Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome
Abstract
:1. Lipids and Cardiovascular Health
2. Review Methods
2.1. Berries: Composition and Nutritional Value
2.2. Berries and Lipids: Animal Models
2.3. Berries and Lipids: Epidemiological Studies
2.4. Berries and Lipids: Clinical Studies
3. Conclusions
4. Future Research and Recommendations
Funding
Conflicts of Interest
References
- The Expert Panel. Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Arch. Intern. Med. 1998, 148, 36–69. [Google Scholar]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. Circulation 2019. [Google Scholar] [CrossRef]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Kastelein, J.J.; van der Steeg, W.A.; Holme, I.; Gaffney, M.; Cater, N.B.; Barter, P.; Deedwania, P.; Olsson, A.G.; Boekholdt, S.M.; Demicco, D.A.; et al. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation 2008, 117, 3002–3009. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, B.J.; Rana, J.S.; Stroes, E.S.G.; Després, J.-P.; Shah, P.K.; Kastelein, J.J.P.; Wareham, N.J.; Boekholdt, S.M.; Khaw, K.-T. Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J. Am. Coll. Cardiol. 2009, 55, 35–41. [Google Scholar] [PubMed]
- Ray, K.K.; Cannon, C.P.; Cairns, R.; Morrow, D.A.; Ridker, P.M.; Braunwald, E. Prognostic utility of apoB/AI, total cholesterol/HDL, non-HDL cholesterol, or hs-CRP as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: Results from PROVE IT-TIMI 22. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Kwon, S.; Zheng, D.; Shaughnessy, S.; Wallace, P.; Hutto, A.; Pugh, K.; Jenkins, A.J.; Klein, R.L.; Liao, Y. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 2003, 52, 453–462. [Google Scholar] [CrossRef]
- Basu, A.; Jenkins, A.J.; Zhang, Y.; Stoner, J.A.; Klein, R.L.; Lopes-Virella, M.F.; Garvey, W.T.; Lyons, T.J. Nuclear magnetic resonance-determined lipoprotein subclasses and carotid intima-media thickness in type 1 diabetes. Atherosclerosis 2016, 244, 93–100. [Google Scholar] [CrossRef]
- Basu, A.; Nguyen, A.; Betts, N.M.; Lyons, T.J. Strawberry as a functional food: An evidence-based review. Crit. Rev. Food. Sci. Nutr. 2014, 54, 790–806. [Google Scholar] [CrossRef]
- Basu, A.; Rhone, M.; Lyons, T.J. Berries: emerging impact on cardiovascular health. Nutr. Rev. 2010, 68, 168–177. [Google Scholar] [Green Version]
- Zhu, Y.; Miao, Y.; Meng, Z.; Zhong, Y. Effects of Vaccinium Berries on Serum Lipids: A Meta-Analysis of Randomized Controlled Trials. Evid. Based. Complement. Alternat. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Fu, D.X.; Wilkinson, M.; Simmons, B.; Wu, M.; Betts, N.M.; Du, M.; Lyons, T.J. Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutr. Res. 2010, 30, 462–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A.; Betts, N.M.; Nguyen, A.; Newman, E.D.; Fu, D.; Lyons, T.J. Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. J. Nutr. 2014, 144, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.R.; de Abreu, I.C.; Guerra, J.F.; Lage, N.N.; Lopes, J.M.; Silva, M.; de Lima, W.G.; Silva, M.E.; Pedrosa, M.L. Açai (Euterpe oleracea Mart.) Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.O.; Silva, M.; Silva, M.E.; Oliveira, R.P.; Pedrosa, M.L. Diet supplementation with acai (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats. Nutrition 2010, 26, 804–810. [Google Scholar] [CrossRef]
- de Souza, M.O.; Silva, L.S.; de Brito Magalhães, C.L.; de Figueiredo, B.B.; Costa, D.C.; Silva, M.E.; Pedrosa, M.L. The hypocholesterolemic activity of acai (Euterpe oleracea Mart.) is mediated by the enhanced expression of the ATP-binding cassette, subfamily G transporters 5 and 8 and low-density lipoprotein receptor genes in the rat. Nutr. Res. 2012, 32, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Mandave, P.; Khadke, S.; Karandikar, M.; Pandit, V.; Ranjekar, P.; Kuvalekar, A.; Mantri, N. Antidiabetic, Lipid Normalizing, and Nephroprotective Actions of the Strawberry: A Potent Supplementary Fruit. Int. J. Mol. Sci. 2017, 18, 124. [Google Scholar] [CrossRef]
- Ströher, D.J.; Escobar Piccoli, J.D.C.; Güllich, A.A.D.C.; Pilar, B.C.; Coelho, R.P.; Bruno, J.B.; Faoro, D.; Manfredini, V. 14 Days of supplementation with blueberry extract shows anti-atherogenic properties and improves oxidative parameters in hypercholesterolemic rats model. Int. J. Food. Sci. Nutr. 2015, 66, 559–568. [Google Scholar] [CrossRef]
- Jaroslawska, J.; Juskiewicz, J.; Wroblewska, M.; Jurgonski, A.; Krol, B.; Zdunczyk, Z. Polyphenol-rich strawberry pomace reduces serum and liver lipids and alters gastrointestinal metabolite formation in fructose-fed rats. J. Nutr. 2011, 141, 1777–1783. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Wilkes, S.E.; Rogers, T.J.; Prior, R.L. Effect of dietary blueberry pomace on selected metabolic factors associated with high fructose feeding in growing Sprague-Dawley rats. J. Med. Food 2012, 15, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Djoussé, L.; Arnett, D.K.; Coon, H.; Province, M.A.; Moore, L.L.; Ellison, R.C. Fruit and vegetable consumption and LDL cholesterol: The National Heart, Lung, and Blood Institute Family Heart Study. Am J. Clin. Nutr. 2004, 79, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Welch, A.A.; Spector, T.; Macgregor, A.; Cassidy, A. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J. Nutr. 2014, 144, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Wedick, N.M.; Pan, A.; Cassidy, A.; Rimm, E.B.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F.B.; Sun, Q.; van Dam, R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr. 2012, 95, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 2013, 127, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Xia, M.; Ma, J.; Hao, Y.; Liu, J.; Mou, H.; Cao, L.; Ling, W. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am. J. Clin. Nutr. 2009, 90, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Xia, M.; Yang, Y.; Liu, F.; Li, Z.; Hao, Y.; Mi, M.; Jin, T.; Ling, W. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin. Chem. 2011, 57, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Bahadoran, Z.; Moslehi, N.; Bastan, S.; Azizi, F. Colors of fruits and vegetables and 3-year changes of cardiometabolic risk factors in adults: Tehran lipid and glucose study. Eur. J. Clin. Nutr. 2015, 69, 1215–1219. [Google Scholar] [CrossRef]
- Sesso, H.D.; Gaziano, J.M.; Jenkins, D.J.; Buring, J.E. Strawberry intake, lipids, C-reactive protein, and the risk of cardiovascular disease in women. J. Am. Coll. Nutr. 2007, 26, 303–310. [Google Scholar] [CrossRef]
- Lee, I.T.; Chan, Y.C.; Lin, C.W.; Lee, W.J.; Sheu, W.H. Effect of cranberry extracts on lipid profiles in subjects with Type 2 diabetes. Diabet. Med. 2008, 25, 1473–1477. [Google Scholar] [CrossRef]
- Broncel, M.; Kozirog, M.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Chojnowska-Jezierska, J. Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med. Sci. Monit. 2010, 16, 28–34. [Google Scholar]
- Soltani, R.; Hakimi, M.; Asgary, S.; Ghanadian, S.M.; Keshvari, M.; Sarrafzadegan, N. Evaluation of the Effects of Vaccinium arctostaphylos L. Fruit Extract on Serum Lipids and hs-CRP Levels and Oxidative Stress in Adult Patients with Hyperlipidemia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Evid. Based. Complement. Alternat. Med. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Kianbakht, S.; Abasi, B.; Hashem Dabaghian, F. Improved lipid profile in hyperlipidemic patients taking Vaccinium arctostaphylos fruit hydroalcoholic extract: A randomized double-blind placebo-controlled clinical trial. Phytother. Res. 2014, 28, 432–436. [Google Scholar] [CrossRef]
- Zunino, S.J.; Parelman, M.A.; Freytag, T.L.; Stephensen, C.B.; Kelley, D.S.; Mackey, B.E.; Woodhouse, L.R.; Bonnel, E.L. Effects of dietary strawberry powder on blood lipids and inflammatory markers in obese human subjects. Br. J. Nutr. 2012, 108, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Ruel, G.; Pomerleau, S.; Couture, P.; Lemieux, S.; Lamarche, B.; Couillard, C. Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br. J. Nutr. 2006, 96, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A.; Baer, D.J.; Khoo, C.; Gebauer, S.K.; Charron, C.S. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J. Nutr. 2015, 145, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Duffey, K.J.; Sutherland, L.A. Adult cranberry beverage consumers have healthier macronutrient intakes and measures of body composition compared to non-consumers: National Health and Nutrition Examination Survey (NHANES) 2005–2008. Nutrients 2013, 5, 4938–4949. [Google Scholar] [CrossRef] [PubMed]
- Inazu, A.; Brown, M.L.; Hesler, C.B.; Agellon, L.B.; Koizumi, J.; Takata, K.; Maruhama, Y.; Mabuchi, H.; Tall, A.R. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 1990, 323, 1234–1238. [Google Scholar] [CrossRef]
- Jiang, R.; Schulze, M.B.; Li, T.; Rifai, N.; Stampfer, M.J.; Rimm, E.B.; Hu, F.B. Non-HDL cholesterol and apolipoprotein B predict cardiovascular disease events among men with type 2 diabetes. Diabetes Care 2004, 27, 1991–1997. [Google Scholar] [CrossRef]
- Wyler von Ballmoos, M.C.; Haring, B.; Sacks, F.M. The risk of cardiovascular events with increased apolipoprotein CIII: A systematic review and meta-analysis. J. Clin. Lipidol. 2015, 9, 498–510. [Google Scholar] [CrossRef] [Green Version]
- Burton-Freeman, B.; Linares, A.; Hyson, D.; Kappagoda, T. Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. J. Am. Coll. Nutr. 2010, 29, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Lankinen, M.; Kolehmainen, M.; Jääskeläinen, T.; Paananen, J.; Joukamo, L.; Kangas, A.J.; Soininen, P.; Poutanen, K.; Mykkänen, H.; Gylling, H.; et al. Effects of whole grain, fish and bilberries on serum metabolic profile and lipid transfer protein activities: A randomized trial (Sysdimet). PLoS ONE 2014, 9, e90352. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010, 140, 1582–1587. [Google Scholar] [CrossRef]
- Basu, A.; Betts, N.M.; Ortiz, J.; Simmons, B.; Wu, M.; Lyons, T.J. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr. Res. 2011, 31, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Festa, A.; D’Agostino, R., Jr.; Howard, G.; Mykkanen, L.; Tracy, R.P.; Haffner, S.M. Chronic subclinical inflammation as part of the insulin resistance syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000, 102, 42–47. [Google Scholar] [CrossRef]
- Ouchi, N.; Kihara, S.; Arita, Y.; Maeda, K.; Kuriyama, H.; Okamoto, Y.; Hotta, K.; Nishida, M.; Takahashi, M.; Nakamura, T.; et al. Novel modulator for endothelial adhesion molecules: Adipocyte-derived plasma protein adiponectin. Circulation 1999, 100, 2473–2476. [Google Scholar] [CrossRef]
- Ouchi, N.; Kihara, S.; Arita, Y.; Okamoto, Y.; Maeda, K.; Kuriyama, H.; Hotta, K.; Nishida, M.; Takahashi, M.; Muraguchi, M.; et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000, 102, 1296–1301. [Google Scholar] [CrossRef]
- Simão, T.N.; Lozovoy, M.A.; Simão, A.N.; Oliveira, S.R.; Venturini, D.; Morimoto, H.K.; Miglioranza, L.H.; Dichi, I. Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome. Br. J. Nutr. 2013, 110, 1885–1894. [Google Scholar] [CrossRef]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef]
- Fu, J.; Bonder, M.J.; Cenit, M.C.; Tigchelaar, E.F.; Maatman, A.; Dekens, J.A.; Brandsma, E.; Marczynska, J.; Imhann, F.; Weersma, R.K.; et al. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ. Res. 2015, 117, 817–824. [Google Scholar] [CrossRef]
- Madeeha, I.R.; Ikram, A.; Imran, M. A preliminary insight of correlation between human fecal microbial diversity and blood lipid profile. Int. J. Food Sci. Nutr. 2016, 67, 865–871. [Google Scholar] [CrossRef] [PubMed]
Author (Year) Funding | Study Design | Participants | Intervention | Significant Effects on Conventional Lipids | Significant Effects on Lipid Subclasses/Apolipoproteins |
---|---|---|---|---|---|
Ruel et al. [35] Canadian Cranberry Growers Coalition | Four week successive periods of intervention with increasing doses of CJC | Obese men (n = 30) | Three doses of CJC (125, 250, and 500 mL) vs. placebo juice/day | Increases in plasma HDL cholesterol (46 ± 5 to 49 ± 6 mg/dL) and decreases in ratio of total and HDL cholesterol with increasing doses of CJC vs. placebo | No significant effects on lipids |
Burton-Freeman et al. [41] California Strawberry Commission | Randomized crossover trial; 12 wks | Hyperlipidemic adults (n = 24) | Strawberry beverage (10 g FDS) vs. matched placebo with or without high-fat meal challenge | Decrease in postprandial triglycerides in the strawberry (131 ± 2 mg/dL) vs. placebo (13 ± 2 mg/dL) group | Not reported |
Zunino et al. [34] USDA, California Strawberry Commission | Randomized cross-over trial; 7 wks | Obese adults (n = 20) | Strawberry beverage (4 servings strawberries) vs. strawberry-flavored control beverage | Decreases in total cholesterol (182 ± 38 to 169 ± 37 mg/dL) in the strawberry vs. control group | Decreases in NMR-derived small HDL particle concentrations (18.3 ± 4.4 to 17.2 ± 3.8 µmol/L), and increase in LDL size (21 ± 0.7 to 21.22 ± 0.6 nm) in the strawberry vs. control group |
Basu et al. [13] NIH NCRR, California Strawberry Commission | Randomized parallel trial; 12 wks | Adults with above optimal serum lipids (n = 60) | High-dose FDS (50 g/d), low-dose FDS (25 g/d) vs. fiber and calorie-matched control beverages | Decreases in total (214 ± 7 to 181 ± 5 mg/dL) and LDL-C (130 ± 7 to 103 ± 5 mg/dL) in high-dose vs. low-dose FDS and controls at 12 wks vs. baseline | Decreases in NMR-derived small LDL particle concentrations (697 ± 106 to 396 ± 69 nmol/L) in high-dose vs. low-dose FDS and controls at 12 wks vs. baseline |
Lankinen et al. [42] funders including non-profit and for profit entities in Finland | Randomized parallel trial; 12 wks | Overweight/obese adults with metabolic syndrome (n = 131) | Healthy diet (whole grains, fish, bilberries (300 g/day), whole grain diet (whole grains), or control diet (refined grains) | Increase in large HDL particle concentrations and particle size in the healthy diet group vs. control | No changes in Apo-A-I and Apo-B 100 between diets |
Novotny et al. [36] USDA, Ocean Spray Cranberries, Inc. | Randomized parallel trial; 8 wks | Overweight adults (n = 56) | LCCJ or matched placebo beverage (480 mL)/day | Decreases in serum triglycerides (113 ± 9 to 102 ± 4 mg/dL) in the LCCJ vs. placebo at 8 wks | No changes in Apo-A-I, A-II, or Apo-B |
Author (Year) Funding | Study Design | Participants | Intervention | Significant Effects on Conventional Lipids | Significant Effects on Lipid Subclasses/Apo Lipoproteins |
---|---|---|---|---|---|
Lee et al. [30] Academic grant from Taichung, Taiwan | Randomized parallel trial; 12 wks | Adults with type 2 diabetes (n = 30) | Cranberry extracts (3 capsules/day ≈ 1500 mg extracts) vs. placebo | Decreases in total (−16 ± 4 mg/d/L) and LDL cholesterol (−15 ± 4 mg/dL) in the cranberry vs. placebo | Not reported |
Qin et al. [26] National Natural Science Foundation of China | Randomized parallel trial; 12 wks | Adults with dyslipidemia (n = 120) | Anthocyanin extracts (4 capsules/day ≈ 320 mg extracts) vs. placebo | Decreases in LDL (159 ± 34 to 140 ± 35 mg/dL) and increases in HDL cholesterol (46 ± 8 to 51 ± 9 mg/dL) in anthocyanin vs. placebo | Decreases in CETP mass and activity in anthocyanin vs. placebo; no changes in Apo-A-I and Apo-B |
Broncel et al. [31] University of Łódź, Poland | Uncontrolled study; 2 months vs. baseline | Healthy adults (n = 22) and adults with MS (n = 25) | Chokeberry extracts (300 mg/day) | Decreases in total (243 ± 35 to 228 ± 33 mg/dL), LDL cholesterol (159 ± 36 to 146 ± 35 mg/dL), and triglycerides (216 ± 67 to 188 ± 90 mg/dL) in berry group vs. baseline | Not reported |
Zhu et al. [27] National Natural Science Foundation of China | Randomized parallel trial; 12 wks | Adults with hypercholesterolemia (n = 150) | Anthocyanin extracts (4 capsules/day ≈ 320 mg extracts) vs. placebo | Decreases in LDL (130 ± 22 to 117 ± 16 mg/dL) and increases in HDL cholesterol (47 ± 9 to 53 ± 8 mg/dL) in anthocyanin vs. placebo | No changes in Apo-A-I and Apo-B |
Soltani et al. [32] No funding source reported | Randomized parallel trial; 4 wks | Adults with hyperlipidemia (n = 50) | Whortleberry extracts (90 mg anthocyanins) vs. placebo | Decreases in total (225 ± 32 to 192 ± 29 mg/dL), LDL cholesterol (133 ± 24 to 122 ± 27 mg/dL) and triglycerides (226 ± 97 to 156 ± 47 mg/dL) in the berry group vs. placebo | Not reported |
Kianbakht et al. [33] Research Institute for Islamic and Complementary Medicine | Randomized parallel trial; 8 wks | Adults with hyperlipidemia (n = 80) | Whortleberry extracts (1050 mg fruit extracts) vs. placebo | Decreases in total (282 ± 38 to 202 ± 37 mg/dL), LDL cholesterol (172 ± 48 to 117 ± 35 mg/dL) and triglycerides (305 ± 23 to 248 ± 19 mg/dL), and increases in HDL cholesterol (44 ± 5 to 59 ± 7 mg/dL) in the berry group vs. placebo | Not reported |
Author (Year) Funding | Study Design | Participants | Intervention | Significant Effects on Surrogate Markers of Atherosclerosis | Significant Effects on Biomarkers of Inflammation |
---|---|---|---|---|---|
Basu et al. [12] NIH NCRR, California Strawberry Commission | Randomized parallel trial; 8 wks | Adults with MS (n = 27) | FDS (50 g/day) vs. control beverage | Decreases in VCAM-1 | Not reported |
Basu et al. [12] NIH NCRR, US Highbush Blueberry Council | Randomized parallel trial; 8 wks | Adults with MS (n = 48) | FDB (50 g/day) vs. control beverage | Decreases in plasma oxidized LDL and MDA; no effects on adhesion molecules | No effects on CRP and IL-6 |
Basu et al. [44] Cranberry Institute and Ocean Spray Cranberries, Inc. | Randomized parallel trial; 8 wks | Adults with MS (n = 31) | LCCJ (480 mL/day) vs. matched placebo | Decreases in plasma oxidized LDL and MDA | No effects on CRP and IL-6 |
Simao et al. [48] National Council of Brazilian Research | Randomized parallel trial; 60 d | Adults with MS (n = 56) | Cranberry juice vs. no juice (usual diet as control group) | Decrease in homocysteine, hydroperoxides and AOPP | Increase in adiponectin; no change in CRP, IL-1,6, and TNF-α |
Novotny et al. [36] USDA, Ocean Spray Cranberries, Inc. | Randomized parallel trial; 8 wks | Overweight adults (n = 56) | LCCJ or matched placebo beverage (480 mL)/day | No changes in adhesion molecules | Decrease in CRP |
Johnson et al. [49] USDA, US Highbush Blueberry Council | Randomized parallel trial; 8 wks | Postmenopausal women with hypertension (n = 48) | FDB (22 g/day) vs. control powder | Increase in nitric oxide | No effects on CRP |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basu, A. Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome. Nutrients 2019, 11, 1983. https://doi.org/10.3390/nu11091983
Basu A. Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome. Nutrients. 2019; 11(9):1983. https://doi.org/10.3390/nu11091983
Chicago/Turabian StyleBasu, Arpita. 2019. "Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome" Nutrients 11, no. 9: 1983. https://doi.org/10.3390/nu11091983
APA StyleBasu, A. (2019). Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome. Nutrients, 11(9), 1983. https://doi.org/10.3390/nu11091983