Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients
Abstract
:1. Introduction
2. Supporting Experimental Results
2.1. Incomplete Protein Digestion
Step in CD Pathogenesis | Characteristics of Celiac-Toxic Peptides from Wheat Gluten | Characteristics of Maize Prolamins That Could be Inducers for CD | |||
---|---|---|---|---|---|
Incomplete protein digestion | Gastrointestinal peptidases do not digest the proline-rich wheat gluten polypeptides completely, which releases peptides larger than nine amino acids [11,12]. | Digestion of zeins is poor due to relatively high concentrations of glutamine, proline and cysteine residues [14,15,16]. | |||
Innate immune response | Increased levels of NO were produced by challenged granulocytes and NOS expression was increased in enterocytes from CD patients’ small intestine biopsies [17,18]. | Proteins from maize caused granulocyte activation in a rectal challenge in six out of 13 CD patients tested [8]. | |||
Adaptive immune response: deamidation of peptides by tTG | Gluten peptides deamidated by tTG in the lamina propria contain negative charges [19,20,21]. | Maize prolamins deamidated by TG in vitro were better recognized than native ones by IgA from some CD patients’ sera [22]. | |||
Adaptive response: increased affinity of HLA-DQ2/DQ8 on antigen presenting cells to bind peptides | HLA-DQ2 prefers negatively charged amino acids from gluten peptides at the p4, p6 or p7 positions in the peptide, while HLA-DQ8 prefers them at positions p1 or p9 [20]. | Peptides from digested maize prolamins have glutamine at positions p1 and p9 that can be deamidated by tTG and bind to HLA-DQ8 [23,24]. Other peptides can be bound by HLA-DQ2 [10]. | |||
Adaptive response: processing and presentation of peptides | After processing, the deamidated gluten peptides are presented to T-cells. Then, B-cells are induced to proliferate and produce antibodies [25]. | T-cells from the intestine of one out of seven CD patients stimulated by maize prolamins and teff produced low IFN-γ as compared to wheat, but higher than control and other non-wheat grains [26]. Additionally, IgA antibodies against maize prolamins were detected in several CD patients [10,27]. | |||
Adaptive response: role of antibodies against dietary prolamins | Roles of tTG-specific antibodies induced by gluten in CD patients could be: inhibiting epithelial cell differentiation and inducing their proliferation, increasing epithelial and blood vessel permeability and affecting angiogenesis [28]. | Although the levels of antibodies against gluten decrease in some CD patients following a gluten-free diet, antibodies against maize prolamins remained high until both gluten and maize were avoided [29,30]. | |||
Adaptive response: activation of T-cells | Activated T-cells drive the inflammatory response that leads to the development of the characteristic celiac lesions and the symptoms [31]. T-cells induce damage mostly by IFN-γ production [32]. | Neither the intestinal lesions nor the CD symptoms were alleviated with a gluten-free diet when maize was still eaten [29]. |
2.2. The Inflammatory Process
2.3. Deamidation of the Peptides
2.4. Affinity of HLA/DQ8 Molecules to Bind Peptides
Food | Peptide | Sequence | Affinity | Reference |
---|---|---|---|---|
Wheat | α-Gliadin | LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF | HLA-DQ2 | [19] |
Wheat | α Gliadin | LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF | HLA-DQ8 | [19] |
Maize | α-Zein | LQQAIAASNIPLSPLLFQQSPALSLVQSLVQTIR | HLA-DQ8 | [10] |
2.5. Processing and Presentation of Peptides
2.6. Role of Antibodies
2.7. Activation of T-Cells
3. Potential Links between Zeins and CD
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Ludvigsson, J.F.; Leffler, D.A.; Bai, J.C.; Biagi, F.; Fasano, A.; Green, P.H.R.; Hadjivassiliou, M.; Kaukinen, K.; Kelly, C.P.; Leonard, J.N.; et al. The Oslo definitions for celiac disease and related terms. Gut 2012, 62, 43–52. [Google Scholar]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.R.; Miarin, M.L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 136–160. [Google Scholar] [CrossRef]
- Abadie, V.; Sollid, L.M.; Barreiro, L.B.; Jabri, B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu. Rev. Immunol. 2011, 29, 493–525. [Google Scholar] [CrossRef]
- Lammers, K.M.; Lu, R.; Brownley, J.; Lu, B.; Gerard, C.; Thomas, K.; Rallabhandi, P.; Shea-Donohue, T.; Tamiz, A.; Alkan, S.; et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 2008, 135, 194–204. [Google Scholar] [CrossRef]
- Sollid, L.M.; Qiao, S.W.; Anderson, R.P.; Gianfrani, C.; Koning, F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 2012, 64, 455–460. [Google Scholar] [CrossRef]
- Lanzini, A.; Lanzarotto, F.; Villanacci, V.; Mora, A.; Bertolazzi, S.; Turini, D.; Carella, G.; Malagoli, A.; Ferrante, G.; Cesana, B.M.; et al. Complete recovery of intstinal mucosa occurs very rarely in adult celiac patients despite adherence to gluten-free diet. Aliment. Pharmacol. Ther. 2009, 29, 1299–1308. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Murray, J.A. Classification and management of refractory celiac disease. Gut 2010, 59, 547–557. [Google Scholar] [CrossRef]
- Kristjansson, G.; Högman, M.; Venge, P.; Hällgren, R. Gut mucosal granulocyte activation precedes nitric oxide production: Studies in celiac patients challenged with gluten and corn. Gut 2005, 54, 769–774. [Google Scholar] [CrossRef]
- Cabrera-Chávez, F.; Rouzaud-Sánchez, O.; Sotelo-Cruz, N.; Calderón de la Barca, A.M. Bovine milk caseins and transglutaminase-treated cereal prolamins are differentially recognized by IgA of celiac disease patients according to their age. J. Agric. Food Chem. 2009, 57, 3754–3759. [Google Scholar] [CrossRef]
- Cabrera-Chávez, F.; Iameti, S.; Miriani, M.; Calderón de la Barca, A.M.; Mamone, G.; Bonomi, F. Maize prolamins resistant to peptic-tryptic digestion maintain immune-recognition by IgA from some celiac disease patients. Plant Food Hum. Nutr. 2012, 67, 24–30. [Google Scholar] [CrossRef]
- Shan, L.; Molberg, O.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G.; Sollid, L.; Khosla, C. Structural basis for gluten intolerance in celiac sprue. Science 2002, 297, 2275–2279. [Google Scholar] [CrossRef]
- Hausch, F.; Shan, L.; Santiago, N.; Gray, G.; Khosla, C. Intestinal digestive resistance of immunodominant gliadin peptides. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G996–G1003. [Google Scholar]
- Bernardo, D.; Garrote, J.A.; Fernández-Salazar, L.; Riestra, S. Is gliadin really safe for non-coeliac individuals? Production of interleukin 15 in biopsy culture from non-coeliac individuals challenged with gliadin peptides. Gut 2007, 56, 889–890. [Google Scholar] [CrossRef]
- Shukla, R.; Cheryan, M. Zein: The industrial protein from corn. Ind. Crop. Prod. 2001, 13, 171–192. [Google Scholar] [CrossRef]
- Tschiersch, C.; Nikfardjam, M.P.; Schmidt, O.; Schwack, W. Degree of hydrolysis of some vegetable proteins used as fining agents and its influence on polyphenol removal from red wine. Eur. Food Res. Technol. 2010, 231, 65–74. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, Y.; Wang, Q. Effect of acid and base treatments on structural, rheological, and antioxidant properties of α-zein. Food Chem. 2011, 124, 210–220. [Google Scholar] [CrossRef]
- Beckett, C.G.; Dell’Olio, D.; Shidrawi, R.G.; Rosen-Bronson, S.; Ciclitira, P.J. Gluten-induced nitric oxide and pro-inflamatory citokine release by cultured coeliac small intestinal biopsies. Eur. J. Gastroenterol. Hepatol. 1999, 11, 529–536. [Google Scholar] [CrossRef]
- Daniels, I.; Cavill, D.; Murray, I.A.; Iargo, R.G. Elevated expression of iNOS mRNA and protein in celiac disease. Clin. Chim. Acta 2005, 356, 134–142. [Google Scholar] [CrossRef]
- Qiao, S.W.; Bergseng, E.; Molberg, O.; Xia, J.; Fleckenstein, B.; Khosla, C.; Sollid, L.M. Antigen presentation to celiac lesion-derivated T cells of a 33-mer gliadin peptide naturally formed by gastrointestinal digestion. J. Immunol. 2004, 173, 1757–1762. [Google Scholar]
- Koning, F.; Gilissen, L.; Wijmenga, C. Gluten: A two-edged sword. Immunopathogenesis of celiac disease. Springer Semin. Immunopathol. 2005, 27, 217–232. [Google Scholar] [CrossRef]
- Ciccocioppo, R.; di Sabatino, A.; Corazza, G.R. The immune recognition of gluten in coeliac disease. Clin. Exp. Immunol. 2005, 140, 408–416. [Google Scholar] [CrossRef]
- Cabrera-Chávez, F.; Rouzaud-Sánchez, O.; Sotelo-Cruz, N.; Calderón de la Barca, A.M. Transglutaminase treatment of wheat and maize prolamins of bread increases the serum IgA reactivity of celiac disease patients. J. Agric. Food Chem. 2008, 56, 1387–1391. [Google Scholar] [CrossRef]
- Stepniak, D.; Wiesner, M.; de Ru, A.H.; Moustakas, A.K.; Drijfhout, J.W.; Papadopoulos, G.K.; van Veelen, P.A.; Koning, F. Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2. J. Immunol. 2008, 180, 3268–3278. [Google Scholar]
- Darewicz, M.; Dziuba, J.; Minkiewicz, P. Computational characterization and identification of peptides for in silico detection of potentially celiac-toxic proteins. Food Sci. Technol. Int. 2007, 13, 125–133. [Google Scholar] [CrossRef]
- Briani, C.; Samaroo, D.; Alaedini, A. Celiac disease: From gluten to autoimmunity. Autoimmun. Rev. 2008, 7, 644–650. [Google Scholar] [CrossRef]
- Bergamo, P.; Maurano, F.; Mazzarella, G.I.; Iaquinto, G.; Vocca, I.; Rivelli, A.R.; de Falco, E.; Gianfrani, C.; Rossi, M. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Mol. Nutr. Food Res. 2011, 55, 1266–1270. [Google Scholar] [CrossRef]
- Skerritt, J.H.; Devery, J.M.; Penttila, I.A.; LaBrooy, J.T. Cellular and humoral responses in coeliac disease. Protein extracts from different cereals. Clin. Chim. Acta 1991, 204, 109–122. [Google Scholar] [CrossRef]
- Caja, S.; Mäki, M.; Kaukinen, K.; Lindfors, K. Antibodies in celiac disease: Implications beyond diagnostics. Cell. Mol. Immunol. 2011, 8, 103–109. [Google Scholar] [CrossRef]
- Accomando, S.; Albino, C.; Montaperto, D.; Amato, G.M.; Corsello, G. Multiple food intolerance or refractory celiac sprue? Dig. Liver Dis. 2006, 38, 784–785. [Google Scholar] [CrossRef]
- Calderón de la Barca, A.M.; Cabrera-Chávez, F. No Solo el Gluten Sino Otras Proteínas de la Avena, Maíz y Leche de Vaca Podrían Afectar También a Los Pacientes Celíacos. In Enfermedad Celíaca y Sensibilidad al Gluten no Celiaca; Rodrigo, L., Peña, A.S., Eds.; OmniaScience: Barcelona, Spain, 2013; pp. 89–101. [Google Scholar]
- Green, P.H.R.; Cellier, C. Celiac disease. N. Engl. J. Med. 2007, 357, 1731–1743. [Google Scholar] [CrossRef]
- Nilsen, E.M.; Jahnsen, F.L.; Lundin, K.E.; Johansen, E. Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 1998, 115, 551–563. [Google Scholar] [CrossRef]
- Vader, L.W.; de Ru, A.; van der Wal, Y.; Kooy, Y.M.C.; Benckhuijsen, W.; Mearin, M.L.; Drijfhout, J.W.; van Veelen, P.; Koning, F. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J. Exp. Med. 2002, 195, 643–649. [Google Scholar] [CrossRef]
- Dewar, D.H.; Donelly, S.C.; McLaughlin, S.D.; Johnson, M.W.; Ellis, H.J.; Ciclitira, P.J. Celiac disease: Manegement of persistent symptoms in patients on a gluten-free diet. World J. Gastroenterol. 2012, 18, 1348–1356. [Google Scholar] [CrossRef]
- Junker, Y.; Zeissig, S.; Seong-Jun, K.; Barisani, D.; Wieser, H.; Leffler, D.A.; Zevallos, V.; Libermann, T.A.; Dillon, S.; Freitag, T.L.; et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Exp. Med. 2012, 209, 2395–2408. [Google Scholar] [CrossRef]
- Maiuri, L.; Ciacci, C.; Ricciardelli, I.; Vacca, L.; Raia, V.; Auricchio, S.; Picard, J.; Osman, M.; Quarantino, S.; Londei, M. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 2003, 362, 30–37. [Google Scholar] [CrossRef]
- Tortora, R.; Russo, I.; de Palma, G.D.; Luciani, A.; Rispo, A.; Zingone, F.; Iovino, P.; Capone, P.; Ciacci, C. In vitro gliadin challenge: Diagnostic accuracy and utility for the difficult diagnosis of celiac disease. Am. J. Gastroenterol. 2012, 107, 111–117. [Google Scholar] [CrossRef]
- Drago, S.; El Asmar, R.; di Pierro, M.; Clemente, M.G.; Tripathi, A.; Sapone, A.; Thakar, M.; Iacono, G.; Carroccio, A.; D’Agate, C.; et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroenterol. 2006, 41, 408–419. [Google Scholar]
- Elli, L.; Roncoroni, L.; Hils, M.; Pasternack, R.; Barisani, D.; Terrani, C.; Vaira, V.; Ferrero, S.; Bardella, M.T. Immunological effects of transglutaminase-treated gluten in celiac disease. Hum. Immunol. 2012, 73, 992–997. [Google Scholar] [CrossRef]
- Zevallos, V.; Ellis, H.J.; Suligoj, T.; Herencia, L.I.; Ciclitira, P.J. Variable activation of immune response by quinoa (Chenopodiumquinoa Willd.) prolamins in celiac disease. Am. J. Clin. Nutr. 2012, 96, 337–344. [Google Scholar] [CrossRef]
- Anderson, R.P.; van Heel, D.A.; Tye-Din, J.A.; Barnardo, M.; Salio, M.; Jewell, D.P.; Hill, A.V.S. T cells in peripheral blood after gluten challenge in coeliac disease. Gut 2005, 54, 1217–1223. [Google Scholar] [CrossRef]
- Raki, M.; Fallang, L.E.; Brottveit, M.; Bergseng, E.; Quarsten, H.; Lundin, K.E.A.; Sollid, L.M. Tetramer visualization of gut-homing gluten-specific T cells in the peripheral blood of celiac disease patients. Proc. Natl. Acad. Sci. USA 2007, 104, 2831–2836. [Google Scholar]
- Brottveit, M.; Raki, M.; Bergseng, E.; Fallang, L.E.; Simonsen, B.L.S.; Lovik, A.; Larsen, S.; Loberg, E.M.; Jahnsen, F.L.; Sollid, L.M.; et al. Assessing possible celiac disease by an HLA-DQ2-gliadin tetramer test. Am. J. Gastroenterol. 2011, 106, 1318–1324. [Google Scholar] [CrossRef]
- Camarca, A.; Radano, G.; di Mase, R.; Terrone, G.; Maurano, F.; Auricchio, S.; Troncone, R.; Greco, L.; Gianfrani, C. Short wheat challenge is a reproducible in-vivo assay to detect immune response to gluten. Clin. Exp. Immunol. 2012, 169, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Tapia, A.; Kyle, R.A.; Kaplan, E.L.; Johnson, D.R.; Page, W.; Erdtmann, F.; Brantner, T.L.; Kim, W.R.; Phelps, T.K.; Lahr, B.D.; et al. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 2009, 137, 88–93. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ortiz-Sánchez, J.P.; Cabrera-Chávez, F.; De la Barca, A.M.C. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients. Nutrients 2013, 5, 4174-4183. https://doi.org/10.3390/nu5104174
Ortiz-Sánchez JP, Cabrera-Chávez F, De la Barca AMC. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients. Nutrients. 2013; 5(10):4174-4183. https://doi.org/10.3390/nu5104174
Chicago/Turabian StyleOrtiz-Sánchez, Juan P., Francisco Cabrera-Chávez, and Ana M. Calderón De la Barca. 2013. "Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients" Nutrients 5, no. 10: 4174-4183. https://doi.org/10.3390/nu5104174
APA StyleOrtiz-Sánchez, J. P., Cabrera-Chávez, F., & De la Barca, A. M. C. (2013). Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients. Nutrients, 5(10), 4174-4183. https://doi.org/10.3390/nu5104174