Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Parameters
2.3. Dietary Intake
2.4. Laboratory Measurements
2.5. Graft Failure
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of RTR and Controls
3.2. Linear Regression
3.3. Dietary Intake
3.4. Graft Failure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Knoll, G. Trends in Kidney Transplantation Over the Past Decade. Drugs 2008, 68, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lamb, K.E.; Lodhi, S.; Meier-Kriesche, H.U. Long-Term Renal Allograft Survival in the United States: A Critical Reappraisal. Am. J. Transplant. 2011, 11, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Djamali, A.; Sadowski, E.A.; Muehrer, R.J.; Reese, S.; Smavatkul, C.; Vidyasagar, A.; Fain, S.B.; Lipscomb, R.C.; Hullett, D.H.; Samaniego-Picota, M.; et al. BOLD-MRI Assessment of Intrarenal Oxygenation and Oxidative Stress in Patients with Chronic Kidney Allograft Dysfunction. Am. J. Physiol. Renal. Physiol. 2007, 292, 513–522. [Google Scholar] [CrossRef] [PubMed]
- La Manna, G.; Lanci, N.; Della Bella, E.; Comai, G.; Cappuccilli, M.L.; Nisi, K.; Todeschini, P.; Carretta, E.; Scolari, M.P.; Stefoni, S. Reduction of Oxidative Damage Reflects a Better Kidney Transplantation Outcome. Am. J. Nephrol. 2011, 34, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.S.; Lim, G.; Levi, M.; Qualls, C.; Jain, S.K. Advanced Glycation End Products and Oxidative Stress are Increased in Chronic Allograft Nephropathy. Am. J. Kidney Dis. 2004, 43, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, E.W.; Stegeman, C.A.; Tiebosch, A.T.; Tegzess, A.M.; van Goor, H. Expression of Inducible and Endothelial Nitric Oxide Synthases, Formation of Peroxynitrite and Reactive Oxygen Species in Human Chronic Renal Transplant Failure. Am. J. Transplant. 2002, 2, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.; Kim, H.W. Effects and Mechanisms of Taurine as a Therapeutic Agent. Biomol. Ther. 2018, 26, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Gaull, G.E. Taurine in Pediatric Nutrition: Review and Update. Pediatrics 1989, 83, 433–442. [Google Scholar] [PubMed]
- Bouckenooghe, T.; Remacle, C.; Reusens, B. Is Taurine a Functional Nutrient? Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.P.; Charles, R.P.; Redmond, H.P.; Bouchier-Hayes, D.J. Taurine and Human Nutrition. Clin. Nutr. 1997, 16, 103–108. [Google Scholar] [CrossRef]
- Laidlaw, S.A.; Grosvenor, M.; Kopple, J.D. The Taurine Content of Common Foodstuffs. JPEN J. Parenter. Enter. Nutr. 1990, 14, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Schuller-Levis, G.B.; Park, E. Taurine: New Implications for an Old Amino Acid. FEMS Microbiol. Lett. 2003, 226, 195–202. [Google Scholar] [CrossRef]
- Schaffer, S.; Azuma, J.; Takahashi, K.; Mozaffari, M. Why is Taurine Cytoprotective? Adv. Exp. Med. Biol. 2003, 526, 307–321. [Google Scholar] [PubMed]
- Sarkar, P.; Basak, P.; Ghosh, S.; Kundu, M.; Sil, P.C. Prophylactic Role of Taurine and its Derivatives Against Diabetes Mellitus and its Related Complications. Food Chem. Toxicol. 2017, 110, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Sener, G.; Sehirli, O.; Ipci, Y.; Cetinel, S.; Cikler, E.; Gedik, N.; Alican, I. Protective Effects of Taurine Against Nicotine-Induced Oxidative Damage of Rat Urinary Bladder and Kidney. Pharmacology 2005, 74, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.; Sinha, M.; Sil, P.C. Taurine Plays a Beneficial Role Against Cadmium-Induced Oxidative Renal Dysfunction. Amino Acids 2009, 36, 417–428. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Yu, Y.; Wang, Y.; Niu, N. The Protective Effects of Taurine Against Early Renal Injury in STZ-Induced Diabetic Rats, Correlated with Inhibition of Renal LOX-1-Mediated ICAM-1 Expression. Ren. Fail. 2008, 30, 763–771. [Google Scholar] [CrossRef]
- Erdem, A.; Gundogan, N.U.; Usubutun, A.; Kilinc, K.; Erdem, S.R.; Kara, A.; Bozkurt, A. The Protective Effect of Taurine Against Gentamicin-Induced Acute Tubular Necrosis in Rats. Nephrol. Dial. Transplant. 2000, 15, 1175–1182. [Google Scholar] [CrossRef]
- Guan, X.; Dei-Anane, G.; Liang, R.; Gross, M.L.; Nickkholgh, A.; Kern, M.; Ludwig, J.; Zeier, M.; Buchler, M.W.; Schmidt, J.; et al. Donor Preconditioning with Taurine Protects Kidney Grafts from Injury After Experimental Transplantation. J. Surg. Res. 2008, 146, 127–134. [Google Scholar] [CrossRef]
- Van den Berg, E.; Pasch, A.; Westendorp, W.H.; Navis, G.; Brink, E.J.; Gans, R.O.; van Goor, H.; Bakker, S.J. Urinary Sulfur Metabolites Associate with a Favorable Cardiovascular Risk Profile and Survival Benefit in Renal Transplant Recipients. J. Am. Soc. Nephrol. 2014, 25, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, E.; Engberink, M.F.; Brink, E.J.; van Baak, M.A.; Joosten, M.M.; Gans, R.O.; Navis, G.; Bakker, S.J. Dietary Acid Load and Metabolic Acidosis in Renal Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2012, 7, 1811–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Berg, E.; Geleijnse, J.M.; Brink, E.J.; van Baak, M.A.; Homan van der Heide, J.J.; Gans, R.O.; Navis, G.; Bakker, S.J. Sodium Intake and Blood Pressure in Renal Transplant Recipients. Nephrol. Dial. Transplant. 2012, 27, 3352–3359. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, D.; Du Bois, E.F. A Formula to Estimate the Approximate Surface Area if Height and Weight be Known 1916. Nutrition 1989, 5, 303–311. [Google Scholar] [PubMed]
- Abbasi, A.; Peelen, L.M.; Corpeleijn, E.; van der Schouw, Y.T.; Stolk, R.P.; Spijkerman, A.M.; van der, A.D.L.; Moons, K.G.; Navis, G.; Bakker, S.J.; et al. Prediction Models for Risk of Developing Type 2 Diabetes: Systematic Literature Search and Independent External Validation Study. BMJ 2012, 345, e5900. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care 2017, 40, 11–24. [Google Scholar]
- Feunekes, G.I.; Van Staveren, W.A.; De Vries, J.H.; Burema, J.; Hautvast, J.G. Relative and Biomarker-Based Validity of a Food-Frequency Questionnaire Estimating Intake of Fats and Cholesterol. Am. J. Clin. Nutr. 1993, 58, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, E.; Engberink, M.F.; Brink, E.J.; van Baak, M.A.; Gans, R.O.; Navis, G.; Bakker, S.J. Dietary Protein, Blood Pressure and Renal Function in Renal Transplant Recipients. Br. J. Nutr. 2013, 109, 1463–1470. [Google Scholar] [CrossRef]
- National Institute for Public Health and the Environment. Dutch Food Composition Table of 2006; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2013. [Google Scholar]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65, 1220–1228. [Google Scholar] [CrossRef]
- Terpos, E.; Christoulas, D.; Kastritis, E.; Katodritou, E.; Pouli, A.; Michalis, E.; Papassotiriou, I.; Dimopoulos, M.A.; Greek Myeloma Study Group. The Chronic Kidney Disease Epidemiology Collaboration Cystatin C (CKD-EPI-CysC) Equation has an Independent Prognostic Value for overall Survival in Newly Diagnosed Patients with Symptomatic Multiple Myeloma; Is it Time to Change from MDRD to CKD-EPI-CysC Equations? Eur. J. Haematol. 2013, 91, 347–355. [Google Scholar]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Meier-Kriesche, H.U.; Schold, J.D.; Kaplan, B. Long-Term Renal Allograft Survival: Have we made Significant Progress Or is it Time to Rethink our Analytic and Therapeutic Strategies? Am. J. Transplant. 2004, 4, 1289–1295. [Google Scholar] [CrossRef]
- De Vries, A.P.; Bakker, S.J.; van Son, W.J.; van der Heide, J.J.; Ploeg, R.J.; The, H.T.; de Jong, P.E.; Gans, R.O. Metabolic Syndrome is Associated with Impaired Long-Term Renal Allograft Function; Not all Component Criteria Contribute Equally. Am. J. Transplant. 2004, 4, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Deetman, P.E.; Zelle, D.M.; Homan van der Heide, J.J.; Navis, G.J.; Gans, R.O.; Bakker, S.J. Plasma Bilirubin and Late Graft Failure in Renal Transplant Recipients. Transpl. Int. 2012, 25, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Zhou, Q.; Xia, Y.; You, X.; Zhao, Z.; Li, Y.; Zou, H. The Association between Oxidative Stress Alleviation Via Sulforaphane-Induced Nrf2-HO-1/NQO-1 Signaling Pathway Activation and Chronic Renal Allograft Dysfunction Improvement. Kidney Blood Press. Res. 2018, 43, 191–205. [Google Scholar] [CrossRef] [PubMed]
- MacMillan-Crow, L.A.; Crow, J.P.; Kerby, J.D.; Beckman, J.S.; Thompson, J.A. Nitration and Inactivation of Manganese Superoxide Dismutase in Chronic Rejection of Human Renal Allografts. Proc. Natl. Acad. Sci. USA 1996, 93, 11853–11858. [Google Scholar] [CrossRef] [PubMed]
- Djamali, A.; Reese, S.; Yracheta, J.; Oberley, T.; Hullett, D.; Becker, B. Epithelial-to-Mesenchymal Transition and Oxidative Stress in Chronic Allograft Nephropathy. Am. J. Transplant. 2005, 5, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Djamali, A.; Reese, S.; Oberley, T.; Hullett, D.; Becker, B. Heat Shock Protein 27 in Chronic Allograft Nephropathy: A Local Stress Response. Transplantation 2005, 79, 1645–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, I.; Reguengo, H.; Almeida, M.; Dias, L.; Martins, L.S.; Pedroso, S.; Santos, J.; Lobato, L.; Henriques, A.C.; Mendonca, D. Oxidative Stress in Kidney Transplantation: Malondialdehyde is an Early Predictive Marker of Graft Dysfunction. Transplantation 2014, 97, 1058–1065. [Google Scholar] [CrossRef]
- Cristol, J.P.; Vela, C.; Maggi, M.F.; Descomps, B.; Mourad, G. Oxidative Stress and Lipid Abnormalities in Renal Transplant Recipients with or without Chronic Rejection. Transplantation 1998, 65, 1322–1328. [Google Scholar] [CrossRef]
- Azuma, H.; Nadeau, K.C.; Ishibashi, M.; Tilney, N.L. Prevention of Functional, Structural, and Molecular Changes of Chronic Rejection of Rat Renal Allografts by a Specific Macrophage Inhibitor. Transplantation 1995, 60, 1577–1582. [Google Scholar] [CrossRef]
- Nadeau, K.C.; Azuma, H.; Tilney, N.L. Sequential Cytokine Dynamics in Chronic Rejection of Rat Renal Allografts: Roles for Cytokines RANTES and MCP-1. Proc. Natl. Acad. Sci. USA 1995, 92, 8729–8733. [Google Scholar] [CrossRef]
- Ramzy, D.; Rao, V.; Tumiati, L.C.; Xu, N.; Miriuka, S.; Delgado, D.; Ross, H.J. Role of Endothelin-1 and Nitric Oxide Bioavailability in Transplant-Related Vascular Injury: Comparative Effects of Rapamycin and Cyclosporine. Circulation 2006, 114, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.; Morais, C.; Sobki, S.; Al Sulaiman, M.; Al Khader, A. N-Acetylcysteine Attenuates Cyclosporin-Induced Nephrotoxicity in Rats. Nephrol. Dial. Transplant. 1999, 14, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y.; Sawada, T.; Kubota, K.; Fuchinoue, S.; Teraoka, S.; Shimizu, A. Injury and Progressive Loss of Peritubular Capillaries in the Development of Chronic Allograft Nephropathy. Kidney Int. 2005, 67, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Huxtable, R.J. Physiological Actions of Taurine. Physiol. Rev. 1992, 72, 101–163. [Google Scholar] [CrossRef] [PubMed]
- Yamori, Y.; Murakami, S.; Ikeda, K.; Nara, Y. Fish and Lifestyle-Related Disease Prevention: Experimental and Epidemiological Evidence for Anti-Atherogenic Potential of Taurine. Clin. Exp. Pharmacol. Physiol. 2004, 31, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Sagara, M.; Murakami, S.; Mizushima, S.; Liu, L.; Mori, M.; Ikeda, K.; Nara, Y.; Yamori, Y. Taurine in 24-H Urine Samples is Inversely Related to Cardiovascular Risks of Middle Aged Subjects in 50 Populations of the World. Adv. Exp. Med. Biol. 2015, 803, 623–636. [Google Scholar] [PubMed]
- Yamori, Y.; Taguchi, T.; Hamada, A.; Kunimasa, K.; Mori, H.; Mori, M. Taurine in Health and Diseases: Consistent Evidence from Experimental and Epidemiological Studies. J. Biomed. Sci. 2010, 17, S6. [Google Scholar] [CrossRef] [PubMed]
- Rosa, F.T.; Freitas, E.C.; Deminice, R.; Jordao, A.A.; Marchini, J.S. Oxidative Stress and Inflammation in Obesity After Taurine Supplementation: A Double-Blind, Placebo-Controlled Study. Eur. J. Nutr. 2014, 53, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Yamori, Y.; Liu, L.; Ikeda, K.; Miura, A.; Mizushima, S.; Miki, T.; Nara, Y.; WHO-Cardiovascular Disease and Alimentary Comprarison (CARDIAC) Study Group. Distribution of Twenty-Four Hour Urinary Taurine Excretion and Association with Ischemic Heart Disease Mortality in 24 Populations of 16 Countries: Results from the WHO-CARDIAC Study. Hypertens. Res. 2001, 24, 453–457. [Google Scholar] [PubMed]
- Shi, X.; Flynn, D.C.; Porter, D.W.; Leonard, S.S.; Vallyathan, V.; Castranova, V. Efficacy of Taurine Based Compounds as Hydroxyl Radical Scavengers in Silica Induced Peroxidation. Ann. Clin. Lab. Sci. 1997, 27, 365–374. [Google Scholar] [PubMed]
- Hanna, J.; Chahine, R.; Aftimos, G.; Nader, M.; Mounayar, A.; Esseily, F.; Chamat, S. Protective Effect of Taurine Against Free Radicals Damage in the Rat Myocardium. Exp. Toxicol. Pathol. 2004, 56, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.W.; Minotto, J.B.; de Oliveira, M.R.; Zanotto-Filho, A.; Behr, G.A.; Rocha, R.F.; Moreira, J.C.; Klamt, F. Scavenging and Antioxidant Potential of Physiological Taurine Concentrations Against Different Reactive Oxygen/Nitrogen Species. Pharmacol. Rep. 2010, 62, 185–193. [Google Scholar] [CrossRef]
- Lourenco, R.; Camilo, M.E. Taurine: A Conditionally Essential Amino Acid in Humans? An Overview in Health and Disease. Nutr. Hosp. 2002, 17, 262–270. [Google Scholar] [PubMed]
- Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism Underlying the Antioxidant Activity of Taurine: Prevention of Mitochondrial Oxidant Production. Amino Acids 2012, 42, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.W.; Jong, C.J.; Ito, T.; Azuma, J. Role of Taurine in the Pathologies of MELAS and MERRF. Amino Acids 2014, 46, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, C. Inhibition of LPS-Induced NO Production by Taurine Chloramine in Macrophages is Mediated Though Ras-ERK-NF-kappaB. Biochem. Pharmacol. 2005, 70, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Seidel, U.; Huebbe, P.; Rimbach, G. Taurine: A Regulator of Cellular Redox Homeostasis and Skeletal Muscle Function. Mol. Nutr. Food Res. 2018, e1800569. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Cha, Y.N. Taurine Chloramine Produced from Taurine Under Inflammation Provides Anti-Inflammatory and Cytoprotective Effects. Amino Acids 2014, 46, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Marcinkiewicz, J.; Kontny, E. Taurine and Inflammatory Diseases. Amino Acids 2014, 46, 7–20. [Google Scholar] [CrossRef]
- Scozzi, D.; Ibrahim, M.; Menna, C.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. The Role of Neutrophils in Transplanted Organs. Am. J. Transplant. 2017, 17, 328–335. [Google Scholar] [CrossRef]
- Kolagal, V.; Karanam, S.A.; Dharmavarapu, P.K.; D’Souza, R.; Upadhya, S.; Kumar, V.; Kedage, V.; Muttigi, M.S.; Shetty, J.K.; Prakash, M. Determination of Oxidative Stress Markers and their Importance in Early Diagnosis of Uremia-Related Complications. Indian. J. Nephrol. 2009, 19, 8–12. [Google Scholar] [PubMed]
- Frenay, A.S.; de Borst, M.H.; Bachtler, M.; Tschopp, N.; Keyzer, C.A.; van den Berg, E.; Bakker, S.J.L.; Feelisch, M.; Pasch, A.; van Goor, H. Serum Free Sulfhydryl Status is Associated with Patient and Graft Survival in Renal Transplant Recipients. Free Radic. Biol. Med. 2016, 99, 345–351. [Google Scholar] [CrossRef]
- Prakash, M.; Upadhya, S.; Prabhu, R. Protein Thiol Oxidation and Lipid Peroxidation in Patients with Uraemia. Scand. J. Clin. Lab. Invest. 2004, 64, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Perez, Y.G.; Perez, L.C.; Netto Rde, C.; Lima, D.S.; Lima, E.S. Malondialdehyde and Sulfhydryl Groups as Biomarkers of Oxidative Stress in Patients with Systemic Lupus Erythematosus. Rev. Bras. Reumatol. 2012, 52, 658–660. [Google Scholar] [PubMed]
- Banne, A.F.; Amiri, A.; Pero, R.W. Reduced Level of Serum Thiols in Patients with a Diagnosis of Active Disease. J. Anti Aging Med. 2003, 6, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Stam, S.P.; Oste, M.C.J.; Eisenga, M.F.; Blokzijl, H.; van den Berg, A.P.; Bakker, S.J.L.; de Meijer, V.E. Posttransplant Muscle Mass Measured by Urinary Creatinine Excretion Rate Predicts Long-Term Outcomes After Liver Transplantation. Am. J. Transplant. 2019, 19, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Ozyilmaz, A.; Westerhuis, R.; Ipema, K.J.R.; Bakker, S.J.L.; Franssen, C.F.M. Complementary Biomarker Assessment of Components Absorbed from Diet and Creatinine Excretion Rate Reflecting Muscle Mass in Dialysis Patients. Nutrients 2018, 10, 1827. [Google Scholar] [CrossRef]
- Scicchitano, B.M.; Sica, G. The Beneficial Effects of Taurine to Counteract Sarcopenia. Curr. Protein Pept. Sci. 2018, 19, 673–680. [Google Scholar] [CrossRef]
- Han, X.; Patters, A.B.; Jones, D.P.; Zelikovic, I.; Chesney, R.W. The Taurine Transporter: Mechanisms of Regulation. Acta Physiol. 2006, 187, 61–73. [Google Scholar] [CrossRef]
- Sturman, J.A.; Hepner, G.W.; Hofmann, A.F.; Thomas, P.J. Metabolism of [35S]Taurine. Man. J. Nutr. 1975, 105, 1206–1214. [Google Scholar] [CrossRef]
Variable | RTR Cohort (n = 678) | Range | Model 1 | Model 2 | ||
---|---|---|---|---|---|---|
Std. β | P value | Std. β | P value | |||
Taurine | ||||||
Urinary taurine excretion, μmol/24 h | 533 (210–946) | 9–3637 | ||||
Urinary taurine concentration, μmol/L | 216 (87–415) | 3–1201 | 0.962 | <0.001 | 0.953 | <0.001 |
Urinary taurine/creatinine ratio, μmol/mmol | 46 (20–80) | 1–429 | 0.969 | <0.001 | 0.993 | <0.001 |
Demographics | ||||||
Age, years | 53 ± 13 | 18–80 | −0.007 | 0.86 | 0.019 | 0.58 |
Sex, n (% male) | 390 (58) | −0.374 | <0.001 | −0.369 | <0.001 | |
Smokers, n (%) | ||||||
Never | 265 (42) | 0.083 | 0.04 | 0.113 | 0.002 | |
Past | 287 (45) | −0.071 | 0.07 | −0.087 | 0.02 | |
Current | 82 (13) | −0.016 | 0.68 | −0.038 | 0.29 | |
Alcohol intake a | ||||||
No alcohol | 23 (4) | −0.037 | 0.36 | −0.004 | 0.91 | |
Low intake | 400 (65) | 0.001 | 0.98 | 0.029 | 0.42 | |
High intake | 197 (32) | 0.014 | 0.73 | −0.029 | 0.44 | |
Body composition | ||||||
Weight, kg | 80 ± 17 | 35–164 | 0.121 | 0.002 | 0.008 | 0.82 |
Height, cm | 174 ± 10 | 127–197 | 0.266 | <0.001 | 0.053 | 0.26 |
BMI, kg/m2 | 26.6 ± 4.8 | 15.7–45.0 | −0.023 | 0.55 | −0.005 | 0.88 |
BSA, m2 | 1.94 ± 0.22 | 1.09–2.83 | 0.196 | <0.001 | 0.025 | 0.54 |
Primary renal disease, n (%) | ||||||
Primary glomerulosclerosis | 194 (29) | −0.020 | 0.61 | −0.051 | 0.14 | |
Glomerulonephritis | 49 (7) | 0.009 | 0.82 | 0.012 | 0.73 | |
Tubulointerstitial nephritis | 83 (12) | −0.023 | 0.55 | −0.014 | 0.70 | |
Polycystic kidney disease | 139 (21) | 0.035 | 0.36 | 0.081 | 0.02 | |
Hypo- or dysplasia | 28 (4) | 0.015 | 0.70 | 0.009 | 0.81 | |
Renovascular disease | 38 (6) | −0.020 | 0.61 | −0.039 | 0.26 | |
Diabetes | 34 (5) | −0.002 | 0.96 | 0.004 | 0.92 | |
Cardiovascular history, n (%) | ||||||
Coronary intervention | 68 (10) | −0.005 | 0.90 | −0.028 | 0.44 | |
Myocardial infarction | 34 (5) | 0.036 | 0.35 | 0.031 | 0.38 | |
CVA and/or TIA | 41 (6) | −0.038 | 0.33 | −0.012 | 0.73 | |
Cardiovascular | ||||||
Systolic blood pressure, mmHg | 136 ± 17 | 88–200 | <0.001 | 1.00 | −0.020 | 0.57 |
Diastolic blood pressure, mmHg | 83 ± 11 | 50–125 | 0.043 | 0.27 | −0.016 | 0.65 |
Mean arterial pressure, mmHg | 107 ± 15 | 63–167 | −0.002 | 0.95 | −0.025 | 0.48 |
Pulse pressure, mmHg | 54 ± 13 | 20–114 | −0.037 | 0.34 | −0.014 | 0.70 |
Heart rate, bpm | 68 ± 12 | 41–122 | −0.001 | 0.98 | 0.047 | 0.20 |
Hypertension, n (%) | 275 (41) | 0.037 | 0.33 | 0.002 | 0.95 | |
Antihypertensive drugs, n (%) | 595 (88) | −0.082 | 0.03 | −0.062 | 0.09 | |
Nt-proBNP, ng/L | 247 (105–598) | 1–110,000 | −0.196 | <0.001 | −0.029 | 0.55 |
Lipids | ||||||
Total cholesterol, mmol/L | 5.1 ± 1.1 | 2.3–9.7 | −0.174 | <0.001 | −0.120 | 0.001 |
HDL cholesterol, mmol/L | 1.4 ± 0.5 | 0.4–3.5 | −0.112 | 0.004 | −0.058 | 0.12 |
LDL cholesterol, mmol/L | 3.0 ± 0.9 | 0.7–6.6 | −0.094 | 0.02 | −0.062 | 0.08 |
Triglycerides, mmol/L | 1.7 (1.2–2.3) | 0.3–8.5 | −0.168 | <0.001 | −0.118 | 0.001 |
Statins, n (%) | 360 (53) | −0.080 | 0.04 | −0.063 | 0.08 | |
Glucose homeostasis | ||||||
Glucose, mmol/L | 5.3 (4.8–6.1) | 2.1–21.7 | 0.002 | 0.97 | −0.033 | 0.34 |
HbA1c, % | 5.8 (5.5–6.2) | 4.5–11.8 | 0.003 | 0.95 | −0.019 | 0.61 |
Diabetes, n (%) | 162 (24) | −0.059 | 0.12 | −0.044 | 0.21 | |
Antidiabetic drugs, n (%) | 107 (16) | −0.093 | 0.02 | −0.079 | 0.03 | |
Transplantation-related | ||||||
Dialysis vintage, months | 27 (10–52) | 0–226 | 0.009 | 0.84 | 0.037 | 0.34 |
Time since transplantation, years | 5.3 (1.8–11.5) | 0.2–39 | −0.169 | <0.001 | −0.180 | <0.001 |
Deceased donor, n (%) | 446 (66) | 0.055 | 0.15 | 0.038 | 0.30 | |
Cold ischemia time (hours) | 15 (3–21) | 0–40 | −0.049 | 0.21 | −0.028 | 0.44 |
Warm ischemia time (minutes) | 40 (35–50) | 10–128 | 0.035 | 0.37 | 0.024 | 0.49 |
Transplantations up to baseline, n (%) | −0.051 | 0.19 | −0.018 | 0.62 | ||
1 transplantation | 612 (90) | |||||
≥2 transplantations | 66 (10) | |||||
Calcineurin inhibitors, n (%) | 381 (56) | 0.021 | 0.59 | 0.082 | 0.02 | |
Proliferation inhibitor, n (%) | 567 (84) | 0.095 | 0.01 | 0.054 | 0.13 | |
Prednisolone dosage, n (%) | 0.135 | <0.001 | 0.064 | 0.07 | ||
≤7.5 mg/24 h | 275 (41) | |||||
>7.5 mg/24 h | 403 (59) | |||||
HLA antibodies, n (%) | ||||||
HLA-I | 106 (16) | −0.110 | 0.004 | −0.026 | 0.46 | |
HLA-II | 114 (17) | −0.133 | 0.001 | −0.067 | 0.06 | |
Renal function | ||||||
Serum creatinine, μmol/L | 124 (99–160) | 50–591 | −0.129 | <0.001 | −0.079 | 0.40 |
eGFR, ml/min/1.73m2 b | 45 ± 19 | 7–107 | 0.252 | <0.001 | 0.244 | <0.001 |
Creatinine clearance, ml/min | 66 ± 27 | 12–186 | 0.361 | <0.001 | 0.314 | <0.001 |
Proteinuria, n (%) | 152 (22) | −0.107 | 0.005 | −0.086 | 0.02 | |
Oxidative stress and inflammation | ||||||
Free sulfhydryl groups (μmol/L) | 132 ± 49 | 10–387 | 0.249 | <0.001 | 0.126 | 0.001 |
hsCRP, mg/L | 1.6 (0.7–4.5) | 0.1–114 | −0.037 | 0.35 | 0.006 | 0.88 |
Urinary excretion | ||||||
Sodium, mmol/24 h | 158 ± 62 | 24–374 | 0.288 | <0.001 | 0.179 | <0.001 |
Chloride, mmol/24 h | 138 (108–181] | 28–391 | 0.268 | <0.001 | 0.151 | <0.001 |
Sulfate, mmol/24 h | 17.6 ± 6.4 | 1.8–62.4 | 0.324 | <0.001 | 0.199 | <0.001 |
Thiosulfate, mmol/24 h | 7 (4–12] | 0–108 | 0.285 | <0.001 | 0.170 | <0.001 |
Creatinine, mmol/24 h | 11.7 ± 3.4 | 2.9–23.3 | 0.397 | <0.001 | 0.265 | <0.001 |
Dietary intake c | ||||||
Energy intake, kcal/24 h | 2172 ± 619 | 658–4871 | 0.126 | 0.002 | −0.038 | 0.34 |
Total protein intake, g/24 h | 82 ± 12 | 26–144 | 0.190 | <0.001 | 0.060 | 0.14 |
Animal protein intake, g/24 h | 51 ± 13 | 18–110 | 0.133 | 0.001 | 0.085 | 0.03 |
Methionine intake, mg/24 h | 1871 ± 327 | 687–3510 | 0.176 | <0.001 | 0.077 | 0.05 |
Cysteine intake, mg/24 h | 1187 ± 172 | 436–2296 | 0.238 | <0.001 | 0.072 | 0.08 |
Meat intake, g/24 h | 96 ± 38 | 0–275 | 0.223 | <0.001 | 0.151 | <0.001 |
Fish intake, g/24 h | 11 (4–20) | 0–134 | 0.104 | 0.01 | 0.096 | 0.008 |
Milk intake, g/24 h | 117 ± 83 | 0–521 | −0.005 | 0.90 | 0.016 | 0.66 |
Plant protein intake, g/24 h | 31 ± 6 | 7–72 | 0.110 | 0.006 | −0.077 | 0.06 |
Vegetable intake, g/24 h | 93 ± 57 | 0–412 | 0.021 | 0.61 | 0.034 | 0.35 |
Fruit intake, g/24 h | 152 ± 114 | 0–621 | −0.117 | 0.004 | −0.072 | 0.05 |
Total fat intake, g/24 h | 88 ± 16 | 21–256 | 0.212 | <0.001 | −0.005 | 0.91 |
Saturated fat intake, g/24 h | 31 ± 7 | 7–97 | 0.119 | 0.003 | −0.021 | 0.59 |
Monounsaturated fat intake, g/24 h | 30 ± 7 | 7–97 | 0.237 | <0.001 | 0.016 | 0.72 |
Polyunsaturated fat intake, g/24 h | 19 ± 6 | 4–74 | 0.151 | <0.001 | −0.026 | 0.52 |
Total carbohydrate intake, g/24 h | 249 ± 63 | 16–537 | 0.186 | <0.001 | 0.037 | 0.35 |
Mono and disaccharides intake, g/24 h | 121 ± 34 | 9–301 | 0.106 | 0.008 | −0.006 | 0.87 |
Polysaccharides intake, g/24 h | 127 ± 28 | 8–297 | 0.190 | <0.001 | −0.009 | 0.83 |
Model | Urinary Taurine Excretion | Urinary Taurine Concentration | Urinary Taurine/Creatinine Ratio | |||
---|---|---|---|---|---|---|
HR (95% CI) | P Value | HR (95% CI) | P Value | HR (95% CI) | P Value | |
Model 1 | 0.74 (0.67–0.82) | <0.001 | 0.75 (0.67–0.84) | <0.001 | 0.74 (0.66–0.83) | <0.001 |
Model 2 | 0.83 (0.74–0.93) | 0.002 | 0.84 (0.74–0.95) | 0.007 | 0.85 (0.75–0.96) | 0.010 |
Model 3 | 0.82 (0.71–0.95) | 0.01 | 0.83 (0.71–0.97) | 0.02 | 0.84 (0.72–0.98) | 0.03 |
Model 4 | 0.84 (0.74–0.95) | 0.004 | 0.86 (0.76–0.98) | 0.02 | 0.86 (0.76–0.98) | 0.02 |
Model 5 | 0.84 (0.74–0.95) | 0.006 | 0.84 (0.74–0.96) | 0.01 | 0.84 (0.74–0.96) | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Post, A.; Said, M.Y.; Gomes-Neto, A.W.; van der Krogt, J.; de Blaauw, P.; Berger, S.P.; Geleijnse, J.M.; Borgonjen, K.; van den Berg, E.; van Goor, H.; et al. Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients. Nutrients 2019, 11, 2212. https://doi.org/10.3390/nu11092212
Post A, Said MY, Gomes-Neto AW, van der Krogt J, de Blaauw P, Berger SP, Geleijnse JM, Borgonjen K, van den Berg E, van Goor H, et al. Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients. Nutrients. 2019; 11(9):2212. https://doi.org/10.3390/nu11092212
Chicago/Turabian StylePost, Adrian, M. Yusof Said, Antonio W. Gomes-Neto, Jennifer van der Krogt, Pim de Blaauw, Stefan P. Berger, Johanna M. Geleijnse, Karin Borgonjen, Else van den Berg, Harry van Goor, and et al. 2019. "Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients" Nutrients 11, no. 9: 2212. https://doi.org/10.3390/nu11092212
APA StylePost, A., Said, M. Y., Gomes-Neto, A. W., van der Krogt, J., de Blaauw, P., Berger, S. P., Geleijnse, J. M., Borgonjen, K., van den Berg, E., van Goor, H., Rimbach, G., Kema, I. P., Tsikas, D., Heiner-Fokkema, M. R., & Bakker, S. J. L. (2019). Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients. Nutrients, 11(9), 2212. https://doi.org/10.3390/nu11092212