The Effects of High Doses of Caffeine on Maximal Strength and Muscular Endurance in Athletes Habituated to Caffeine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Habitual Caffeine Intake Assessment
2.3. Experimental Design
2.4. Familiarization Session and One Repetition Maximum Test
2.5. Experimental Protocol
- T-REP—total number of repetitions [n];
- TUTCON—time under tension of concentric contractions [s];
- PP—peak concentric power [W];
- MP—mean concentric power [W];
- PV—peak concentric velocity [m/s];
- MV—mean concentric velocity [m/s].
2.6. Side Effects
2.7. Statistical Analysis
3. Results
Side Effects
4. Discussion
Practical Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burke, L.M. Caffeine and sports performance. Appl. Physiol. Nutr. Metab. 2008, 33, 1319–1334. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Krzysztofik, M.; Maszczyk, A.; Chycki, J.; Zajac, A. The acute effects of caffeine intake on time under tension and power generated during the bench press movement. J. Int. Soc. Sports Nutr. 2019, 16, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grgic, J.; Mikulic, P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur. J. Sport Sci. 2017, 17, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.; Jacobs, P.L.; Whitehurst, M.; Penhollow, T.; Antonio, J. Caffeine enhances upper body strength in resistance-trained women. J. Int. Soc. Sports Nutr. 2010. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Filip, A.; Krzysztofik, M.; Maszczyk, A.; Zajac, A. The acute effect of various doses of caffeine on power output and velocity during the bench press exercise among athletes habitually using caffeine. Nutrients 2019, 11, 1465. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.W.; Shi, D.; Nikodijevic, O.; Jacobson, K.A. The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia 1994, 7, 201–213. [Google Scholar] [PubMed]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferré, S. Mechanisms of the psychostimulant effects of caffeine: Implications for substance use disorders. Psychopharmacology (Berl.) 2016, 233, 1963–1979. [Google Scholar] [CrossRef]
- Behrens, M.; Mau-Moeller, A.; Weippert, M.; Fuhrmann, J.; Wegner, K.; Skripitz, R.; Bader, R.; Bruhn, S. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci. Rep. 2015, 5, 102–109. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.; Badenhorst, C.; Ali, A. The role of genetics in moderating the inter-individual differences in the ergogenicity of caffeine. Nutrients 2018, 10, 1352. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Oxford, S.W. The effect of caffeine ingestion on mood state and bench press performance to failure. J. Strength Cond. Res. 2011, 25, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Lara, F.J.; Del Coso, J.; García, J.M.; Portillo, L.J.; Areces, F.; Abián-Vicén, J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport Sci. 2016, 16, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.W.; Housh, T.J.; Schmidt, R.J.; Johnson, G.O.; Housh, D.J.; Coburn, J.W.; Malek, M.H. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J. Strength Cond. Res. 2006, 20, 506–510. [Google Scholar] [PubMed]
- Green, J.M.; Wickwire, P.J.; McLester, J.R.; Gendle, S.; Hudson, G.; Pritchett, R.C.; Laurent, C.M. Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Int. J. Sports Physiol. Perform. 2007, 2, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Rohmann, R.L.; Firth, K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur. J. Appl. Physiol. 2008, 102, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Golas, A.; Stastny, P.; Nawrocka, M.; Krzysztofik, M.; Zajac, A. Does tempo of resistance exercise impact training volume? J. Hum. Kinet. 2018, 62, 241–250. [Google Scholar] [CrossRef]
- Burd, N.A.; Andrews, R.J.; West, D.W.D.; Little, J.P.; Cochran, A.J.R.; Hector, A.J.; Cashaback, J.G.A.; Gibala, M.J.; Potvin, J.R.; Baker, S.K.; et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. (Lond.) 2012, 590, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Desbrow, B.; Leveritt, M. Awareness and use of caffeine by athletes competing at the 2005 Ironman Triathlon World Championships. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 545–558. [Google Scholar] [CrossRef]
- Aguilar-Navarro, M.; Muñoz, G.; Salinero, J.; Muñoz-Guerra, J.; Fernández-Álvarez, M.; Plata, M.; Del Coso, J. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients 2019, 11, 286. [Google Scholar] [CrossRef] [PubMed]
- Svenningsson, P.; Nomikos, G.G.; Fredholm, B.B. The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J. Neurosci. 1999, 19, 4011–4022. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar] [PubMed]
- Sökmen, B.; Armstrong, L.E.; Kraemer, W.J.; Casa, D.J.; Dias, J.C.; Judelson, D.A.; Maresh, C.M. Caffeine use in sports: Considerations for the athlete. J. Strength Cond. Res. 2008, 22, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Dodd, S.L.; Brooks, E.; Powers, S.K.; Tulley, R. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 62, 424–429. [Google Scholar] [CrossRef] [PubMed]
- de Souza Gonçalves, L.; de Salles Painelli, V.; Yamaguchi, G.; de Oliveira, L.F.; Saunders, B.; da Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J. Appl. Physiol. 2017, 123, 213–220. [Google Scholar] [Green Version]
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Del Coso, J. Time course of tolerance to the performance benefits of caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, R.; Cordery, P.; Funnell, M.; Mears, S.; James, L.; Watson, P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J. Sports Sci. 2017, 35, 1920–1927. [Google Scholar] [CrossRef]
- Bühler, E.; Lachenmeier, D.W.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahrungs Umschau. 2014, 61, 58–63. [Google Scholar]
- Frankowski, M.; Kowalski, A.; Ociepa, A.; Siepak, J.; Niedzielski, P. Caffeine levels in various caffeine—Rich and decaffeinated coffee grades and coffee extracts marketed in Poland. Bromat. Chem. Toksykol. 2008, 1, 21–27. [Google Scholar]
- Self Nutrition Data. Available online: https://nutritiondata.self.com/ (accessed on 2 April 2019).
- Teixeira, V.; Voci, S.M.; Mendes-Netto, R.S.; da Silva, D.G. The relative validity of a food record using the smartphone application MyFitnessPal. Nutr. Diet 2018, 75, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Golas, A.; Krzysztofik, M.; Nawrocka, M.; Zajac, A. The effects of eccentric cadence on power and velocity of the bar during the concentric phase of the bench press movement. J. Sports Sci. Med. 2019, 18, 191–197. [Google Scholar] [PubMed]
- Brown, L.E.; Weir, J.P. ASEP procedures recommendation I: Accurate assessment of muscular strength and power. J Exerc. Physiol. Online 2001, 4, 1–21. [Google Scholar]
- García-Ramos, A.; Haff, G.G.; Padial, P.; Feriche, B. Reliability and validity assessment of a linear position transducer. Sports Biomech. 2018, 17, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, J.A.; Trepeck, C.; Halle, J.L.; Mendez, K.M.; Klemp, A.; Cooke, D.M.; Haischer, M.H.; Byrnes, R.K.; Zoeller, R.F.; Whitehurst, M.; et al. Validity of the open barbell and tendo weightlifting analyzer systems versus the optotrak certus 3D motion-capture system for barbell velocity. Int. J. Sports Physiol. Perform. 2019, 14, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Fernández-Elías, V.E.; Ortega, J.F.; Muñoz, G.; Muñoz-Guerra, J.; Mora-Rodríguez, R. Neuromuscular responses to incremental caffeine doses: Performance and side effects. Med. Sci. Sports Exerc. 2013, 45, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Childs, E.; de Wit, H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology (Berl.) 2006, 185, 514–523. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef]
- Duncan, M.J.; Thake, C.D.; Downs, P.J. Effect of caffeine ingestion on torque and muscle activity during resistance exercise in men. Muscle Nerve. 2014, 50, 523–527. [Google Scholar] [CrossRef]
- Park, N.D.; Maresca, R.D.; McKibans, K.I.; Morgan, D.R.; Allen, T.S.; Warren, G.L. Caffeine enhancement of maximal voluntary strength and activation in uninjured but not injured muscle. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 639–652. [Google Scholar] [CrossRef]
- Irwin, C.; Desbrow, B.; Ellis, A.; O’Keeffe, B.; Grant, G.; Leveritt, M. Caffeine withdrawal and high-intensity endurance cycling performance. J. Sports Sci. 2011, 29, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanis, G.C. Effects of physical activity and inactivity on muscle fatigue. Front. Physiol. 2012, 3, 142. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Sabol, F.; Venier, S.; Tallis, J.; Schoenfeld, B.J.; Del Coso, J.; Mikulic, P. Caffeine supplementation for powerlifting competitions: An evidence-based approach. J. Hum. Kinet. 2019, 68, 131–142. [Google Scholar]
- Pasman, W.J.; van Baak, M.A.; Jeukendrup, A.E.; de Haan, A. The effect of different dosages of caffeine on endurance performance time. Int. J. Sports Med. 1995, 16, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millán, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.J.; Gore, C.J.; Dawson, B. Induced alkalosis and caffeine supplementation: Effects on 2000-m rowing performance. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.; O’Connor, H.; Orr, R.; Ruell, P.; Cheng, H.L.; Chow, C.M. Combined caffeine and carbohydrate ingestion: Effects on nocturnal sleep and exercise performance in athletes. Eur. J. Appl. Physiol. 2014, 114, 2529–2537. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Lara, B.; Ruiz-Moreno, C.; Salinero, J. Challenging the myth of non-response to the ergogenic effects of caffeine ingestion on exercise performance. Nutrients 2019, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; El-Sohemy, A.; Campos, H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am. J. Clin. Nutr. 2007, 86, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Alsene, K.; Deckert, J.; Sand, P.; de Wit, H. Association between A2A receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 2003, 28, 1694–1702. [Google Scholar] [CrossRef]
- Chtourou, H.; Souissi, N. The effect of training at a specific time of day: A review. J. Strength Cond. Res. 2012, 26, 1984–2005. [Google Scholar] [CrossRef] [PubMed]
Variable | Placebo (95% CI) | CAF-9 (95% CI) | CAF-11 (95% CI) | F | p |
---|---|---|---|---|---|
1RM [kg] | 118.3 ± 14.5 (109.4–125.5) | 122.3 ± 15.3 (115.7–132.5) | 124.2 ± 11.4 (116.3–135.2) | 0.24 | 0.78 |
T-REP [n] | 25.1 ± 3.2 (23.3–26.8) | 25.0 ± 4.9 (22.4–27.6) | 25.6 ± 3.3 (23.8–27.3) | 0.09 | 0.90 |
TUTCON [s] | 17.1 ± 3.29 (15.3–18.8) | 19.1 ± 3.29 (17.3–20.8) | 16.9 ± 3.39 (15.1–18.8) | 2.01 | 0.14 |
MP [W] | 348 ± 79 (305–390) | 333 ± 72 (294–372) | 318 ± 78 (276–360) | 0.61 | 0.54 |
PP [W] | 798 ± 164 (710–886) | 766 ± 134 (694–837) | 731 ± 186 (632–831) | 0.61 | 0.51 |
MV [m/s] | 0.71 ± 0.10 (0.66–0.76) | 0.67 ± 0.08 (0.63–0.72) | 0.70 ± 0.07 (0.66–0.74) | 0.8 | 0.45 |
PV [m/s] | 1.39 ± 0.16 (1.31–1.48) | 1.37 ± 0.15 (1.29–1.45) | 1.25 ± 0.17 (1.16–1.34) | 3.43 | 0.04 * |
Variable | Comparison | p | Effect Size (Cohen d) | Relative Effects [%] |
---|---|---|---|---|
1RM [kg] | Placebo vs CAF-9 | 0.82 | 0.26—small | 3.3 ± 4.1 |
Placebo vs CAF-11 | 0.74 | 0.45—small | 4.7 ± 5.1 | |
T-REP [n] | Placebo vs CAF-9 | 0.99 | −0.02—negative effects | 0.4 ± 12.1 |
Placebo vs CAF-11 | 0.93 | 0.15—small | 2.0 ± 11.2 | |
TUTCON [s] | Placebo vs CAF-9 | 0.22 | 0.6—moderate | 10.5 ± 15.5 |
Placebo vs CAF-11 | 0.99 | −0.05—negative effects | −6.2 ± 21.5 | |
MP [W] | Placebo vs CAF-9 | 0.85 | −0.19—negative effects | −1.5 ± 7.6 |
Placebo vs CAF-11 | 0.51 | −0.38—negative effects | −9.4 ± 10.5 | |
PP [W] | Placebo vs CAF-9 | 0.84 | −0.21—negative effects | −4.2 ± 8.3 |
Placebo vs CAF-11 | 0.48 | −0.38—negative effects | −9.2 ± 11.6 | |
MV [m/s] | Placebo vs CAF-9 | 0.43 | −0.44—negative effects | −6.0 ± 11.8 |
Placebo vs CAF-11 | 0.91 | −0.11—negative effects | −1.4 ± 6.6 | |
PV [m/s] | Placebo vs CAF-9 | 0.90 | −0.12—negative effects | −1.5 ± 10.2 |
Placebo vs CAF-11 | 0.04 * | −0.84—negative effects | −11.2 ± 10.7 |
Side Effects | Occurrence of Side Effects in Particular Groups | |||||
---|---|---|---|---|---|---|
PLAC | CAF-9 | CAF-11 | ||||
+0 h | +24 h | +0 h | +24 h | +0 h | +24 h | |
Muscle soreness | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Increased urine output | 1 (6%) | 1 (6%) | 10 (63%) | 9 (57%) | 10 (63%) | 10 (63%) |
Tachycardia and heart palpitations | 3 (19%) | 1 (6%) | 12 (76%) | 11 (69%) | 15 (92%) | 13 (81%) |
Anxiety or nervousness | 1 (6%) | 2 (13%) | 11 (69%) | 4 (25%) | 14 (88%) | 13 (81%) |
Headache | 2 (13%) | 1 (6%) | 3(19%) | 6 (37%) | 8(50%) | 8 (50%) |
Gastrointestinal problems | 0 (0%) | 1 (6%) | 6 (38%) | 10(63%) | 6 (38%) | 13 (81%) |
Perception of performance improvement | 2 (13%) | 0 (0%) | 14 (88%) | 0 (0%) | 6 (38%) | 0 (0%) |
Increased vigor/activeness | 2 (13%) | 1 (6%) | 13(81%) | 8 (50%) | 6 (38%) | 6 (38%) |
Insomnia | 0 (0%) | 0 (0%) | 0 (0%) | 4 (25%) | 0 (0%) | 6 (38%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilk, M.; Krzysztofik, M.; Filip, A.; Zajac, A.; Del Coso, J. The Effects of High Doses of Caffeine on Maximal Strength and Muscular Endurance in Athletes Habituated to Caffeine. Nutrients 2019, 11, 1912. https://doi.org/10.3390/nu11081912
Wilk M, Krzysztofik M, Filip A, Zajac A, Del Coso J. The Effects of High Doses of Caffeine on Maximal Strength and Muscular Endurance in Athletes Habituated to Caffeine. Nutrients. 2019; 11(8):1912. https://doi.org/10.3390/nu11081912
Chicago/Turabian StyleWilk, Michal, Michal Krzysztofik, Aleksandra Filip, Adam Zajac, and Juan Del Coso. 2019. "The Effects of High Doses of Caffeine on Maximal Strength and Muscular Endurance in Athletes Habituated to Caffeine" Nutrients 11, no. 8: 1912. https://doi.org/10.3390/nu11081912
APA StyleWilk, M., Krzysztofik, M., Filip, A., Zajac, A., & Del Coso, J. (2019). The Effects of High Doses of Caffeine on Maximal Strength and Muscular Endurance in Athletes Habituated to Caffeine. Nutrients, 11(8), 1912. https://doi.org/10.3390/nu11081912