Gut Function-Enhancing Properties and Metabolic Effects of Dietary Indigestible Sugars in Rodents and Rabbits
Abstract
:1. Introduction
Items | Rabbits | Guinea Pigs | Rats | Hamsters |
---|---|---|---|---|
Relative Weight of Gastrointestinal Segment (g/100 g Body Weight) | ||||
Large intestine | 9.9 b | 14.1 a | 4.4 d | 6.0 c |
Cecum | 7.8 b | 9.2 a | 2.4 c | 3.2 c |
Colon-rectum | 2.1 c | 4.9 a | 2.0 c | 2.8 b |
Length of Gastrointestinal Segment (cm) | ||||
Cecum | 63.8 a | 11.3 b | 4.9 d | 7.3 c |
Colon-rectum | 98.5 a | 86.8 b | 18.8 d | 34.5 c |
Apparent Digestibility of Nutrients (%) | ||||
Crude fiber | 21.1 b | 51.3 a | 7.4 c | 25.5 b |
NDF | 30.0 c | 55.0 a | 26.1 d | 38.4 b |
ADF | 23.4 b | 51.7 a | 11.2 c | 25.1 b |
Total SCFA Concentration (umol/g) | ||||
Cecum | 73.0 b | 40.9 c | 179.4 a | 85.0 b |
Colon-rectum | 64.4 b | 35.2 c | 149.2 a | 60.3 b |
2. Prebiotic Properties of iS and Effects of Fermentation
2.1. Selective Bacterial Proliferation and Fermentation
2.2. Effects of Microbial Metabolites on the Gut
2.3. Enlargement of Large Bowel Size
2.4. Change in Intestinal Transit Time and Increase Stool Mass
3. Effects on Nutrient Digestion, Absorption, and Systemic Metabolism
3.1. Enhancement of Mineral Absorption
3.2. Nitrogen Utilization
3.3. Role in Improving Blood Glucose and Insulin Secretion
3.4. Lipid Metabolism
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Yanina Pepino, M. Metabolic effects of non-nutritive sweeteners. Physiol. Behav. 2015. [Google Scholar] [CrossRef]
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed]
- Levin, G.V.; Zehner, L.R.; Saunders, J.P.; Beadle, J.R. Sugar substitutes: Their energy values, bulk characteristics, and potential health benefits. Am. J. Clin. Nutr. 1995, 62, 1161–1168. [Google Scholar]
- Livesey, G. The energy values of dietary fiber and sugar alcohols for man. Nutr. Res. Rev. 1992, 5, 61–84. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, K.E.B.; Lærke, H.N. Carbohydrate digestion and absorption. In Nutritional Physiology of Pigs; Bach Knudsen, K.E., Kjeldsen, N.J., Eds.; Videncenter for Svineproduktion: Foulum, Denmark, 2012. [Google Scholar]
- Zumbé, A.; Lee, A.; Story, D. Polyols in confectionery: The route to sugar-free, reduced sugar and reduced calorie confectionery. Br. J. Nutr. 2001, 85, 31–45. [Google Scholar] [CrossRef]
- Sabater-Molina, M.; Larqué, E.; Torrella, F.; Zamora, S. Dietary fructooligosaccharides and potential benefits on health. J. Physiol. Biochem. 2009, 65, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Grabitske, H.A.; Slavin, J.L. Gastrointestinal effects of low-digestible carbohydrates. Crit. Rev. Food. Sci. Nutr. 2009, 49, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Min, X.; Nishiayama, A.; Sakaguchi, E. Effect of fructo-oligosaccharide on nitrogen utilization in guinea pigs. Anim. Sci. J. 2013, 84, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Bindels, L.B.; Neyrinck, A.M.; Salazar, N.; Taminiau, B.; Druart, C.; Muccioli, G.G. Non digestible oligosaccharides modulate the gut microbiota to control the development of leukemia and associated cachexia in mice. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed]
- Trautwein, E.A.; Rieckhoff, D.; Erbersdobler, H.F. Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters. J. Nutr. 1998, 128, 1937–1943. [Google Scholar] [PubMed]
- Laparra, J.M.; Díez-Municio, M.; Herrerob, M.; Morenob, F.J. Structural differences of prebiotic oligosaccharides influence their capability to enhance iron absorption in deficient rats. Food Funct. 2014, 5, 2430–2437. [Google Scholar] [CrossRef] [PubMed]
- Oso, A.O.; Idowu, O.M.O.; Haastrup, A.S.; Ajibade, A.J.; Olowonefa, K.O.; Aluko, A.O.; Ogunade, I.M.; Osho, S.O.; Bamgbose, A.M. Growth performance, apparent nutrient digestibility, caecal fermentation, ileal morphology and caecal microflora of growing rabbits fed diets containing probiotics and prebiotics. Livest. Sci. 2013, 157, 184–190. [Google Scholar] [CrossRef]
- Halas, V.; Nochta, I. Mannan oligosaccharides in nursery pig nutrition and their potential mode of action. Animals 2012, 2, 261–274. [Google Scholar] [CrossRef]
- Sakaguchi, E. Digestive strategies of small hindgut fermenters. Anim. Sci. J. 2003, 74, 327–337. [Google Scholar] [CrossRef]
- Johnson-Delaney, C. Anatomy and physiology of the rabbit and rodent gastrointestinal system. Proc. Assoc. Avian Vet. 2006, 9–17. [Google Scholar]
- Franz, R.; Kreuzer, M.; Hummel, J.; Hatt, J.M.; Clauss, M. Intake, selection, digesta retention, digestion and gut fill of two coprophageous species, rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus), on a hay-only diet. J. Anim. Physiol. Anim. Nutr. 2011, 95, 564–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiou, P.W.S.; Yu, B.; Kuo, C.Y. Comparison of digestive function among rabbits, guinea pigs, rats and hamsters. I. Performance, digestibility and rate of digesta passage. Asian-Aus. J. Anim. Sci. 2000, 13, 1499–1507. [Google Scholar] [CrossRef]
- Yu, B.; Chiou, P.W.S.; Kuo, C.Y. Comparison of digestive function among rabbits, guinea pigs, rats and hamsters. II. Digestive enzyme and hindgut fermentation. Asian-Aust. J. Anim. Sci. 2000, 13, 1508–1513. [Google Scholar] [CrossRef]
- Kararli, T.T. Comparison of the GI anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 1995, 16, 351–380. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.A.; Vieira-Silva, S.; Liston, A.; Raes, J. How informative is the mouse for human gut microbiota research? Dis. Mod. Mechan. 2015, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.K.; Hartmann, C.; Hansen, F.; Krych, L.; Nielsen, D.S. Impact of the gut microbiota on rodent models of human disease. World J. Gastroenterol. 2014, 20, 17727–17736. [Google Scholar] [PubMed]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.A.; Sarbini, S.R. The potential of resistant starch as a prebiotic. Crit. Rev. Biotechnol. 2015, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.B. Inulin-type fructans: Functional food ingredients. J. Nutr. 2007, 137, 2493–2502. [Google Scholar]
- Gibson, G.R.; Fuller, R. Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J. Nutr. 2000, 130, 391–395. [Google Scholar]
- Montagne, L.; Pluske, J.R.; Hampson, D.J. A review of interactions between dietary fiber and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 2003, 108, 95–117. [Google Scholar] [CrossRef]
- Cook, S.I.; Sellin, J.H. Review article: Short chain fatty acids in health and disease. Aliment. Pharm. Therap. 1998, 12, 499–507. [Google Scholar] [CrossRef]
- Lewis, S.; Heaton, K. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut 1997, 41, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Sivieri, K.; Morales, M.L.V.; Saad, S.M.I.; Adorno, M.A.T.; Sakamoto, I.K.; Rossi, E.A. Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem. J. Med. Food 2014, 17, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, M.; Ushida, K.; Hoshi, S.; Kashima, N.; Ajisaka, K.; Yajima, T. Butyrate and propionate production from d-mannitol in the large intestine of pig and rat. Microb. Ecol. Health Dis. 2005, 17, 169–176. [Google Scholar] [CrossRef]
- Xiao, J.; Li, X.; Min, X.; Sakaguchi, E. Mannitol improves absorption and retention of calcium and magnesium in growing rats. Nutrition 2013, 29, 325–331. [Google Scholar] [CrossRef]
- Minamida, K.; Shiga, K.; Sujaya, I.N.; Sone, T.; Yokota, A.; Hara, H.; Asano, K.; Tomita, F. Effects of difructose anhydride III (DFA III) administration on rat intestinal microbiota. J. Biosci. Bioeng. 2005, 99, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.; Gibson, G.R.; Delzenne, N. Biochemistry of oligofructose, a non-digestible fructooligosaccharide: An approach to estimate its caloric value. Nutr. Rev. 1993, 51, 137–146. [Google Scholar] [CrossRef]
- Wang, X.; Gibson, G.R. Effect of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bacteriol. 1993, 75, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Koleva, P.T.; Valcheva, R.S.; Sun, X.; Gänzle, M.G.; Dieleman, L.A. Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats. Br. J. Nutr. 2012, 108, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
- McHan, F.; Shotts, E.B. Effect of short-chain fatty acids on the growth of Salmonella typhimurium in an in vitro system. Avian Dis. 1993, 37, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Rekiel, A.; Wiecek, J.; Bielecki, W.; Gajewska, J.; Cichowicz, M.; Kulisiewicz, J.; Batorska, M.; Roszkowski, T.; Beyga, K. Effect of addition of feed antibiotic flavomycin, or prebiotic BIO-MOS on production results of fatteners, blood biochemical parmeters, morphometric indices of intestine and composition of microflora. Arch. Tierz. 2007, 50, 172–180. [Google Scholar]
- Koleva, P.; Ketabi, A.; Valcheva, R.; Gänzle, M.G.; Dieleman, L.A. Chemically defined diet alters the protective properties of fructo-oligosaccharides and isomalto-oligosaccharides in HLA-B27 transgenic rats. PLoS ONE 2014, 9, e111717. [Google Scholar] [CrossRef] [PubMed]
- Gidenne, T.; Licois, D. Effect of high fiber intake on resistance of the growing rabbit to an experimental inoculation with an enteropathogenic strain of Escherichia coli. Anim. Sci. 2005, 80, 281–288. [Google Scholar] [CrossRef]
- Mao, B.; Li, D.; Zhao, J.; Liu, X.; Gu, Z.; Chen, Y.Q.; Zhang, H.; Chen, W. Metagenomic insights into the effects of fructooligosaccharides (FOS) on the composition of fecal microbiota in mice. J. Agric. Food Chem. 2015, 63, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Hütt, P.; Shchepetova, J.; Lõivukene, K.; Kullisaar, T.; Mikelsaar, M. Antagonistic activityof probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J. Appl. Microbiol. 2006, 100, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Gopal, P.K.; Sullivan, P.A.; Smart, J.B. Utilization of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. Int. Dairy J. 2001, 11, 19–25. [Google Scholar] [CrossRef]
- Mäkeläinen, H.; Saarinen, M.; Stowell, J.; Rautonen, N.; Ouwehand, A.C. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Benef. Microbes 2010, 1, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Veerappan, G.R.; Betteridge, J.; Young, P.E. Probiotics for the treatment of inflammatory bowel disease. Curr. Gastroenterol. Rep. 2012, 14, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Servin, A.L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. Microbiol. Rev. 2004, 28, 405–440. [Google Scholar] [CrossRef] [PubMed]
- Arora, T.; Sharma, R.K. Prebiotic effectiveness of galactooligosaccharides and β-glucan in stimulation of growth of Lactobacillus acidophilus NCDC 13 in vitro. Curr. Top. Nutraceutical Res. 2011, 9, 67–70. [Google Scholar]
- Sangwan, V.; Tomar, S.K.; Ali, B.; Singh, R.R.B.; Singh, A.K. Hypoglycaemic effect of galactooligosaccharides in alloxan-induced diabetic rats. J. Dairy Res. 2015, 82, 70–77. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E. Effect of dietary non-digestible carbohydrates on the rate of SCFA delivery to peripheral tissues. Food Foods Ingredients J. Jpn. 2005, 210, 1008–1017. [Google Scholar]
- Kien, C.L.; Blauwiekel, R.; Bunn, J.Y.; Jetton, T.L.; Frankel, W.L.; Holst, J.J. Cecal infusion of butyrate increases intestinal cell proliferation in piglets. J. Nutr. 2007, 137, 916–922. [Google Scholar] [PubMed]
- Scheppach, W.; Dusel, G.; Kuhn, T.; Loges, C.; Karch, H.; Bartram, H.P. Effect of l-glutammine and n-butyrate o the restitution of rat colonic mucosa after acid induced injury. Gut 1996, 38, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Lobo, A.R.; Gaievski, E.H.; de Carli, E.; Alvares, E.P.; Colli, C. Fructo-oligosaccharides and iron bioavailability inanaemic rats: The effects on iron species distribution, ferroportin-1expression, crypt bifurcation and crypt cell proliferation in the caecum. Br. J. Nutr. 2014, 112, 1286–1295. [Google Scholar] [CrossRef]
- Blottière, H.M.; Buecher, B.; Galmiche, J.P.; Cherbut, C. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc. Nutr. Soc. 2003, 62, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Henningsson, A.; Inger Björck, I.; Nyman, M. Short-chain fatty acid formation at fermentation of indigestible carbohydrates. Scand. J. Nutr. 2001, 145, 165–168. [Google Scholar] [CrossRef]
- Mourão, J.L.; Pinheiro, V.; Alves, A.; Guedes, C.M.; Pinto, L.; Saavedra, M.J.; Spring, P.; Kocher, A. Effect of mannan oligosaccharides on the performance, intestinal morphology and cecal fermentation of fattening rabbits. Anim. Feed Sci. Technol. 2006, 126, 107–120. [Google Scholar] [CrossRef]
- Guedes, C.M.; Mourão, J.L.; Silva, S.R.; Gomes, M.J.; Rodrigues, M.A.M.; Pinheiro, V. Effects of age and mannanoligosaccharides supplementation on production of volatile fatty acids in the caecum of rabbits. Anim. Feed Sci. Technol. 2009, 150, 330–336. [Google Scholar] [CrossRef]
- Scheppach, W.; Weiler, F. The butyrate story: Old wine in new bottles? Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Nurmi, J.; Puolakkainen, P.; Rautonen, N. Bifidobacterium lactis sp. 420 up-regulates cylooxygenase [Cox] 1 and down-regulates Cox-2 gene expression in a Caco-2 cell culture model. Nutr. Can. 2005, 51, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Berndt, B.E.; Zhang, M.; Owyang, S.Y.; Cole, T.S.; Wang, T.W.; Luther, J. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Bohmig, G.A.; Krieger, P.M.; Saemann, M.D.; Wenhardt, C.; Pohanka, E.; Zlabinger, G.J. N-Butyrate down regulates the stimulatory function of peripheral blood derived antigen-presenting cells: A potential mechanism for modulating T-cell responses by short-chain fatty acids. Immunology 1997, 92, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Immunology 2014, 111, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Komura, M.; Fukuta, T.; Genda, T.; Hino, S.; Aoe, S.; Kawagishi, H.; Tatsuya, M. A short-term ingestion of fructo-oligosaccharides increases immunoglobulin A and mucin concentrations in the rat cecum, but the effects are attenuated with the prolonged ingestion. Biosci. Biotechnol. Biochem. 2014, 78, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.Y.; Chio, Y.S. Dose-response assessment of the anti-cancer efficacy of soy isoflavones in dimethylhydrazine- treated rats fed 6% fructooligosaccharide. Nutr. Res. Pract. 2008, 2, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Bielecka, M.; Biedrzycka, E.; Majkowska, A. Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res. Int. 2002, 35, 139–144. [Google Scholar] [CrossRef]
- Pan, X.D.; Chen, F.Q.; Wu, T.X.; Tang, H.G.; Zhao, Z.Y. Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J. Zhejiang Univ. Sci. B 2009, 10, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Gudiel-Urbano, M.; Goñi, I. Effect of fructooligosaccharide on nutritional parameters and mineral bioavailability in rats. J. Sci. Food Agric. 2002, 82, 913–917. [Google Scholar] [CrossRef]
- Xiao, J.; Okayama University, Okayama, Japan. Unpublished work. 2011.
- Silk, D.B.A.; Davis, A.; Vulevic, J.; Tzortzis, G.; Gibson, G.R. Clinical trial: The effects of a trans-galactooligosaccharide prebiotic on fecal microbiota and symptoms in irritable bowel syndrome. Aliment. Pharm. Therap. 2009, 29, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, T.; Wang, S.E.; Li, F.; Guo, X.Y.; Jin, J.; Yu, H.X. Laxative effect of fructooligosaccharide in mice and humans. Curr. Top. Nutraceutical Res. 2013, 11, 1–8. [Google Scholar]
- Costalos, C.; Kapiki, A.; Apostolou, M.; Papathoma, E. The effect of a prebiotic supplemented formula on growth and stool microbiology of term infants. Early Hum. Dev. 2008, 84, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Mihatsch, W.; Hoegel, J.; Pohlandt, F. Prebiotic oligosaccharides reduce stool viscosity and accelerate gastrointestinal transport in preterm infants. Acta Paediatr. 2006, 95, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Tateyama, I.; Hashii, K.; Johno, I.; Iino, T.; Hirai, K.; Suwa, Y.; Kiso, Y. Effect of xylooligosaccharide intake on severe constipation in pregnant women. J. Nutr. Sci. Vitaminol. 2005, 51, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Pansu, D.; Chapuy, M.C.; Milani, M.; Bellaton, C. Transepithelial calcium transport enhanced by xylose and glucose in the rat jejunal ligated loop. Calcified Tissue Int. 1976, 21, 45–52. [Google Scholar] [CrossRef]
- Cummings, J.H. The Large Intestine in Nutrition and Disease; Institut Danone: Brussels, Belgium, 1997; pp. 1–155. [Google Scholar]
- Ruppin, H.; Bar-Meir, S.; Soergel, K.H.; Wood, C.M.; Schmitt, M.G. Absorption of short chain fatty acids by the colon. Gastroenterology 1980, 78, 1500–1507. [Google Scholar] [PubMed]
- Freitas Kde, C.; Amancio, O.M.; de Morais, M.B. High-performance inulin and oligofructose prebiotics increase the intestinal absorption of iron in rats with iron deficiency anaemia during the growth phase. Br. J. Nutr. 2012, 108, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Nakada, H.; Sakae, T.; Watanabe, T.; Takahashi, T.; Fujita, K.; Tanimoto, Y. A new osteoporosis prevention supplements-diet improve bone mineral density in ovariectomized rats. J. Hard Tissue Biol. 2014, 23, 1–8. [Google Scholar] [CrossRef]
- Lobo, A.R.; Colli, C.; Filisetti, T.M.C.C. Fructooligosaccharides improve bone mass and biomechamical properties in rats. Nutr. Res. 2006, 26, 413–420. [Google Scholar] [CrossRef]
- Takasugi, S.; Ashida, K.; Maruyama, S.; Matsukiyo, Y.; Kaneko, T.; Yamaji, T. A combination of a dairy product fermented by lactobacilli and galactooligosaccharides shows additive effects on mineral balances in growing rats with hypochlorhydria induced by a proton pump inhibitor. Biol. Trace Elem. Res. 2013, 153, 309–318. [Google Scholar] [CrossRef]
- Zafar, T.A.; Weaver, C.M.; Zhao, Y.D.; Martin, B.R.; Wastney, M.E. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J. Nutr. 2004, 134, 399–402. [Google Scholar]
- Heaney, R.P. Nutrition and risk for osteoporosis. In Osteoporosis, 1st ed.; Marcus, R., Feldman, D., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 483–509. [Google Scholar]
- Kishino, E.; Norii, M.; Fujita, K.; Hara, K.; Teramoto, F.; Fukunaga, M. Enhancement by lactosucrose of the calcium absorption from the intestine in growing rats. Biosci. Biotechnol. Biochem. 2006, 70, 1485–1488. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Deckardt, K.; Schollenberger, M.; Rodehutscord, M.; Zebeli, Q. Lactic acid and thermal treatments trigger the hydrolysis of myo-inositol hexakisphosphate and modify the abundance of lower myo-inositol phosphates in barley (Hordeum vulgare L.). PLoS ONE 2014, 9, e101166. [Google Scholar] [CrossRef]
- Weaver, C.M.; Martin, B.R.; Nakatsu, C.H. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J. Agric. Food Chem. 2011, 59, 6501–6510. [Google Scholar] [CrossRef]
- Takasugi, S.; Ashida, K.; Maruyama, S.; Komaba, Y.; Kaneko, T.; Yamaji, T. A dairy product fermented by lactobacilli cancels the adverse effects of hypochlorhydria induced by a proton pump inhibitor on bone metabolism in growing rats. Br. J. Nutr. 2011, 106, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, T.; Wang, S.E.; Wang, W.; Wang, Q.; Yu, H.X. Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition 2010, 26, 305–311. [Google Scholar]
- Scholz-Ahrens, K.E.; Schrezenmeir, J. Inulin and oligofructose and mineral metabolism: The evidence from animal trials. J. Nutr. 2007, 137, 2513–2523. [Google Scholar]
- Johnson, C.D.; Lucas, E.A.; Hooshmand, S.; Campbell, S.; Akhter, M.P.; Arjmandi, B.H. Addition of fructooligosaccharides and dried plum to soy-based diets reverses bone loss in the ovariectomized rat. Evid. Based Complement. Alternat. Med. 2011. [Google Scholar] [CrossRef]
- Sato, H.; Ide, Y.; Nasu, M. The effects of oral xylitol administration on bone density in rat femur. Odontology 2011, 99, 28–33. [Google Scholar] [CrossRef]
- Hamalainen, M.M. Retention of calcium from various xylitolcalcium combinations in rats. Proc. Soc. Exp. Biol. Med. 1994, 205, 253–256. [Google Scholar] [CrossRef]
- Goda, T.; Suruga, K.; Takase, S.; Ezawa, I.; Hosoya, N. Dietary maltitol increases calcium content and breaking force of femoral bone in ovariectomized rats. J. Nutr. 1995, 125, 2869–2873. [Google Scholar] [PubMed]
- Mattila, P.T.; Svanberg, M.J.; Jämsä, T.; Knuuttila, M.L. Improved bone biomechanical propertiesin xylitol-fed aged rats. Metabolism 2002, 51, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Goda, T.; Kishi, K.; Ezawa, I.; Takase, S. The maltitol-induced increase in intestinal calcium transport increases the calcium content and breaking force of femoral bone in weanling rats. J. Nutr. 1998, 128, 2028–2031. [Google Scholar] [PubMed]
- Kaivosoja, S.M.; Mattila, P.T.; Knuuttila, M.L. Dietary xylitol protects against the imbalance in bone metabolism during the early phase of collagen type II-induced arthritis in dark agouti rats. Metabolism 2008, 57, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Younes, H.; Demigne, C.; Behr, S.R.; Garleh, K.A.; Remesy, C. A blend of dietary fibers increases urea disposal in the large intestine and lowers urinary nitrogen excretion in rats fed a low protein diet. J. Nutr. Biochem. 1996, 7, 474–480. [Google Scholar] [CrossRef]
- Hara, H.; Onoshima, S.; Nakagawa, C. Difructose anhydride III promotes iron absorption in the large intestine. Nutrition 2010, 26, 120–127. [Google Scholar] [CrossRef]
- Karbach, U.; Feldmeier, H. The cecum is the site with the highest calcium absorption in rat intestine. Dig. Dis. Sci. 1993, 38, 1815–1824. [Google Scholar] [CrossRef]
- Mineo, H.; Hara, H.; Tomita, F. Short-chain fatty acids enhance diffusional Ca transport in the epithelium of the rat cecum and colon. Life Sci. 2001, 69, 517–526. [Google Scholar] [CrossRef]
- Scholz-Ahrens, K.E.; Açil, Y.; Schrezenmeir, J. Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. Br. J. Nutr. 2002, 88, 365–377. [Google Scholar] [CrossRef]
- Scholz-Ahrens, K.E.; Schrezenmeir, J. Inulin, oligofructose and mineral metabolism—Experimentaldata and mechanism. Br. J. Nutr. 2002, 87, 179–186. [Google Scholar] [CrossRef]
- Younes, H.; Coudray, C.; Bellanger, J.; Demigné, C.; Rayssiguier, Y.; Rémésy, C. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br. J. Nutr. 2001, 86, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Raschka, L.; Daniel, H. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone 2005, 37, 728–735. [Google Scholar] [CrossRef]
- Chonan, O.; Matsumoto, K.; Watanuki, M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci. Biotechnol. Biochem. 1995, 59, 236–239. [Google Scholar] [CrossRef]
- Samanta, A.K.; Jayapal, N.; Senani, S.; Kolte, A.P.; Sridhar, M. Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora. Braz. J. Microbiol. 2013, 44, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar]
- Lutz, T.; Scharrer, E. Effect of short-chain fatty acids on calcium absorption by the rat colon. Exp. Physiol. 1991, 76, 615–618. [Google Scholar] [CrossRef]
- Asvarujanon, P.; Ishizuka, S.; Hara, H. Promotive effects of non-digestible disaccharides on rat mineral absorption depend on the type of saccharide. Nutrition 2005, 21, 1025–1035. [Google Scholar] [CrossRef]
- Ohta, A.; Sakai, K.; Takasaki, M.; Uehara, M.; Tokunaga, T.; Adachi, T. Dietary heme iron does not prevent postgastrectomy anemia but fructooligosaccharides improve bioavailability of heme iron in rats. Int. J. Vitam. Nutr. Res. 1999, 69, 348–355. [Google Scholar] [CrossRef]
- Ohta, A.; Baba, S.; Takizawa, T.; Adachi, T. Effects of fructooligosaccharides on the absorption of magnesium in the magnesium-deficient rat model. J. Nutr. Sci. Vitaminol. 1994, 40, 171–181. [Google Scholar] [CrossRef]
- Ohta, A.; Ohtsuki, M.; Baba, S.; Takizawa, T.; Adachi, T.; Kimura, S. Effects of fructooligosaccharides on the absorption of iron, calcium and magnesium in iron-deficient anemic rats. J. Nutr. Sci. Vitaminol. 1995, 41, 281–291. [Google Scholar] [CrossRef]
- Shiga, K.; Nishimukai, M.; Tomita, F.; Hara, H. Ingestion of difructose anhydride III, a non-digestible disaccharide, prevents gastrectomy-induced iron malabsorption and anemia in rats. Nutrition 2006, 22, 786–793. [Google Scholar] [CrossRef]
- Suzuki, T.; Nishimukai, M.; Shinoki, A.; Taguchi, H.; Fukiya, S.; Yokota, A.; Saburi, W.; Yamamoto, T.; Hara, H.; Matsui, H. Ingestion of epilactose, a non-digestible disaccharide, improves postgastrectomy osteopenia and anemia in rats through the promotion of intestinal calcium and iron absorption. J. Agric. Food Chem. 2010, 58, 10787–10792. [Google Scholar] [CrossRef]
- Santos, E.F.D.; Tusboi, K.H.; Araújo, M.R.; Falconi, M.A.; Ouwehand, A.C.; Andreollo, N.A.; Miyasaka, C.K. Ingestion of polydextrose increase the iron absorption in rats submitted to partial gastrectomy. Acta Cir. Bras. 2010, 25, 518–524. [Google Scholar] [CrossRef]
- Santos, E.F.D.; Tusboi, K.H.; Araújo, M.R.; Andreollo, N.A.; Miyasaka, C.K. Dietary galactooligosaccharides increase calcium absorption in normal and gastrectomized rats. Rev. Col. Bras. Cir. 2011, 38, 186–190. [Google Scholar] [CrossRef]
- Mitamura, R.; Hara, H. Prolonged feeding of difructose anhydride III increases strength and mineral concentrations of the femur in ovariectomized rats. Br. J. Nutr. 2005, 94, 268–274. [Google Scholar] [CrossRef]
- Weisstaub, A.R.; Victoria Abdala, V.; Chaves, M.G.; Mandalunis, P.; Zuleta, Á.; Zeni, S. Polydextrose enhances calcium absorption and bone retention in ovariectomized rats. Int. J. Food Sci. 2013. [Google Scholar] [CrossRef]
- Ohta, A.; Ohtuki, M.; Takizawa, T.; Inaba, H.; Adachi, T.; Kimura, S. Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomized rats. Int. J. Vitam. Nutr. Res. 1994, 64, 316–323. [Google Scholar]
- Heijnen, A.M.; Brink, E.J.; Lemmens, A.G.; Beynen, A.C. Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose. Br. J. Nutr. 1993, 70, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Fukahori, M.; Sakurai, H.; Akatsu, S.; Negishi, M.; Sato, H.; Goda, T.; Takase, S. Enhanced absorption of calcium after oral administration of maltitol in the rat intestine. J. Pharm. Pharmacol. 1998, 50, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Mineo, H.; Hara, H.; Shigematsu, N.; Okuhara, Y.; Tomita, F. Melibiose, difructose anhydride III and difructose anhydride IV enhance net calcium absorption in rat small and large intestinal epithelium by increasing the passage of tight junctions in vitro. J. Nutr. 2002, 132, 3394–3399. [Google Scholar] [PubMed]
- Mineo, H.; Amamo, M.; Minaminida, K.; Chiji, H.; Shigematsu, N.; Tomita, F.; Hara, H. Two-week feeding of difructose anhydride III enhances calcium absorptive activity with epithelial cell proliferation in isolated rat cecal mucosa. Basic Nutr. Investig. 2006, 22, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Min, X.; Tsuzuki, Y.; Sakaguchi, E. Effect of indigestible sugars on nitrogen utilization in adult rabbits. Anim. Sci. J. 2011, 82, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Li, X.; Hiura, S.; Kawasaki, K.; Xiao, J.; Sakaguchi, E. Effect of d-mannitol on nitrogen retention, fiber digestibility and digesta transit time in adult rabbits. Anim. Sci. J. 2013, 84, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, A.; Nishioka, S.; Islam, S.M.; Sakaguchi, E. Mannitol lowers fat digestibility and body fat accumulation in both normal and cecectomized rats. J. Nutr. Sci. Vitaminol. 2009, 55, 242–251. [Google Scholar] [CrossRef]
- Sakaguchi, E.; Sakoda, C.; Toramaru, Y. Caecal fermentation and energy accumulation in the rat fed on indigestible oligosaccharides. Br. J. Nutr. 1998, 80, 469–476. [Google Scholar]
- Younes, H.; Garleb, K.; Behr, S.; Rémésy, C.; Demigné, C. Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J. Nutr. 1995, 125, 1010–1016. [Google Scholar]
- Bovera, F.; Lestingi, A.; Marono, S.; Iannaccone, F.; Nizza, S.; Mallardo, K.; de Martino, L.; Tateo, A. Effect of dietary mannan-oligosaccharides on in vivo performance, nutrient digestibility and caecal content characteristics of growing rabbits. J. Anim. Physiol. Anim. Nutr. 2012, 96, 130–136. [Google Scholar] [CrossRef]
- Carabaño, R.; Piquer, J. The digestive system of the rabbit. In The Nutrition of the Rabbit; De Blas, C., Wiseman, J., Eds.; CAB International: Wallingford, CT, USA, 1998; pp. 1–16. [Google Scholar]
- Kawasaki, K.; Min, X.; Li, X.; Hasegawa, E.; Sakaguchi, E. Transfer of blood urea nitrogen to cecal microbial nitrogen is increased by fructo-oligosaccharide feeding in guinea pigs. Anim. Sci. J. 2015, 86, 77–82. [Google Scholar] [CrossRef]
- Xiao, L.; Xiao, M.; Jin, X.; Kawasaki, K.; Ohta, N.; Sakaguchi, E. Transfer of blood urea nitrogen to cecal microbial nitrogen is increased by mannitol feeding in growing rabbits fed timothy hay diet. Animal 2012, 6, 1757–1763. [Google Scholar] [CrossRef]
- Belenguer, A.; Balcells, J.; Guada, J.A.; Decoux, M.; Milne, E. Protein recycling in growing rabbits: Contribution of microbial lysine to amino acid metabolism. Br. J. Nutr. 2005, 94, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Hanieh, H.; Sakaguchi, E. Effect of d-mannitol on feed digestion and cecotrophic system in rabbits. Anim. Sci. J. 2009, 80, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Min, X.; Xiao, J.; Kawasaki, K.; Ohta, N.; Sakaguchi, E. Utilization of dietary urea nitrogen is stimulated by d-mannitol feeding in rabbits. Anim. Sci. J. 2012, 83, 605–609. [Google Scholar] [CrossRef]
- Yamada, K.; Hidaka, H.; Inooka, G.; Iwamoto, Y.; Kuzuya, T. Plasma fructosemic and glycosemic responses to fructooligosaccharides in rats and healthy human subjects. Dig. Absorpt. 1990, 13, 88–91. [Google Scholar]
- Kaume, L.; Gilbert, W.; Gadang, V.; Devareddy, L. Dietary supplementation of fructooligosaccharides reduces hepatic steatosis associated with insulin resistance in obese zucker rats. Funct. Foods Heaths Dis. 2011, 5, 199–213. [Google Scholar]
- Costa, G.T.; Guimarães, S.B.; de Carvalho Sampaio, H.A. Fructo-oligosaccharide effects on blood glucose: An overview. Acta Cir. Bras. 2012, 27, 279–282. [Google Scholar] [CrossRef]
- Mäkinen, K.K.; Hämäläinem, M.M. Metabolic effects in rats of high oral doses of galactitol, mannitol and xylitol. J. Nutr. 1985, 115, 890–899. [Google Scholar]
- Respondek, F.; Hilpipre, C.; Chauveau, P.; Cazaubiel, M.; Gendre, D.; Maudet, C.; Wagner, A. Digestive tolerance and postprandial glycaemic and insulinaemic responses after consumption of dairy desserts containing maltitol and fructo-oligosaccharides in adults. Eur. J. Clin. Nutr. 2014, 68, 575–580. [Google Scholar] [CrossRef]
- Ellwood, K.C.; Bhathena, S.J.; Johannessen, J.N.; Bryane, M.A.; O’Donnell, M.W. Biomarkers used to assess the effect of dietary xylitol or sorbitol in the rat. Nutr. Res. 1999, 19, 1637–1648. [Google Scholar] [CrossRef]
- Urushima, H.; Sanada, Y.; Sakaue, M.; Matsuzawa, Y.; Ito, T.; Maeda, K. Maltitol prevents the progression of fatty liver degeneration in mice fed high-fat diets. J. Med. Food 2015. [Google Scholar] [CrossRef] [PubMed]
- Nishimukai, M.; Watanabe, J.; Taguchi, H.; Senoura, T.; Hamada, S.; Matsui, H.; Yamamoto, T.; Wasaki, J.; Hara, H.; Ito, S. Effects of epilactose on calcium absorption and serum lipid metabolism in rats. J. Agric. Food Chem. 2008, 56, 10340–10345. [Google Scholar] [CrossRef]
- Costa, G.T.; de Abreu, G.C.; Guimarães, A.B.B.; de Vasconcelos, P.R.L.; Guimarães, S.B. Fructo-oligosaccharide effects on serum cholesterol levels. An overview. Acta Cir. Bras. 2015, 30, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Merino-Aguilar, H.; Arrieta-Baez, D.; Jiménez-Estrada, M.; Magos-Guerrero, G.; Hernández-Bautista, R.J.; Alarcón-Aguilar, F.J. Effect of fructooligosaccharides fraction from Psacalium decompositum on inflammation and dyslipidemia in rats with fructose-induced obesity. Nutrients 2014, 6, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Begley, M.; Hill, C.; Gahan, C.G.M. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 2006, 72, 1729–1738. [Google Scholar] [CrossRef]
- Taylor, G.R.; Williams, C.M. Effects of probiotics and prebiotics on blood lipids. Br. J. Nutr. 1998, 80, 225–230. [Google Scholar]
- Incoll, L.; Bonnett, G.D. The occurrence of fructan in food plants. In Inulin and Inulin Containing Crops; Fuchs, A., Ed.; Elsevier Science Publishers BV: Amsterdam, The Netherlands, 1993; pp. 309–319. [Google Scholar]
- Daubioul, C.A.; Rousseau, N.; Demeure, R.; Gallez, B.; Taper, H.; Declerck, B.; Delzenne, N.M. Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats. J. Nutr. 2002, 132, 967–973. [Google Scholar]
- Beylot, M. Effects of inulin-type fructans on lipid metabolism in man and in animal models. Br. J. Nutr. 2005, 93, 163–168. [Google Scholar] [CrossRef]
- Chen, H.; Liu, L.J.; Zhu, J.J.; Xu, B.; Li, R. Effect of soybean oligosaccharides on blood lipid, glucose levels and antioxidant enzymes activity in high fat rats. Food Chem. 2010, 119, 1633–1636. [Google Scholar] [CrossRef]
- Li, X.J.; Piao, X.S.; Kim, S.W.; Liu, P.; Wang, L.; Shen, Y.B.; Jung, S.C.; Lee, H.S. Effects of chito-oligosaccharide supplementation on performance, nutrient digestibility, and serum composition in broiler chickens. Poultry Sci. 2007, 86, 1107–1114. [Google Scholar] [CrossRef]
- Kim, M.H.; Shin, H.K. The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion in rats. J. Nutr. 1998, 128, 1731–1736. [Google Scholar]
- El-Mahmoudy, A.M.; Abdel-Fattah, F.A.; Abd El-Mageid, A.D.; Gheith, I.M. Effect of the growth promotant mannan-oligosaccharide on the lipogram and organ function profile in hyperlipidemic albino rats. Am. J. Phytomed. Clin. Ther. 2014, 2, 334–347. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Metzler-Zebeli, B.U.; Zebeli, Q. Gut Function-Enhancing Properties and Metabolic Effects of Dietary Indigestible Sugars in Rodents and Rabbits. Nutrients 2015, 7, 8348-8365. https://doi.org/10.3390/nu7105397
Xiao J, Metzler-Zebeli BU, Zebeli Q. Gut Function-Enhancing Properties and Metabolic Effects of Dietary Indigestible Sugars in Rodents and Rabbits. Nutrients. 2015; 7(10):8348-8365. https://doi.org/10.3390/nu7105397
Chicago/Turabian StyleXiao, Jin, Barbara U. Metzler-Zebeli, and Qendrim Zebeli. 2015. "Gut Function-Enhancing Properties and Metabolic Effects of Dietary Indigestible Sugars in Rodents and Rabbits" Nutrients 7, no. 10: 8348-8365. https://doi.org/10.3390/nu7105397