Dietary Acid Load: A Novel Nutritional Target in Overweight/Obese Children with Asthma?
Abstract
:1. Introduction
2. Participants, Study Design, and Methods
2.1. Participants
2.2. Questionnaire
2.3. Participants Assessments
2.4. Potential Renal Acid Load (PRAL) Estimation
2.5. Data Analysis
3. Results
Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pavord, I.D.; Beasley, R.; Agusti, A.; Anderson, G.P.; Bel, E.; Brusselle, G.; Cullinan, P.; Custovic, A.; Ducharme, F.M.; Fahy, J.V.; et al. After asthma: Redefining airways diseases. Lancet 2018, 391, 350–400. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, L.; Bai, C.; Chen, O. Association between abdominal obesity and asthma: A meta-analysis. Allergy Asthma Clin. Immunol. 2019, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.; Moreira, P.; Padrão, P.; Teixeira, V.; Carvalho, P.; Delgado, L.; Moreira, A. Obesity increases the prevalence and the incidence of asthma and worsens asthma severity. Clin. Nutr. 2017, 36, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Paciência, I.; Rufo, J.C.; Silva, D.; Martins, C.; Mendes, F.; Farraia, M.; Delgado, L.; Fernandes, E.D.O.; Padrão, P.; Moreira, P.; et al. Exposure to indoor endocrine-disrupting chemicals and childhood asthma and obesity. Allergy 2019, 74, 1277–1291. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.; Moreira, A.; Padrão, P.; Teixeira, V.H.; Carvalho, P.; Delgado, L.; Lopes, C.; Severo, M.; Moreira, P. Dietary patterns and asthma prevalence, incidence and control. Clin. Exp. Allergy 2015, 45, 1673–1680. [Google Scholar] [CrossRef]
- Palou, A.; Bonet, M.L. Challenges in obesity research. Nutr. Hosp. 2013, 28 (Suppl. 5), 144–153. [Google Scholar] [PubMed]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, 176–185. [Google Scholar]
- Oliveira, A.; Araújo, J.; Severo, M.; Correia, D.; Ramos, E.; Torres, D.; Lopes, C. Prevalence of general and abdominal obesity in Portugal: Comprehensive results from the National Food, nutrition and physical activity survey 2015–2016. BMC Public Health 2018, 18, 614. [Google Scholar] [CrossRef]
- Scott, H.A.; Wood, L.G.; Gibson, P.G. Role of Obesity in Asthma: Mechanisms and Management Strategies. Curr. Allergy Asthma Rep. 2017, 17, 53. [Google Scholar] [CrossRef]
- Gomez-Llorente, M.A.; Romero, R.; Chueca, N.; Martinez-Cañavate, A.; Gomez-Llorente, C. Obesity and Asthma: A Missing Link. Int. J. Mol. Sci. 2017, 18, 1490. [Google Scholar] [CrossRef]
- Carpaij, O.A.; van den Berge, M. The asthma-obesity relationship: Underlying mechanisms and treatment implications. Curr. Opin. Pulm. Med. 2018, 24, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, H.; Shore, S.A. Obesity and severe asthma. Allergol. Int. 2019, 68, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Eaton, S.B.; Konner, M.J.; Cordain, L. Diet-dependent acid load, Paleolithic [corrected] nutrition, and evolutionary health promotion. Am. J. Clin. Nutr. 2010, 91, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.G. Diet, Obesity, and Asthma. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. 5), S332–S338. [Google Scholar] [CrossRef] [PubMed]
- Mizuta, K.; Zhang, Y.; Mizuta, F.; Hoshijima, H.; Shiga, T.; Masaki, E.; Emala, C.W. Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. Am. J. Physiol. Cell. Mol. Physiol. 2015, 309, L970–L982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, A.E.; Holguin, F. Diet and Metabolism in the Evolution of Asthma and Obesity. Clin. Chest Med. 2019, 40, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Matoba, A.; Matsuyama, N.; Shibata, S.; Masaki, E.; Emala, C.W.; Mizuta, K. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways. Am. J. Physiol. Cell. Mol. Physiol. 2018, 314, L333–L348. [Google Scholar] [CrossRef]
- Mirmiran, P.; Yuzbashian, E.; Bahadoran, Z.; Asghari, G.; Azizi, F. Dietary Acid-Base Load and Risk of Chronic Kidney Disease in Adults: Tehran Lipid and Glucose Study. Iran. J. Kidney Dis. 2016, 10, 119–125. [Google Scholar]
- Murakami, K.; Livingstone, M.B.E.; Okubo, H.; Sasaki, S. Higher dietary acid load is weakly associated with higher adiposity measures and blood pressure in Japanese adults: The National Health and Nutrition Survey. Nutr. Res. 2017, 44, 67–75. [Google Scholar] [CrossRef]
- Williams, R.S.; Kozan, P.; Samocha-Bonet, D. The role of dietary acid load and mild metabolic acidosis in insulin resistance in humans. Biochimie 2016, 124, 171–177. [Google Scholar] [CrossRef]
- Parohan, M.; Sadeghi, A.; Nasiri, M.; Maleki, V.; Khodadost, M.; Pirouzi, A.; Sadeghi, O. Dietary acid load and risk of hypertension: A systematic review and dose-response meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Mikhailidis, D.P.; Banach, M. Higher dietary acid load is associated with higher likelihood of peripheral arterial disease among American adults. J. Diabetes Complicat. 2018, 32, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Esche, J.; Krupp, D.; Mensink, G.B.M.; Remer, T. Dietary Potential Renal Acid Load Is Positively Associated with Serum Uric Acid and Odds of Hyperuricemia in the German Adult Population. J. Nutr. 2018, 148, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, K.K. The role of the lungs in the adjustment of acid-base balance. Ann. Clin. Lab. Sci. 1973, 3, 323–328. [Google Scholar] [PubMed]
- Asher, M.; Keil, U.; Anderson, H.; Beasley, R.; Crane, J.; Martinez, F.; Mitchell, E.; Pearce, N.; Sibbald, B.; Stewart, A.; et al. International study of asthma and allergies in childhood (ISAAC): Rationale and methods. Eur. Respir. J. 1995, 8, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Gibney, M.J.; Lanham-New, S.A.; Cassidy, A.; Vorster, H.H. Introduction to Human Nutrition. In The Nutrition Society; Wiley-Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Stanojevic, S. GLI-2012 Excel Sheet Calculator; Global Lung Function Initiative; European Respiratory Society: Sheffield, UK, 2014. [Google Scholar]
- Willett, W.; Stampfer, M.J. Total Energy Intake: Implications for Epidemiologic Analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Remer, T.; Dimitriou, T.; Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 2003, 77, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Berkemeyer, S. Critique on equations of net endogenous acid production (NEAP) and indirect proof of constant organic acid excretion. Am. J. Clin. Nutr. 2010, 91, 1409–1410. [Google Scholar] [CrossRef]
- Moreira, A.; Bonini, M.; Garcia-Larsen, V.; Bonini, S.; Del Giacco, S.R.; Agache, I.; Fonseca, J.; Papadopoulos, N.G.; Carlsen, K.H.; Delgado, L.; et al. Weight loss interventions in asthma: EAACI evidence-based clinical practice guideline (part I). Allergy 2013, 68, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Litonjua, A.A.; Gold, D.R. Asthma and obesity: Common early-life influences in the inception of disease. J. Allergy Clin. Immunol. 2008, 121, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.T. Obesity: Insight into the origins of asthma. Nat. Immunol. 2005, 6, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, P.M.; Grüber, C.; Wahn, U.; Lau, S. The asthma?obesity link in childhood: Open questions, complex evidence, a few answers only. Clin. Exp. Allergy 2007, 37, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Farhangi, M.A.; Nikniaz, L.; Nikniaz, Z. Higher dietary acid load potentially increases serum triglyceride and obesity prevalence in adults: An updated systematic review and meta-analysis. PLoS ONE 2019, 14, e0216547. [Google Scholar]
- Osuna-Padilla, I.A.; Leal-Escobar, G.; Garza-García, C.A.; Rodríguez-Castellanos, F.E. Dietary Acid Load: Mechanisms and evidence of its health repercussions. Nefrologia 2019, 39, 343–354. [Google Scholar] [CrossRef]
- López-Sayers, M.; Bernal, J.; López, M. Dietary potential renal Acid load in venezuelan children. Nutr. Hosp. 2015, 31, 2054–2061. [Google Scholar] [PubMed]
- Remer, T. Influence of diet on acid-base balance. Semin. Dial. 2000, 13, 221–226. [Google Scholar] [CrossRef]
- Bühlmeier, J.; Harris, C.; Koletzko, S.; Lehmann, I.; Bauer, C.-P.; Schikowski, T.; Von Berg, A.; Berdel, D.; Heinrich, J.; Hebebrand, J.; et al. Dietary Acid Load and Mental Health Outcomes in Children and Adolescents: Results from the GINIplus and LISA Birth Cohort Studies. Nutrients 2018, 10, 582. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Potential Renal Acid Load of Foods and its Influence on Urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Passey, C. Reducing the Dietary Acid Load: How a More Alkaline Diet Benefits Patients with Chronic Kidney Disease. J. Ren. Nutr. 2017, 27, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Scialla, J.J.; Anderson, C.A. Dietary acid load: A novel nutritional target in chronic kidney disease? Adv. Chronic Kidney Dis. 2013, 20, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, M.K.; Hostetter, T.H.; Melamed, M.L. Lower serum bicarbonate and a higher anion gap are associated with lower cardiorespiratory fitness in young adults. Kidney Int. 2012, 81, 1033–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Gorber, S.C.; Tremblay, M. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; Severo, M.; Paciência, I.; Rufo, J.; Martins, C.; Moreira, P.; Padrão, P.; Delgado, L.; Moreira, A. Setting definitions of childhood asthma in epidemiologic studies. Pediatr. Allergy Immunol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lundahl, A.; Kidwell, K.M.; Nelson, T.D. Parental Underestimates of Child Weight: A Meta-analysis. Pediatrics 2014, 133, 689–703. [Google Scholar] [CrossRef]
- Japan Public Health Center-Based Prospective Study Group; Akter, S.; Kurotani, K.; Kashino, I.; Goto, A.; Mizoue, T.; Noda, M.; Sawada, N.; Tsugane, S. High Dietary Acid Load Score Is Associated with Increased Risk of Type 2 Diabetes in Japanese Men: The Japan Public Health Center-based Prospective Study. J. Nutr. 2016, 146, 1076–1083. [Google Scholar] [CrossRef]
Characteristics | Total n = 699 | Girls n = 365 | Boys n = 334 | p | Girls (n = 365) | p | Boys (n = 334) | p | ||
---|---|---|---|---|---|---|---|---|---|---|
Non-overweight/obese | Overweight/obese | Non-overweight/obese | Overweight/obese | |||||||
Age (years) | 9.0 (8.0;9.0) | 9.0 (8.0;9.0) | 9.0 (8.0;9.0) | 0.465 | 9.0 (8.0;9.0) | 9.0 (8.0;9.0) | 0.163 | 9.0 (8.0;9.0) | 9.0 (8.0;9.0) | 0.719 |
Parental education [n (%)] | <0.001 | 0.650 | 0.467 | |||||||
0–9 years | 174 (24.9) | 131 (30.2) | 43 (16.2) | 53 (32.5) | 32 (29.9) | 56 (31.1) | 31 (37.8) | |||
10–12 years | 164 (23.5) | 112 (25.8) | 52 (19.6) | 48 (29.4) | 32 (29.9) | 60 (33.3) | 23 (28.0) | |||
>12 years | 197 (197) | 92 (21.2) | 105 (39.6) | 62 (38) | 43 (40.2) | 64 (35.6) | 28 (34.1) | |||
Asthma [n (%)] | 68 (9.7) | 48 (11.1) | 20 (7.5) | 0.129 | 21 (9.7) | 16 (12.7) | 0.385 | 13 (5.7) | 7 (6.7) | 0.715 |
Physical activity [n (%)] | 0.075 | 0.492 | 0.956 | |||||||
Less than 2 times a week | 301 (43.1) | 193 (44.5) | 108 (40.8) | 100 (52.9) | 64 (56.1) | 91 (44.0) | 38 (40.4) | |||
2–3 times a week | 247 (35.3) | 156 (35.9) | 91 (34.4) | 67 (35.4) | 40 (35.1) | 76 (36.7) | 42 (44.7) | |||
More than 4 times a week | 78 (11.2) | 38 (8.8) | 40 (14.1) | 22 (11.6) | 10 (8.8) | 40 (19.3) | 14 (14.9) | |||
Energy intake (kcal/day) | 2135.8 (1782.2;2471.1) | 2049.8 (1721.1;2499.6) | 2214.0 (1941.9;2591.9) | <0.001 | 2059.1 (1742.7;2379.7) | 2065.4 (1721.4;2402.8) | 0.830 | 2194.3 (1914.8;2545.0) | 2263.2 (2013.2;2624.9) | 0.246 |
Protein (g/day) | 89.2 (71.1;114.6) | 109.0 (87.0;110.8) | 95.4 (76.3;95.4) | 0.005 | 86.0 (71.8;109.1) | 95.0 (73.0;112.4) | 0.242 | 91.7 (75.1;113.5) | 103.6 (85.4;121.1) | 0.013 |
Phosphorus (mg/day) | 1352.1 (899.8;1352.3) | 1304.0 (1070.4;1582.3) | 1389.1 (1149.9;1685.5 | 0.014 | 1325.4 (1099.5;1569.1) | 1352 (1118.7;1673.3) | 0.453 | 1401.8 (1160.4;1665.1) | 1498.0 (1160.7;1658.5) | 0.222 |
Potassium (mg/day) | 3012.7 (2415.5;3703.8) | 2989.4 (2389.3;3677.4) | 3014.2 (2478.7;3764.8) | 0.263 | 3003.3 (2377.8;3675.5) | 3059 (22356.3;3753.9) | 0.914 | 3120.9 (2529.9;3775.3) | 3198.7 (2524.5;3911.3) | 0.820 |
Magnesium (mg/day) | 261.7 (216.3;318.3) | 256.2 (208.5;314.5) | 272.9 (223.8;320.3) | 0.067 | 256.8 (216.7;310.6) | 266.5 (209.9;319.2) | 0.730 | 272.0 (228.0;321.4) | 281.4 (221.6;334.4) | 0.985 |
Calcium (mg/day) | 912.3 (647.0;1164.9) | 900.5 (641.9;314.5) | 921.9 (666.9;1148.9) | 0.791 | 917.3 (658.4;1173.4) | 896 (638.9;1184.7) | 0.630 | 900.5 (644.8;1161.2) | 942.5 (698.8;1226.6) | 0.510 |
PRAL (mEq/day) | 13.1 (1.51;15.57) | 14.0 (1.8;26.2) | 11.5 (0.53;23.4) | 0.138 | 13.4 (3.2;23.4) | 13.4 (1.7;27.7) | 0.501 | 13.8 (0.88;27.9) | 10.4 (-4.66;10.4) | 0.133 |
BMI classification [n (%)] | 0.886 | |||||||||
Underweight | 8 (1.1) | 4 (1) | 4 (1.5) | |||||||
Normal weight | 412 (58.9) | 247 (62.5) | 163 (62.2) | |||||||
Overweight | 156 (22.3) | 94 (23.8) | 53 (20.2) | |||||||
Obese | 92 (13.2) | 50 (12.7) | 42 (16.0) |
OR | CI (95%) | p | ||
---|---|---|---|---|
All participants | ||||
PRAL | ||||
Model 0 | 1.171 | 0.900, 1.525 | 0.241 | |
Model 1 | 1.123 | 0.832, 1.516 | 0.447 | |
Model 2 | 1.116 | 0.826, 1.510 | 0.475 | |
Model 3 | 1.213 | 0.863, 1.703 | 0.266 | |
Non-overweight/obese | ||||
PRAL | ||||
Model 0 | 0.916 | 0.651, 1.288 | 0.613 | |
Model 1 | 0.912 | 0.628, 1.324 | 0.628 | |
Model 2 | 0.910 | 0.627, 1.323 | 0.622 | |
Model 3 | 0.959 | 0.617, 1.491 | 0.853 | |
Overweight/obese | ||||
PRAL | ||||
Model 0 | 1.644 | 1.020, 2.650 | 0.041 | |
Model 1 | 1.874 | 1.022, 3.337 | 0.042 | |
Model 2 | 1.820 | 1.003, 3.300 | 0.049 | |
Model 3 | 1.953 | 1.024, 3.730 | 0.042 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, P.; Paciência, I.; Cavaleiro Rufo, J.; Castro Mendes, F.; Farraia, M.; Barros, R.; Silva, D.; Delgado, L.; Padrão, P.; Moreira, A.; et al. Dietary Acid Load: A Novel Nutritional Target in Overweight/Obese Children with Asthma? Nutrients 2019, 11, 2255. https://doi.org/10.3390/nu11092255
Cunha P, Paciência I, Cavaleiro Rufo J, Castro Mendes F, Farraia M, Barros R, Silva D, Delgado L, Padrão P, Moreira A, et al. Dietary Acid Load: A Novel Nutritional Target in Overweight/Obese Children with Asthma? Nutrients. 2019; 11(9):2255. https://doi.org/10.3390/nu11092255
Chicago/Turabian StyleCunha, Pedro, Inês Paciência, João Cavaleiro Rufo, Francisca Castro Mendes, Mariana Farraia, Renata Barros, Diana Silva, Luís Delgado, Patrícia Padrão, André Moreira, and et al. 2019. "Dietary Acid Load: A Novel Nutritional Target in Overweight/Obese Children with Asthma?" Nutrients 11, no. 9: 2255. https://doi.org/10.3390/nu11092255