The Effects of High Concentrations of Vitamin C on Cancer Cells
Abstract
:1. Introduction
Cell Line | IC50 (mM) |
---|---|
HL-60 | 0.33 ± 0.18 * |
NB4 | 0.76 ± 0.14 * |
NB4-R1 | 0.45 ± 0.24 * |
NB4-R2 | 0.75 ± 0.3 * |
KG1 | 0.79 ± 0.22 * |
K562 | 0.5 ± 0.11 * |
U937 | 0.3 ± 0.16 * |
Normal Bone Marrow | 1 ± 0.3 * |
Patient with AML | 0.84 ± 0.16 * |
OVCAR | >10 * |
SK-OV3 | >10 * |
JLP119 | <1 |
MCF7 | 2 |
MB231 | 7 |
Hs587T | 20 |
KLN205 | <1 |
RAG | <2 |
CT26 | 4 |
B16 | 7 |
LL/2 | 11 |
Hs587Bst | >20 |
CCD34SK | >20 |
Human normal lymphocyte | >20 |
Human normal monocyte | >20 |
2. Molecular Mechanisms Induced by Vitamin C
3. Proteomics Studies
4. In Vivo Studies
5. Clinical Studies
6. Conclusions
Conflicts of Interest
References
- Bram, S.; Froussard, P.; Guichard, M.; Jasmin, C.; Auqery, Y.; Sinoussi-Barre, F.; Wray, W. Ascorbic acid preferential toxicity for malignant melanoma cells. Nature 1980, 284, 629–631. [Google Scholar] [CrossRef]
- Bruchelt, G.; Baader, L.; Reith, A.G.; Holger, N.L.; Gebhardt, S.; Niethammer, D. Rationale for the Use of Ascorbic Acid in Neuroblastoma Therapy. In Human Neuroblastoma; Schwab, M., Ed.; Harwood Academic Publishers: Newark, NJ, USA, 1993; pp. 34–40. [Google Scholar]
- Fujinaga, S.; Sakagami, H.; Kuribayashi, N.; Takahashi, H.; Amano, Y.; Sakagami, T.; Takeda, M. Possible role of hydrogen peroxide in apoptosis induction by ascorbic acid in human myelogenous leukemic cell lines. Showa Univ. Med. Sci. 1994, 6, 135–144. [Google Scholar]
- De Laurenzi, V.; Melino, G.; Savini, I.; Annicchiarico-Petruzzelli, M.; Finazzi-Agro, A.; Avigliano, L. Cell death by oxidative stress and ascorbic acid regeneration in human neuroectodermal cell lines. Eur. J. Cancer 1995, 31, 463–466. [Google Scholar] [CrossRef]
- Park, C.H.; Bergsagel, D.E.; McCulloch, E.A. Ascorbic acid: A culture requirement for colony formation by mouse plasmacytoma cells. Science 1971, 174, 720–722. [Google Scholar]
- Park, C.H. The biological nature of the effect of ascorbic acids on the growth of human leukemic cells. Cancer Res. 1985, 45, 3969–3973. [Google Scholar]
- Park, C.H.; Kimler, B.F.; Bodensteiner, D.; Lynch, S.R.; Hassanein, R.S. In vitro growth modulation by L-ascorbic acid of colony-forming cells from bone marrow of patients with myelodysplastic syndromes. Cancer Res. 1992, 52, 4458–4466. [Google Scholar]
- Sakagami, H.; Asano, K.; Fukuchi, K.; Gomi, K.; Ota, H.; Kazama, K.; Tanuma, S.; Kochi, M. Induction of tumor degeneration by sodium benzylideneascorbate. Anticancer Res. 1991, 11, 1533–1538. [Google Scholar]
- Park, C.H.; Kim, W.S.; Park, C.; Lee, M.H.; Boo, Y.C.; Yoon, S.S. Clinical disease suppression and reduction in acute myeloid leukemia and solid tumors by very high dose of L-ascorbic acid: A new concept and in search of molecular targets. Clin. Cancer Res. 1999, 5, 3784s. [Google Scholar]
- Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C Pharmacokinetics: Implications for Oral and Intravenous Use. Ann. Intern. Med. 2004, 140, 533–537. [Google Scholar] [CrossRef]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.; King, J.; et al. Vitamin C Pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef]
- Levine, M.; Wang, Y.; Padayatty, S.J.; Morrow, J.D. A new recommended dietary allowance of vitamin C for healthy young women. Proc. Natl. Acad. Sci. USA 2001, 98, 9842–9846. [Google Scholar] [CrossRef]
- Chen, Q.; Espey, M.G.; Cherukuri, M.K.; Mitchell, J.B.; Corpe, C.P.; Buettner, G.R.; Shacter, E.; Levine, M. Ascorbic acid at Pharmacologic concentrations selectively kill cancer cells: Ascorbic acid as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA 2005, 102, 13604–13609. [Google Scholar] [CrossRef]
- Levine, M.; Rumsey, S.C.; Daruwala, R.C.; Park, J.B.; Wang, Y. Criteria and recommendation for vitamin C intake. J. Am. Med. 1999, 281, 1415–1423. [Google Scholar]
- Riordan, N.H.; Riordan, H.D.; Casciari, J.J. Clinicla and experimental experiences with intravenous vitamin C. J. Orthomol. Med. 2000, 15, 201–203. [Google Scholar]
- Riordan, H.D.; Hunninghake, R.E.; Riordan, N.H.; Jackson, J.J.; Meng, X.; Taylor, P.; Casciari, J.J.; Gonzalez, M.J.; Miranda-Massari, J.R.; Mora, E.M.; et al. Intravenous Ascorbic Acid: Protocol for its Application and Use. P. R. Health Sci. J. 2003, 22, 287–290. [Google Scholar]
- Park, S.; Han, S.S.; Park, C.H.; Hahm, E.R.; Lee, S.J.; Park, H.K.; Lee, S.H.; Kim, W.S.; Jung, C.W.; Park, K.; et al. L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide-mediated mechanisms. Int. J. Biochem. Cell Biol. 2004, 36, 2180–2195. [Google Scholar] [CrossRef]
- Park, S. Samsung Medical Center: Seoul, Korea, Unpublished work. 2004.
- Park, S.; Lee, J.; Yeom, C.H. A proteomic approach to the identification of early molecular targets changed by L-ascorbic acid in NB4 human leukemia cells. J. Cell. Biochem. 2006, 99, 1628–1641. [Google Scholar] [CrossRef]
- Bienert, G.P.; Schjoerring, J.K.; Jahn, T.P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta 2006, 1758, 994–1003. [Google Scholar] [CrossRef]
- Seaver, L.C.; Imlay, A.J. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J. Bacteriol. 2001, 183, 7182–7189. [Google Scholar] [CrossRef]
- Antunes, F.; Cadenas, E. Estimations of H2O2 gradients across biomembranes. FEBS Lett. 2000, 475, 121–126. [Google Scholar] [CrossRef]
- Makino, N.; Sasaki, K.; Hashida, K.; Sakakura, Y. A metabolic model describing the H2O2 elimination by mammalian cells including H2O2 permeation through cytoplasmatic and peroxisomal membranes: comparison with experimental data. Biochim. Biophys. Acta 2004, 1673, 149–159. [Google Scholar] [CrossRef]
- Sousa-Lopes, A.; Antunes, F.; Cyrne, L.; Marinho, H.S. Decreased cellular permeability to H2O2 protects Saccharomyces cerevisiaein stationary phase against oxidative stress. FEBS Lett 2004, 578, 152–156. [Google Scholar] [CrossRef]
- Mathai, J.C.; Sitaramam, V. Strech sensitivity of transmembrane mobility of hydrogen peroxide through voids in the bilayer. J. Biol. Chem. 1994, 269, 17784–17793. [Google Scholar]
- Zhu, X.H.; Shen, Y.L.; Jing, Y.K.; Cai, X.; Jia, P.M.; Huang, Y.; Tang, W.; Shi, G.Y.; Sun, Y.P.; Dai, J.; et al. Apoptosis and Growth Inhibition in Malignant Lymphocytes After Treatment With Arsenic Trioxide at Clinically Achievable Concentrations. J. Natl. Cancer Inst. 1999, 91, 772–778. [Google Scholar] [CrossRef]
- Dai, J.; Weinberg, R.S.; Waxman, S.; Jing, Y. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 1999, 93, 268–277. [Google Scholar]
- Noiva, R. Protein disulfide isomerase: The multifunctional redox chaperone of the endoplasmic reticulum. Semin. Cell Dev. Biol. 1999, 10, 481–493. [Google Scholar] [CrossRef]
- Kemmink, J.; Darby, N.J.; Dijkstra, K.; Nilges, M.; Creighton, T.E. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr. Biol. 1997, 7, 239–245. [Google Scholar]
- Park, S. Apoptosis of Leukemia Cells Induced by L-Ascorbic Acid and Arsenic Trioxide: The Effect of Oxidative Stress and Glutathione homeostasis.Albina. In Cell Apoptosis and Cancer; Taylor, A.W., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2007; pp. 87–111. [Google Scholar]
- John, D.C.; Bulleid, N.J. Intracellular dissociation and reassembly of prolyl 4-hydroxylase: The alpha-subunits associated with the immunoglobulin-heavy-chain binding protein (BiP) allowing reassembly with the β-subunit. Biochem. J. 1996, 317, 659–665. [Google Scholar]
- Houle, F.; Rousseau, S.; Morrice, N.; Luc, M.; Mongrain, S.; Turner, C.E.; Tanaka, S.; Moreau, P.; Huot, J. Extracellular signal-regulated kinase mediates phosphorylation of tropomyosin-1 to promote cytoskeleton remodeling in response to oxidative stress: impact on membrane blebbing. Mol. Biol. Cell 2003, 14, 1418–1432. [Google Scholar] [CrossRef]
- Zou, L.; Wu, Y.; Pei, L.; Zhong, D.; Gen, M.; Zhao, T.; Wu, J.; Ni, B.; Mou, Z.; Han, J.; et al. Identification of leukemia-associated antigens in chronic myeloid leukemia by proteomic analysis. Leuk. Res. 2005, 29, 1387–1391. [Google Scholar] [CrossRef]
- Chen, Q.; Espey, M.G.; Sun, A.Y.; Lee, J.H.; Krishna, M.C.; Shacter, E.; Choyke, P.L.; Pooput, C.; Kirk, K.L.; Buettner, G.R.; et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 8749–8754. [Google Scholar] [CrossRef]
- Chen, Q.; Espey, M.G.; Sun, A.Y.; Pooput, C.; Kirk, K.L.; Krishna, M.C.; Khosh, D.B.; Drisko, J.; Levin, M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc. Natl. Acad. Sci. USA 2008, 105, 11105–11109. [Google Scholar] [CrossRef]
- Mikirova, N.A.; Ichim, T.E.; Riordan, N.H. Anti-angiogenic effect ofhigh doses of ascorbic acid. J. Transl. Med. 2008. [Google Scholar] [CrossRef]
- Peyman, G.A.; Kivilcim, M.; Morales, A.M.; DellaCroce, J.T.; Conway, M.D. Inhibition of corneal angiogenesis by ascorbic acid in the ratmodel. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 245, 1461–1467. [Google Scholar] [CrossRef]
- Yeom, C.H.; Lee, G.; Park, J.; Yu, J.; Park, S.; Yi, S.Y.; Lee, H.; Hong, Y.; Yang, J.; Lee, S. High dose concentration administration of ascorbic acid inhibits tumor growth in BLAB/C mice implanted with sarcoma 180 cancer cells via the restriction of angiogenesis. J. Transl. Med. 2009, 7. [Google Scholar] [CrossRef]
- Park, S.; Ahn, E.S.; Lee, S.; Jung, M.; Park, J.H.; Yi, S.Y.; Yeom, C.H. Proteomicanalysis reveals upregulation of RKIP in S-180 implanted BALB/C mouse after treatment with ascorbic acid. J. Cell. Biochem. 2009, 106, 1136–1145. [Google Scholar] [CrossRef]
- Park, J.H.; Davis, K.R.; Lee, G.; Jung, M.; Jung, Y.; Park, J.; Yi, S.Y.; Lee, M.A.; Lee, S.; Yeom, C.H.; et al. Ascorbic acid alleviates toxicity of paclitaxel without interfering with the anticancer efficacy in mice. Nutr. Res. 2012, 32, 873–883. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Hoffer, L.J.; Levine, M. Intravenously administered vitamin C as cancer therapy: Three cases. CMAJ 2006, 174, 937–942. [Google Scholar]
- Riordan, H.D.; Jackson, J.A.; Riordan, N.H.; Schultz, M. High-dose intravenous vitamin C in the treatment of a patient with renal cell carcinoma of the kidney. J. Orthomol. Med. 1998, 13, 72–73. [Google Scholar]
- Riordan, H.D.; Riordan, N.H.; Jackson, J.A.; Casciari, J.J.; Hunninghake, R.; Gonzalez, M.J.; Mora, E.M.; Miranda-Massari, J.R.; Rosario, N.; Rivera, A. Intravenous vitamin C as a chemotherapy agent: a report on clinical cases. P. R. Health Sci. J. 2004, 23, 115–118. [Google Scholar]
- Riordan, H.D.; Jackson, J.A.; Schultz, M. Case study: High-dose intravenous vitamin C in the treatment of a patient with adenocarcinoma of the kidney. J. Orthomol. Med. 1990, 5, 5–7. [Google Scholar]
- Jackson, J.A.; Riordan, H.D.; Hunninghake, R.E.; Riordan, N. High-dose intravenous vitamin C and long-time survival of a patient with cancer of the head of the pancreas. J. Orthomol. Med. 1995, 10, 87–88. [Google Scholar]
- Riordan, N.H.; Jackson, J.A.; Riordan, H.D. Intravenous vitamin C in a terminal cancer patient. J. Orthomol. Med. 1996, 11, 80–82. [Google Scholar]
- Padayatty, S.J.; Sun, A.Y.; Chen, Q.; Espey, M.G.; Drislo, J.; Levine, M. Vitamin C: Intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS One 2010, 5, e11411. [Google Scholar]
- Monti, D.A.; Mitchell, E.; Bazzan, A.J.; Littman, S.; Zabrecky, G.; Yeo, C.J.; Pillai, M.V.; Newberg, A.B.; Deshmukh, S.; Levine, M. Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS One 2012, 7, e29794. [Google Scholar] [CrossRef]
- Park, C.H.; Kimler, B.F.; Yi, S.Y.; Park, S.H.; Kim, K.; Jung, C.W.; Kim, S.H.; Lee, E.R.; Rha, M.; Kim, S.; et al. Depletion of L-ascorbic acid alternating with its supplementation in the treatment of patients with acute myeloid leukemia or myelodysplastic syndromes. Eur. J. Haematol. 2009, 83, 108–118. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Park, S. The Effects of High Concentrations of Vitamin C on Cancer Cells. Nutrients 2013, 5, 3496-3505. https://doi.org/10.3390/nu5093496
Park S. The Effects of High Concentrations of Vitamin C on Cancer Cells. Nutrients. 2013; 5(9):3496-3505. https://doi.org/10.3390/nu5093496
Chicago/Turabian StylePark, Seyeon. 2013. "The Effects of High Concentrations of Vitamin C on Cancer Cells" Nutrients 5, no. 9: 3496-3505. https://doi.org/10.3390/nu5093496
APA StylePark, S. (2013). The Effects of High Concentrations of Vitamin C on Cancer Cells. Nutrients, 5(9), 3496-3505. https://doi.org/10.3390/nu5093496