Sr (µg/L) | 33.4 ± 10.3 | 32.3 ± 6.8 | 30.6 ± 8.2 | 29.6 ± 6.6 | 0.34 | 0.38 | 0.19 | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, R.G.M.; Gomes, A.C.; Navarro, A.M.; Cunha, L.C.d.; Silva, M.A.C.; Junior, F.B.; Mota, J.F. Baru Almonds Increase the Activity of Glutathione Peroxidase in Overweight and Obese Women: A Randomized, Placebo-Controlled Trial. Nutrients 2019, 11, 1750. https://doi.org/10.3390/nu11081750
de Souza RGM, Gomes AC, Navarro AM, Cunha LCd, Silva MAC, Junior FB, Mota JF. Baru Almonds Increase the Activity of Glutathione Peroxidase in Overweight and Obese Women: A Randomized, Placebo-Controlled Trial. Nutrients. 2019; 11(8):1750. https://doi.org/10.3390/nu11081750
Chicago/Turabian Stylede Souza, Rávila Graziany Machado, Aline Corado Gomes, Anderson Marliere Navarro, Luiz Carlos da Cunha, Marina Alves Coelho Silva, Fernando Barbosa Junior, and João Felipe Mota. 2019. "Baru Almonds Increase the Activity of Glutathione Peroxidase in Overweight and Obese Women: A Randomized, Placebo-Controlled Trial" Nutrients 11, no. 8: 1750. https://doi.org/10.3390/nu11081750
APA Stylede Souza, R. G. M., Gomes, A. C., Navarro, A. M., Cunha, L. C. d., Silva, M. A. C., Junior, F. B., & Mota, J. F. (2019). Baru Almonds Increase the Activity of Glutathione Peroxidase in Overweight and Obese Women: A Randomized, Placebo-Controlled Trial. Nutrients, 11(8), 1750. https://doi.org/10.3390/nu11081750