A Review of the Impact of Dietary Intakes in Human Pregnancy on Infant Birthweight
Abstract
:1. Introduction
2. Methods
3. Review
3.1. Undernutrition and Fetal Growth
3.2. Epidemiological Studies and Randomized Controlled Trials Assessing Birthweight
3.2.1. Long chain omega-3 Polyunsaturated Fatty Acids
3.2.2. Zinc
3.2.3. Iron
Study Population | Supplementation Intervention | RR (95% CI) |
---|---|---|
Long chain omega-3 polyunsaturated fatty acids | ||
Meta-analysis of 15 RCTs [49] | 80 mg/day–2.2 g/day (8 trials, n = 3247) | 0.92 (0.83, 1.02) |
Zinc | ||
Cochrane review of 20 RCTs (n > 15,000 women) [72] | 5–44 mg/day (14 trials, n = 5643) | 0.93 (0.78, 1.12) |
5–44 mg/day (8 trials, n = 4252) | 1.02 (0.94, 1.11) a | |
Systematic review and meta-analysis of 20 RCTs (n = 6209) [73] | 15–50 mg/day (n = 11 trials, n = 937/5416 LBW babies) | 1.06 (0.91, 1.23) |
25–45 mg/day (5 trials, n = 1155/3441 SGA babies) | 1.03 (0.91, 1.23) a | |
Iron | ||
Meta-analysis of 48 RCTs (n = 17,793) [79] | 10–140 mg/day (n = 10 trials) | 0.81 (0.71, 0.91) |
0.84 (0.66, 1.07) a | ||
Folate | ||
Cochrane review of 31 trials (n = 17,771) [83] | Dose range not reported (4 studies, n = 3113 on LBW) | 0.83 (0.66, 1.04) |
Calcium | ||
Cochrane review of 21 trials (n = 16,602) [84] | ≥1000 mg/day (5 trials, n = 13,638, mainly calcium carbonate) | 0.83 ( 0.63, 1.09) |
≥600 mg/day (5 trials, n = 1177, mainly calcium carbonate) | 0.86 (0.61, 1.22) b | |
Vitamin D | ||
Cochrane review of 6 trials on various maternal and infant outcomes (n = 623) [85] | 1000 IU/day; 600,000 IU at month 7 and 8; 1 dose of 200,000 IU in third trimester (3 trials, n = 463) | 0.48 (0.23, 1.01) b |
3.2.4. Folate
3.2.5. Calcium
3.2.6. Vitamin D
3.3. Dietary Pattern Studies
3.4. Summary
3.5. Overnutrition and Fetal Growth
Study Population | n | BMI (kg/m2) | Perinatal Outcome OR (95% CI) | |
---|---|---|---|---|
LGA | SGA | |||
Retrospective case-control study (n = 100), UK a [132] | Not reported | ≥40.0 | 3.11 (1.25, 7.79) * | |
Retrospective population-based cohort study of 5047 singleton nulliparous pregnancies, China b [133] | 579 | <18.5 | 1.67 (1.07, 2.61) † | |
926 | 24.0–27.9 | 1.46 (1.02, 2.08) † | ||
342 | ≥28 | 1.91 (1.17, 3.10) † | ||
South Australian Pregnancy Outcome Unit, with singleton pregnancies (n = 19, 672) c [12] | 364 | <18.5 | 0.38 (0.22, 0.67) | 2.12 (1.58, 2.85) |
2943 | 25.0–29.9 | 1.59 (1.41, 1.81) | 0.75 (0.61, 0.92) | |
1528 | 30.0–34.9 | 1.60 (1.37, 1.85) | 0.77 (0.59, 0.99) | |
684 | 35.0–39.9 | 1.91 (1.58, 2.30) | 1.12 (0.82, 1.52) | |
453 | ≥40.0 | 2.17 (1.76, 2.68) | 0.56 (0.34, 0.94) | |
Birth cohort study. Queensland, Australia d [126] | 211 | ≥30.0 | 2.73 (1.49, 5.01) | - |
Singleton fetuses at the University of California (1981 through 2001). Weight measured on first pre-natal visit e [128] | Not reported | >29.0 | 3.04 (1.86, 4.98) White | - |
0.33 (0.04, 2.85) African American | - | |||
2.93 (1.00, 8.58) Latina | - | |||
3.55 (1.39, 9.07) Asian | - | |||
Retrospective cohort study of women who had received prenatal care in the whole urban prenatal care centers of Kazerun, Iran f [129] | 816 | <19.8 | 0.48 (0.30, 0.77) | - |
682 | 26.0–29.9 | 1.27 (0.87, 1.86) | - | |
186 | ≥29.0 | 1.21 (0.61, 2.41) | - | |
Prospective study in Thai women, at <28 weeks’ gestation g [125] | 200 | ≥27.5 | 1.4 (0.5, 4.3) | - |
Danish cohort of women carrying singleton births h [127] | 116 | <18.5 | 0.32 (0.27, 0.38) | - |
3160 | 25.0–29.9 | 1.70 (1.60, 1.78) | - | |
1898 | 30.0–34.9 | 2.20 (2.08, 2.33) | - | |
1363 | ≥35.0 | 2.73 (2.55, 2.94) | - | |
Retrospective cohort study among women and infants from the Better Outcomes Registry and Network dataset, Canada i [124] | 249 | ≥40.0 | 3.70 (2.22, 6.16) | 0.75 (0.38, 1.45) |
Gestational Weight Gain
3.6. Summary
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Australian Government Department of Health and Ageing. National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; Australian Government Department of Health and Ageing: Canberra, Australia, 2013. [Google Scholar]
- Kaiser, L.L.; Allen, L. Position of the american dietetic association: Nutrition and lifestyle for a healthy pregnancy outcome. J. Am. Diet. Assoc. 2002, 102, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Smith, R.; Collins, C.E. Systematic review and meta-analysis of energy and macronutrient intakes during pregnancy in developed countries. Nutr. Rev. 2012, 70, 322–336. [Google Scholar] [CrossRef] [PubMed]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Smith, R.; Collins, C.E. A systematic review and meta-analysis of micronutrient intakes during pregnancy in developed countries. Nutr. Rev. 2013, 71, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Klein, J. The relationship of maternal weight gain to the weight of the newborn infant. Am. J. Obstet. Gynecol. 1946, 52, 574–580. [Google Scholar] [PubMed]
- Schofield, C.P.; Wheildon, A.; McNaughton, J.; Beet, L. Report of Committee of Inquiry into the Medical Aspects of the Decline of the Birth Rate, Including Reports of Special Investigations; Special Report Series No. 4. P98; National Health and Medical Research Council: Canberra, Australia, 1948. [Google Scholar]
- Smith, C.A. Effects of maternal under nutrition upon the newborn infant in holland (1944–1945). J. Pediatr. 1947, 30, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Sontag, L.W.; Wines, J. Relation of mothers’ diets to status of their infants at birth and in infancy. Am. J. Obstet. Gynecol. 1947, 54, 994–1003. [Google Scholar] [PubMed]
- Tompkins, W.T.; Wiehl, D.G. Nutritional deficiencies as a casual factor in toxemia and premature labor. Am. J. Obstet. Gynecol. 1951, 62, 898–919. [Google Scholar] [PubMed]
- Venkatachalam, P.S. Maternal nutritional status and its effect on the newborn. Bull. World Health Organ. 1962, 26, 193–201. [Google Scholar] [PubMed]
- Callaway, L.K.; Prins, J.B.; Chang, A.M.; McIntyre, H.D. The prevalence and impact of overweight and obesity in an australian obstetric population. Med. J. Aust. 2006, 184, 56–59. [Google Scholar] [PubMed]
- Dodd, J.M.; Grivell, R.M.; Nguyen, A.M.; Chan, A.; Robinson, J.S. Maternal and perinatal health outcomes by body mass index category. Aust. N. Z. J. Obstet. Gynaecol. 2011, 51, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Guelinckx, I.; Devlieger, R.; Beckers, K.; Vansant, G. Maternal obesity: Pregnancy complications, gestational weight gain and nutrition. Obes. Rev. 2008, 9, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M. Obesity and pregnancy—The propagation of a viscous cycle? J. Clin. Endocrinol. Metab. 2003, 88, 3505–3506. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberg, H.M.; Mercer, B.M.; Catalano, P.M. The influence of obesity and diabetes on the prevalence of macrosomia. Am. J. Obstet. Gynecol. 2004, 191, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Gillman, M.W.; Rifas-Shiman, S.L.; Kleinman, K.; Oken, E.; Rich-Edwards, J.W.; Taveras, E.M. Developmental origins of childhood overweight: Potential public health impact. Obesity Silver Spring 2008, 16, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L.; Forhead, A.J. Endocrine mechanisms of intrauterine programming. Reproduction 2004, 127, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Baur, R. Morphometry of the placental exchange area. Adv. Anat. Embryol. Cell Biol. 1977, 53, 3–65. [Google Scholar] [PubMed]
- Mellor, D.J. Nutritional and placental determinants of foetal growth rate in sheep and consequences for the newborn lamb. Br. Vet. J. 1983, 139, 307–324. [Google Scholar] [PubMed]
- Owens, J.A.; Falconer, J.; Robinson, J.S. Glucose metabolism in pregnant sheep when placental growth is restricted. Am. J. Physiol. 1989, 257, R350–357. [Google Scholar] [PubMed]
- Thureen, P.J.; Trembler, K.A.; Meschia, G.; Makowski, E.L.; Wilkening, R.B. Placental glucose transport in heat-induced fetal growth retardation. Am. J. Physiol. 1992, 263, R578–R585. [Google Scholar] [PubMed]
- Vatnick, I.; Schoknecht, P.A.; Darrigrand, R.; Bell, A.W. Growth and metabolism of the placenta after unilateral fetectomy in twin pregnant ewes. J. Dev. Physiol. 1991, 15, 351–356. [Google Scholar] [PubMed]
- Lederman, S.A.; Rosso, P. Effects of food restriction on fetal and placental growth and maternal body composition. Growth 1980, 44, 77–88. [Google Scholar] [PubMed]
- Jansson, N.; Pettersson, J.; Haafiz, A.; Ericsson, A.; Palmberg, I.; Tranberg, M.; Ganapathy, V.; Powell, T.L.; Jansson, T. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J. Physiol. 2006, 576, 935–946. [Google Scholar] [PubMed]
- Rutland, C.S.; Latunde-Dada, A.O.; Thorpe, A.; Plant, R.; Langley-Evans, S.; Leach, L. Effect of gestational nutrition on vascular integrity in the murine placenta. Placenta 2007, 28, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Belkacemi, L.; Nelson, D.M.; Desai, M.; Ross, M.G. Maternal undernutrition influences placental-fetal development. Biol. Reprod. 2010, 83, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Heasman, L.; Clarke, L.; Firth, K.; Stephenson, T.; Symonds, M.E. Influence of restricted maternal nutrition in early to mid gestation on placental and fetal development at term in sheep. Pediatr. Res. 1998, 44, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Faichney, G.J.; White, G.A. Effects of maternal nutritional status on fetal and placental growth and on fetal urea synthesis in sheep. Aust. J. Biol. Sci. 1987, 40, 365–377. [Google Scholar] [PubMed]
- McCrabb, G.J.; Egan, A.R.; Hosking, B.J. Maternal undernutrition during mid-pregnancy in sheep. Placental size and its relationship to calcium transfer during late pregnancy. Br. J. Nutr. 1991, 65, 157–168. [Google Scholar]
- Mellor, D.J.; Murray, L. Effects of placental weight and maternal nutrition on the growth rates of individual fetuses in single and twin bearing ewes during late pregnancy. Res. Vet. Sci. 1981, 30, 198–204. [Google Scholar] [PubMed]
- Langley-Evans, S.C.; Welham, S.J.; Sherman, R.C.; Jackson, A.A. Weanling rats exposed to maternal low-protein diets during discrete periods of gestation exhibit differing severity of hypertension. Clin. Sci. Lond. 1996, 91, 607–615. [Google Scholar] [PubMed]
- Langley-Evans, S.C.; Nwagwu, M. Impaired growth and increased glucocorticoid-sensitive enzyme activities in tissues of rat fetuses exposed to maternal low protein diets. Life Sci. 1998, 63, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Breton, C. The hypothalamus-adipose axis is a key target of developmental programming by maternal nutritional manipulation. J. Endocrinol. 2013, 216, R19–R31. [Google Scholar] [CrossRef] [PubMed]
- Vickers, M.H.; Krechowec, S.O.; Breier, B.H. Is later obesity programmed in utero? Curr. Drug Targets 2007, 8, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Mulla, S.; Beyene, J.; Liao, G.; McDonald, S.D.; Knowledge Synthesis, G. Maternal underweight and the risk of preterm birth and low birth weight: A systematic review and meta-analyses. Int. J. Epidemiol. 2011, 40, 65–101. [Google Scholar] [CrossRef] [PubMed]
- Thame, M.; Wilks, R.J.; McFarlane-Anderson, N.; Bennett, F.I.; Forrester, T.E. Relationship between maternal nutritional status and infant’s weight and body proportions at birth. Eur. J. Clin. Nutr. 1997, 51, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Lapillonne, A.; Braillon, P.; Claris, O.; Chatelain, P.G.; Delmas, P.D.; Salle, B.L. Body composition in appropriate and in small for gestational age infants. Acta Paediatr. 1997, 86, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Padoan, A.; Rigano, S.; Ferrazzi, E.; Beaty, B.L.; Battaglia, F.C.; Galan, H.L. Differences in fat and lean mass proportions in normal and growth-restricted fetuses. Am. J. Obstet. Gynecol. 2004, 191, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Emond, A.; Drewett, R.; Blair, P.; Emmett, P. Postnatal factors associated with failure to thrive in term infants in the avon longitudinal study of parents and children. Arch. Dis. Child. 2007, 92, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Newsome, C.A.; Shiell, A.W.; Fall, C.H.; Phillips, D.I.; Shier, R.; Law, C.M. Is birth weight related to later glucose and insulin metabolism?—A systematic review. Diabet. Med. 2003, 20, 339–348. [Google Scholar] [CrossRef]
- Campbell, D.M.; Hall, M.H.; Barker, D.J.; Cross, J.; Shiell, A.W.; Godfrey, K.M. Diet in pregnancy and the offspring’s blood pressure 40 years later. Br. J. Obstet. Gynaecol. 1996, 103, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Roseboom, T.J.; van der Meulen, J.H.; van Montfrans, G.A.; Ravelli, A.C.; Osmond, C.; Barker, D.J.; Bleker, O.P. Maternal nutrition during gestation and blood pressure in later life. J. Hypertens. 2001, 19, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Cetin, I.; Alvino, G.; Cardellicchio, M. Long chain fatty acids and dietary fats in fetal nutrition. J. Physiol. 2009, 587, 3441–3451. [Google Scholar] [CrossRef] [PubMed]
- Lapillonne, A.; Groh-Wargo, S.; Gonzalez, C.H.; Uauy, R. Lipid needs of preterm infants: Updated recommendations. J. Pediatr. 2013, 162, S37–S47. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.E. Docosahexaenoic acid supplementation in pregnancy and lactation. Am. J. Clin. Nutr. 2009, 89, 678S–684S. [Google Scholar]
- Allen, K.G.; Harris, M.A. The role of n-3 fatty acids in gestation and parturition. Exp. Biol. Med. Maywood 2001, 226, 498–506. [Google Scholar] [PubMed]
- Fleith, M.; Clandinin, M.T. Dietary pufa for preterm and term infants: Review of clinical studies. Crit. Rev. Food Sci. Nutr. 2005, 45, 205–229. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Lien, E.; Agostoni, C.; Bohles, H.; Campoy, C.; Cetin, I.; Decsi, T.; Dudenhausen, J.W.; Dupont, C.; Forsyth, S.; et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: Review of current knowledge and consensus recommendations. J. Perinat. Med. 2008, 36, 5–14. [Google Scholar]
- Imhoff-Kunsch, B.; Briggs, V.; Goldenberg, T.; Ramakrishnan, U. Effect of n-3 long-chain polyunsaturated fatty acid intake during pregnancy on maternal, infant, and child health outcomes: A systematic review. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. 1), 91–107. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.E.; Colombo, J.; Gajewski, B.J.; Gustafson, K.M.; Mundy, D.; Yeast, J.; Georgieff, M.K.; Markley, L.A.; Kerling, E.H.; Shaddy, D.J. DHA supplementation and pregnancy outcomes. Am. J. Clin. Nutr. 2013, 97, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Fung, E.B.; Ritchie, L.D.; Woodhouse, L.R.; Roehl, R.; King, J.C. Zinc absorption in women during pregnancy and lactation: A longitudinal study. Am. J. Clin. Nutr. 1997, 66, 80–88. [Google Scholar] [PubMed]
- Institute of Medicine. Dietary Reference Intakes: Estimated Average Requirements; The National Acadamies Press: Washington, DC, USA, 2011. [Google Scholar]
- Swanson, C.A.; King, J.C. Zinc utilization in pregnant and nonpregnant women fed controlled diets providing the zinc rda. J. Nutr. 1982, 112, 697–707. [Google Scholar] [PubMed]
- Swanson, C.A.; Turnlund, J.R.; King, J.C. Effect of dietary zinc sources and pregnancy on zinc utilization in adult women fed controlled diets. J. Nutr. 1983, 113, 2557–2567. [Google Scholar] [PubMed]
- Moser-Veillon, P.B. Zinc needs and homeostasis during lactation. Analyst 1995, 120, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.J.; Giugliano, R.; Giugliano, L.G.; Oliveira, E.F.; Shrimpton, R.; Swainbank, I.G. Stable isotope metabolic studies of zinc nutrition in slum-dwelling lactating women in the Amazon valley. Br. J. Nutr. 1988, 59, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Masters, D.G.; Keen, C.L.; Lonnerdal, B.; Hurley, L.S. Release of zinc from maternal tissues during zinc deficiency or simultaneous zinc and calcium deficiency in the pregnant rat. J. Nutr. 1986, 116, 2148–2154. [Google Scholar] [PubMed]
- Jankowski-Hennig, M.A.; Clegg, M.S.; Daston, G.P.; Rogers, J.M.; Keen, C.L. Zinc-deficient rat embryos have increased caspase 3-like activity and apoptosis. Biochem. Biophys. Res. Commun. 2000, 271, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, G.G.; Zago, M.P.; Keen, C.L.; Oteiza, P.I. Low intracellular zinc impairs the translocation of activated nf-kappa b to the nuclei in human neuroblastoma imr-32 cells. J. Biol. Chem. 2002, 277, 34610–34617. [Google Scholar] [CrossRef] [PubMed]
- Kienholz, E.W.; Turk, D.E.; Sunde, M.L.; Hoekstra, W.G. Effects of zinc deficiency in the diets of hens’. J. Nutr. 1961, 75, 211–221. [Google Scholar] [PubMed]
- Hurley, L.S.; Swenerton, H. Congenital malformations resulting from zinc deficiency in rats. Proc. Soc. Exp. Biol. Med. 1966, 123, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Jameson, S. Effects of zinc deficiency in human reproduction. Acta Med. Scand. Suppl. 1976, 593, 1–89. [Google Scholar]
- Wells, J.L.; James, D.K.; Luxton, R.; Pennock, C.A. Maternal leucocyte zinc deficiency at start of third trimester as a predictor of fetal growth retardation. Br. Med. J. 1987, 294, 1054–1056. [Google Scholar] [CrossRef]
- Shah, D.; Sachdev, H.P. Effect of gestational zinc deficiency on pregnancy outcomes: Summary of observation studies and zinc supplementation trials. Br. J. Nutr. 2001, 85 (Suppl. 2), S101–S108. [Google Scholar] [CrossRef] [PubMed]
- Merialdi, M.; Caulfield, L.E.; Zavaleta, N.; Figueroa, A.; DiPietro, J.A. Adding zinc to prenatal iron and folate tablets improves fetal neurobehavioral development. Am. J. Obstet. Gynecol. 1999, 180, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Badakhsh, M.H.; Khamseh, M.E.; Seifoddin, M.; Kashanian, M.; Malek, M.; Shafiee, G.; Baradaran, H.R. Impact of maternal zinc status on fetal growth in an Iranian pregnant population. Gynecol. Endocrinol. 2011, 27, 1074–1076. [Google Scholar] [CrossRef] [PubMed]
- Samimi, M.; Asemi, Z.; Taghizadeh, M.; Azarbad, Z.; Rahimi-Foroushani, A.; Sarahroodi, S. Concentrations of serum zinc, hemoglobin and ferritin among pregnant women and their effects on birth outcomes in Kashan, Iran. Oman Med. J. 2012, 27, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Rwebembera, A.A.; Munubhi, E.K.; Manji, K.P.; Mpembeni, R.; Philip, J. Relationship between infant birth weight </=2000 g and maternal zinc levels at Muhimbili National Hospital, Dar Es Salaam, Tanzania. J. Trop. Pediatr. 2006, 52, 118–125. [Google Scholar]
- Scholl, T.O.; Hediger, M.L.; Schall, J.I.; Fischer, R.L.; Khoo, C.S. Low zinc intake during pregnancy: Its association with preterm and very preterm delivery. Am. J. Epidemiol. 1993, 137, 1115–1124. [Google Scholar] [PubMed]
- Bawadi, H.A.; Al-Kuran, O.; Al-Bastoni, L.A.; Tayyem, R.F.; Jaradat, A.; Tuuri, G.; Al-Beitawi, S.N.; Al-Mehaisen, L.M. Gestational nutrition improves outcomes of vaginal deliveries in Jordan: An epidemiologic screening. Nutr. Res. 2010, 30, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Khoushabi, F.; Saraswathi, G. Impact of nutritional status on birth weight of neonates in Zahedan City, Iran. Nutr. Res. Pract. 2010, 4, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Mori, R.; Ota, E.; Middleton, P.; Tobe-Gai, R.; Mahomed, K.; Bhutta, Z.A. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2012, 7, CD000230. [Google Scholar] [PubMed]
- Chaffee, B.W.; King, J.C. Effect of zinc supplementation on pregnancy and infant outcomes: A systematic review. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. 1), 118–137. [Google Scholar] [CrossRef] [PubMed]
- Ronnenberg, A.G.; Wood, R.J.; Wang, X.; Xing, H.; Chen, C.; Chen, D.; Guang, W.; Huang, A.; Wang, L.; Xu, X. Preconception hemoglobin and ferritin concentrations are associated with pregnancy outcome in a prospective cohort of chinese women. J. Nutr. 2004, 134, 2586–2591. [Google Scholar] [PubMed]
- Scholl, T.O.; Hediger, M.L. Anemia and iron-deficiency anemia: Compilation of data on pregnancy outcome. Am. J. Clin. Nutr. 1994, 59, 492S–500S. [Google Scholar] [PubMed]
- Scholl, T.O. Maternal iron status: Relation to fetal growth, length of gestation, and iron endowment of the neonate. Nutr. Rev. 2011, 69 (Suppl. 1), S23–S29. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.M.; Yang, W.W.; Hua, J.Z.; Deng, C.Q.; Tao, X.; Stoltzfus, R.J. Relation of hemoglobin measured at different times in pregnancy to preterm birth and low birth weight in Shanghai, China. Am. J. Epidemiol. 1998, 148, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Alwan, N.A.; Greenwood, D.C.; Simpson, N.A.; McArdle, H.J.; Godfrey, K.M.; Cade, J.E. Dietary iron intake during early pregnancy and birth outcomes in a cohort of british women. Hum. Reprod. 2011, 26, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Haider, B.A.; Olofin, I.; Wang, M.; Spiegelman, D.; Ezzati, M.; Fawzi, W.W. Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: Systematic review and meta-analysis. BMJ 2013, 346, f3443. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Tamura, T.; DuBard, M.; Johnston, K.E.; Copper, R.L.; Neggers, Y. Plasma ferritin and pregnancy outcome. Am. J. Obstet. Gynecol. 1996, 175, 1356–1359. [Google Scholar] [CrossRef] [PubMed]
- Singla, P.N.; Tyagi, M.; Kumar, A.; Dash, D.; Shankar, R. Fetal growth in maternal anaemia. J. Trop. Pediatr. 1997, 43, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Ribot, B.; Aranda, N.; Viteri, F.; Hernandez-Martinez, C.; Canals, J.; Arija, V. Depleted iron stores without anaemia early in pregnancy carries increased risk of lower birthweight even when supplemented daily with moderate iron. Hum. Reprod. 2012, 27, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Lassi, Z.S.; Salam, R.A.; Haider, B.A.; Bhutta, Z.A. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst. Rev. 2013, 3, CD006896. [Google Scholar] [PubMed]
- Buppasiri, P.; Lumbiganon, P.; Thinkhamrop, J.; Ngamjarus, C.; Laopaiboon, M. Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane Database Syst. Rev. 2011, CD007079. [Google Scholar] [CrossRef]
- De-Regil, L.M.; Palacios, C.; Ansary, A.; Kulier, R.; Pena-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2012, 2, CD008873. [Google Scholar] [PubMed]
- Godfrey, K.M.; Redman, C.W.; Barker, D.J.; Osmond, C. The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight. Br. J. Obstet. Gynaecol. 1991, 98, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Bastin, J.; Drakesmith, H.; Rees, M.; Sargent, I.; Townsend, A. Localisation of proteins of iron metabolism in the human placenta and liver. Br. J. Haematol. 2006, 134, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, P.; Stys, A.; Starzynski, R.R. Molecular insights into the regulation of iron metabolism during the prenatal and early postnatal periods. Cell. Mol. Life Sci. 2013, 70, 23–38. [Google Scholar] [CrossRef] [PubMed]
- McArdle, H.J.; Lang, C.; Hayes, H.; Gambling, L. Role of the placenta in regulation of fetal iron status. Nutr. Rev. 2011, 69 (Suppl. 1), S17–S22. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.A.; Bell, S.J.; Guan, Y.; Yu, Y.H. Folic acid supplementation and pregnancy: More than just neural tube defect prevention. Rev. Obstet. Gynecol. 2011, 4, 52–59. [Google Scholar] [PubMed]
- MRC vitamin study research group. Prevention of neural tube defects: Results of the medical research council vitamin study. Lancet 1991, 338, 131–137. [Google Scholar]
- De-Regil, L.M.; Fernandez-Gaxiola, A.C.; Dowswell, T.; Pena-Rosas, J.P. Effects and safety of periconceptional folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2010, CD007950. [Google Scholar] [CrossRef]
- Rieder, M.J. Prevention of neural tube defects with periconceptional folic acid. Clin. Perinatol. 1994, 21, 483–503. [Google Scholar] [PubMed]
- Czeizel, A.E.; Dudas, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 1992, 327, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; National Health and Medical Research Council: Canberra, Australia, 2005. [Google Scholar]
- Shane, B. Folate status assessment history: Implications for measurement of biomarkers in nhanes. Am. J. Clin. Nutr. 2011, 94, 337S–342S. [Google Scholar] [CrossRef] [PubMed]
- Van Uitert, E.M.; Steegers-Theunissen, R.P. Influence of maternal folate status on human fetal growth parameters. Mol. Nutr. Food Res. 2013, 57, 582–595. [Google Scholar]
- Cross, N.A.; Hillman, L.S.; Allen, S.H.; Krause, G.F.; Vieira, N.E. Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: A longitudinal study. Am. J. Clin. Nutr. 1995, 61, 514–523. [Google Scholar] [PubMed]
- Gertner, J.M.; Coustan, D.R.; Kliger, A.S.; Mallette, L.E.; Ravin, N.; Broadus, A.E. Pregnancy as state of physiologic absorptive hypercalciuria. Am. J. Med. 1986, 81, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Skillman, T.G. Calcium metabolism in normal human pregnancy. J. Clin. Endocrinol. Metab. 1971, 33, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, C.S. Bone metabolism in the fetus and neonate. Pediatr. Nephrol. 2013, 29, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A. Micronutrients and the bone mineral content of the mother, fetus and newborn. J. Nutr. 2003, 133, 1693S–1699S. [Google Scholar] [PubMed]
- Durrani, A.M.; Rani, A. Effect of maternal dietary intake on the weight of the newborn in Aligarh city, India. Niger. Med. J. 2011, 52, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Sabour, H.; Hossein-Nezhad, A.; Maghbooli, Z.; Madani, F.; Mir, E.; Larijani, B. Relationship between pregnancy outcomes and maternal vitamin D and calcium intake: A cross-sectional study. Gynecol. Endocrinol. 2006, 22, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Hillman, L.S.; Slatopolsky, E.; Haddad, J.G. Perinatal vitamin D metabolism. Iv. Maternal and cord serum 24,25-dihydroxyvitamin D concentrations. J. Clin. Endocrinol. Metab. 1978, 47, 1073–1077. [Google Scholar]
- Wieland, P.; Fischer, J.A.; Trechsel, U.; Roth, H.R.; Vetter, K.; Schneider, H.; Huch, A. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am. J. Physiol. 1980, 239, E385–E390. [Google Scholar] [PubMed]
- Haddad, J.G., Jr.; Boisseau, V.; Avioli, L.V. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J. Lab. Clin. Med. 1971, 77, 908–915. [Google Scholar] [PubMed]
- Kovacs, C.S. Vitamin D in pregnancy and lactation: Maternal, fetal, and neonatal outcomes from human and animal studies. Am. J. Clin. Nutr. 2008, 88, 520S–528S. [Google Scholar] [PubMed]
- Kovacs, C.S. Fetus, neonate and infant. In Vitamin D, 3rd ed.; Feldman, D., Ed.; Academic Press: New York, NY, USA, 2011; pp. 625–646. [Google Scholar]
- Dietary Reference Intakes for Calcium and Vitamin D. Institute of Medicine: Washington, DC, USA, 2011. Available online: http://www.nal.usda.gov/fnic/DRI/DRI_Calcium_Vitamin_D/FullReport.pdf (accessed on 15 February 2014).
- Aly, Y.F.; El Koumi, M.A.; Abd El Rahman, R.N. Impact of maternal vitamin D status during pregnancy on the prevalence of neonatal vitamin D deficiency. Pediatr. Rep. 2013, 5, e6. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, S.; Lalooha, F.; Zahir Mirdamadi, S.; Ziaee, A.; Dabaghi Ghaleh, T. Effect of vitamin D administration in vitamin D-deficient pregnant women on maternal and neonatal serum calcium and vitamin D concentrations: A randomised clinical trial. Br. J. Nutr. 2013, 110, 1611–1616. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.K.; Crozier, S.R.; Harvey, N.C.; Gale, C.R.; Dennison, E.M.; Boucher, B.J.; Arden, N.K.; Godfrey, K.M.; Cooper, C.; Princess Anne Hospital Study Group. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: A longitudinal study. Lancet 2006, 367, 36–43. [Google Scholar]
- Aghajafari, F.; Nagulesapillai, T.; Ronksley, P.E.; Tough, S.C.; O’Beirne, M.; Rabi, D.M. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: Systematic review and meta-analysis of observational studies. BMJ 2013, 346, f1169. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.M.; Wall, C.; Becroft, D.M.; Robinson, E.; Wild, C.J.; Mitchell, E.A. Maternal dietary patterns in pregnancy and the association with small-for-gestational-age infants. Br. J. Nutr. 2010, 103, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, V.K.; Orozova-Bekkevold, I.M.; Mikkelsen, T.B.; Wolff, S.; Olsen, S.F. Major dietary patterns in pregnancy and fetal growth. Eur. J. Clin. Nutr. 2008, 62, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Bernal, C.L.; Rebagliato, M.; Iniguez, C.; Vioque, J.; Navarrete-Munoz, E.M.; Murcia, M.; Bolumar, F.; Marco, A.; Ballester, F. Diet quality in early pregnancy and its effects on fetal growth outcomes: The infancia y medio ambiente (childhood and environment) mother and child cohort study in Spain. Am. J. Clin. Nutr. 2010, 91, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Okubo, H.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Murakami, K.; Hirota, Y.; Osaka, M.; Child Health Study, G.; Kanzaki, H.; Kitada, M.; et al. Maternal dietary patterns in pregnancy and fetal growth in japan: The osaka maternal and child health study. Br. J. Nutr. 2012, 107, 1526–1533. [Google Scholar]
- Timmermans, S.; Steegers-Theunissen, R.P.; Vujkovic, M.; den Breeijen, H.; Russcher, H.; Lindemans, J.; Mackenbach, J.; Hofman, A.; Lesaffre, E.E.; Jaddoe, V.V.; et al. The mediterranean diet and fetal size parameters: The generation r study. Br. J. Nutr. 2012, 108, 1–11. [Google Scholar]
- Chatzi, L.; Mendez, M.; Garcia, R.; Roumeliotaki, T.; Ibarluzea, J.; Tardon, A.; Amiano, P.; Lertxundi, A.; Iniguez, C.; Vioque, J.; et al. Mediterranean diet adherence during pregnancy and fetal growth: Inma (spain) and rhea (greece) mother-child cohort studies. Br. J. Nutr. 2012, 107, 135–145. [Google Scholar]
- Mikkelsen, T.B.; Osterdal, M.L.; Knudsen, V.K.; Haugen, M.; Meltzer, H.M.; Bakketeig, L.; Olsen, S.F. Association between a mediterranean-type diet and risk of preterm birth among danish women: A prospective cohort study. Acta Obstet. Gynecol. Scand. 2008, 87, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Grzeskowiak, L.E.; Clifton, V.L. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J. Nutr. 2014, 144, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Athukorala, C.; Rumbold, A.R.; Willson, K.J.; Crowther, C.A. The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth 2010, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, L.; Tu, X.; Fell, D.; El-Chaar, D.; Wu Wen, S.; Walker, M. The effect of maternal class iii obesity on neonatal outcomes: A retrospective matched cohort study. J. Matern. Fetal Neonatal Med. 2012, 25, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Kongubol, A.; Phupong, V. Prepregnancy obesity and the risk of gestational diabetes mellitus. BMC Pregnancy Childbirth 2011, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.K.; Olog, A.; Spinks, A.B.; Cameron, C.M.; Searle, J.; McClure, R.J. Risk factors and obstetric complications of large for gestational age births with adjustments for community effects: Results from a new cohort study. BMC Public Health 2010, 10, 460. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, P.; Rasmussen, S.; Kesmodel, U. Effect of prepregnancy maternal overweight and obesity on pregnancy outcome. Obstet. Gynecol. 2011, 118, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.A.; Caughey, A.B. The interrelationship between ethnicity and obesity on obstetric outcomes. Am. J. Obstet. Gynecol. 2005, 193, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, M. Gestational weight gain, prepregnancy body mass index related to pregnancy outcomes in Kazerun, fars, Iran. J. Prenat. Med. 2011, 5, 35–40. [Google Scholar] [PubMed]
- McIntyre, H.D.; Gibbons, K.S.; Flenady, V.J.; Callaway, L.K. Overweight and obesity in Australian mothers: Epidemic or endemic? Med. J. Aust. 2012, 196, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.H.; Sadler, L.C.; Stewart, A.W.; Fyfe, E.M.; McCowan, L.M. Independent risk factors for infants who are small for gestational age by customised birthweight centiles in a multi-ethnic New Zealand population. Aust. N. Z. J. Obstet. Gynaecol. 2013, 53, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, D.; Chandraharan, E. The adverse impact of maternal obesity on intrapartum and perinatal outcomes. ISRN Obstet. Gynecol. 2012, 2012, 939762. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Du, J.; Wang, G.; Chen, Z.; Wang, W.; Xi, Q. Effect of pre-pregnancy body mass index on adverse pregnancy outcome in north of china. Arch. Gynecol. Obstet. 2011, 283, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Simar, D.; Lambert, K.; Mercier, J.; Morris, M.J. Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 2008, 149, 5348–5356. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Jen, K.L. High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol. Behav. 1995, 57, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Levin, B.E.; Govek, E. Gestational obesity accentuates obesity in obesity-prone progeny. Am. J. Physiol. 1998, 275, R1374–R1379. [Google Scholar] [PubMed]
- Nivoit, P.; Morens, C.; van Assche, F.A.; Jansen, E.; Poston, L.; Remacle, C.; Reusens, B. Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 2009, 52, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Shankar, K.; Harrell, A.; Liu, X.; Gilchrist, J.M.; Ronis, M.J.; Badger, T.M. Maternal obesity at conception programs obesity in the offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R528–R538. [Google Scholar] [CrossRef] [PubMed]
- Rajia, S.; Chen, H.; Morris, M.J. Maternal overnutrition impacts offspring adiposity and brain appetite markers-modulation by postweaning diet. J. Neuroendocrinol. 2010, 22, 905–914. [Google Scholar] [PubMed]
- George, L.A.; Uthlaut, A.B.; Long, N.M.; Zhang, L.; Ma, Y.; Smith, D.T.; Nathanielsz, P.W.; Ford, S.P. Different levels of overnutrition and weight gain during pregnancy have differential effects on fetal growth and organ development. Reprod. Biol. Endocrinol. 2010, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.S.; Bertrand, H.A.; McMahan, C.A.; McGill, H.C., Jr.; Carey, K.D.; Masoro, E.J. Preweaning food intake influences the adiposity of young adult baboons. J. Clin. Investig. 1986, 78, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Hayes, E.K.; Lechowicz, A.; Petrik, J.J.; Storozhuk, Y.; Paez-Parent, S.; Dai, Q.; Samjoo, I.A.; Mansell, M.; Gruslin, A.; Holloway, A.C.; et al. Adverse fetal and neonatal outcomes associated with a life-long high fat diet: Role of altered development of the placental vasculature. PLoS One 2012, 7, e33370. [Google Scholar]
- Rizzo, G.S.; Sen, S. Maternal obesity and immune dysregulation in mother and infant: A review of the evidence. Paediatr. Respir. Rev. 2014. [Google Scholar] [CrossRef]
- Sen, S.; Iyer, C.; Klebenov, D.; Histed, A.; Aviles, J.A.; Meydani, S.N. Obesity impairs cell-mediated immunity during the second trimester of pregnancy. Am. J. Obstet. Gynecol. 2013, 208, e131–e138. [Google Scholar] [CrossRef]
- Alanis, M.C.; Steadman, E.M.; Manevich, Y.; Danyelle, M.; Townsend, D.M.; Goetzl, L.M. Maternal obesity and placental oxidative stress in the first trimester. Obes. Weight Loss Ther. 2012, 2. [Google Scholar] [CrossRef]
- Schmatz, M.; Madan, J.; Marino, T.; Davis, J. Maternal obesity: The interplay between inflammation, mother and fetus. J. Perinatol. 2010, 30, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.M. Adaptive maternal, placental and fetal responses to nutritional extremes in the pregnant adolescent: Lessons from sheep. In Cambridge Studies in Biological and Evolutionary Anthropology (No. 59); Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Wallace, J.M.; Horgan, G.W.; Bhattacharya, S. Placental weight and efficiency in relation to maternal body mass index and the risk of pregnancy complications in women delivering singleton babies. Placenta 2012, 33, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, J.; Feng, L.; Chen, Y.; Zhang, J.; Wang, W. Maternal prepregnancy obesity is associated with higher risk of placental pathological lesions. Placenta 2014, 35, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Kingdom, J.; Huppertz, B.; Seaward, G.; Kaufmann, P. Development of the placental villous tree and its consequences for fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 92, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Correia-Branco, A.; Keating, E.; Martel, F. Maternal undernutrition and fetal developmental programming of obesity: The glucocorticoid connection. Reprod. Sci. 2014. [Google Scholar] [CrossRef]
- Hochberg, Z.; Feil, R.; Constancia, M.; Fraga, M.; Junien, C.; Carel, J.C.; Boileau, P.; Le Bouc, Y.; Deal, C.L.; Lillycrop, K.; et al. Child health, developmental plasticity, and epigenetic programming. Endocr. Rev. 2011, 32, 159–224. [Google Scholar]
- El-Chaar, D.; Finkelstein, S.A.; Tu, X.; Fell, D.B.; Gaudet, L.; Sylvain, J.; Tawagi, G.; Wen, S.W.; Walker, M. The impact of increasing obesity class on obstetrical outcomes. J. Obstet. Gynaecol. Can. 2013, 35, 224–233. [Google Scholar] [PubMed]
- Magann, E.F.; Doherty, D.A.; Sandlin, A.T.; Chauhan, S.P.; Morrison, J.C. The effects of an increasing gradient of maternal obesity on pregnancy outcomes. Aust. N. Z. J. Obstet. Gynaecol. 2013, 53, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Cedergren, M.I. Optimal gestational weight gain for body mass index categories. Obstet. Gynecol. 2007, 110, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.G.; Taylor, R.S.; Thompson, J.M.; Anderson, N.H.; Dekker, G.A.; Kenny, L.C.; McCowan, L.M.; Consortium, S. Gestational weight gain and adverse pregnancy outcomes in a nulliparous cohort. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 167, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.M.; White, J.; Murphy, P.; Burrage, L.; Hutchens, D. The effect of gestational weight gain by body mass index on maternal and neonatal outcomes. J. Obstet. Gynaecol. Can. 2009, 31, 28–35. [Google Scholar] [PubMed]
- Scott-Pillai, R.; Spence, D.; Cardwell, C.; Hunter, A.; Holmes, V. The impact of body mass index on maternal and neonatal outcomes: A retrospective study in a UK obstetric population, 2004–2011. BJOG 2013, 120, 932–939. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.D.; Han, Z.; Mulla, S.; Lutsiv, O.; Lee, T.; Beyene, J.; Knowledge Synthesis, G. High gestational weight gain and the risk of preterm birth and low birth weight: A systematic review and meta-analysis. J. Obstet. Gynaecol. Can. 2011, 33, 1223–1233. [Google Scholar] [PubMed]
- Han, Z.; Lutsiv, O.; Mulla, S.; Rosen, A.; Beyene, J.; McDonald, S.D.; Knowledge Synthesis, G. Low gestational weight gain and the risk of preterm birth and low birthweight: A systematic review and meta-analyses. Acta Obstet. Gynecol. Scand. 2011, 90, 935–954. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, M. Maternal and neonatal outcomes among obese women with weight gain below the new institute of medicine recommendations. Obstet. Gynecol. 2011, 117, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Oteng-Ntim, E.; Varma, R.; Croker, H.; Poston, L.; Doyle, P. Lifestyle interventions for overweight and obese pregnant women to improve pregnancy outcome: Systematic review and meta-analysis. BMC Med. 2012, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Thangaratinam, S.; Rogozinska, E.; Jolly, K.; Glinkowski, S.; Roseboom, T.; Tomlinson, J.W.; Kunz, R.; Mol, B.W.; Coomarasamy, A.; Khan, K.S. Effects of interventions in pregnancy on maternal weight and obstetric outcomes: Meta-analysis of randomised evidence. BMJ 2012, 344, e2088. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine and National Research Council of the National Academies. Weight Gain during Pregnancy: Reexamining the Guidelines; Institute of Medicine and National Research Council of the National Academies: Washington, DC, USA, 2009. [Google Scholar]
- Crozier, S.R.; Robinson, S.M.; Godfrey, K.M.; Cooper, C.; Inskip, H.M. Women’s dietary patterns change little from before to during pregnancy. J. Nutr. 2009, 139, 1956–1963. [Google Scholar] [CrossRef] [PubMed]
- Cuco, G.; Fernandez-Ballart, J.; Sala, J.; Viladrich, C.; Iranzo, R.; Vila, J.; Arija, V. Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. Eur. J. Clin. Nutr. 2006, 60, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Finer, L.B.; Zolna, M.R. Unintended pregnancy in the united states: Incidence and disparities, 2006. Contraception 2011, 84, 478–485. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grieger, J.A.; Clifton, V.L. A Review of the Impact of Dietary Intakes in Human Pregnancy on Infant Birthweight. Nutrients 2015, 7, 153-178. https://doi.org/10.3390/nu7010153
Grieger JA, Clifton VL. A Review of the Impact of Dietary Intakes in Human Pregnancy on Infant Birthweight. Nutrients. 2015; 7(1):153-178. https://doi.org/10.3390/nu7010153
Chicago/Turabian StyleGrieger, Jessica A., and Vicki L. Clifton. 2015. "A Review of the Impact of Dietary Intakes in Human Pregnancy on Infant Birthweight" Nutrients 7, no. 1: 153-178. https://doi.org/10.3390/nu7010153
APA StyleGrieger, J. A., & Clifton, V. L. (2015). A Review of the Impact of Dietary Intakes in Human Pregnancy on Infant Birthweight. Nutrients, 7(1), 153-178. https://doi.org/10.3390/nu7010153